// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "PixelProcessor.hpp" #include "Surface.hpp" #include "Primitive.hpp" #include "Shader/PixelPipeline.hpp" #include "Shader/PixelProgram.hpp" #include "Shader/PixelShader.hpp" #include "Shader/Constants.hpp" #include "Common/Debug.hpp" #include <string.h> namespace sw { extern bool complementaryDepthBuffer; extern TransparencyAntialiasing transparencyAntialiasing; extern bool perspectiveCorrection; bool precachePixel = false; unsigned int PixelProcessor::States::computeHash() { unsigned int *state = (unsigned int*)this; unsigned int hash = 0; for(unsigned int i = 0; i < sizeof(States) / 4; i++) { hash ^= state[i]; } return hash; } PixelProcessor::State::State() { memset(this, 0, sizeof(State)); } bool PixelProcessor::State::operator==(const State &state) const { if(hash != state.hash) { return false; } return memcmp(static_cast<const States*>(this), static_cast<const States*>(&state), sizeof(States)) == 0; } PixelProcessor::UniformBufferInfo::UniformBufferInfo() { buffer = nullptr; offset = 0; } PixelProcessor::PixelProcessor(Context *context) : context(context) { setGlobalMipmapBias(0.0f); // Round to highest LOD [0.5, 1.0]: -0.5 // Round to nearest LOD [0.7, 1.4]: 0.0 // Round to lowest LOD [1.0, 2.0]: 0.5 routineCache = 0; setRoutineCacheSize(1024); } PixelProcessor::~PixelProcessor() { delete routineCache; routineCache = 0; } void PixelProcessor::setFloatConstant(unsigned int index, const float value[4]) { if(index < FRAGMENT_UNIFORM_VECTORS) { c[index][0] = value[0]; c[index][1] = value[1]; c[index][2] = value[2]; c[index][3] = value[3]; } else ASSERT(false); if(index < 8) // ps_1_x constants { // TODO: Compact into generic function short x = iround(4095 * clamp_s(value[0], -1.0f, 1.0f)); short y = iround(4095 * clamp_s(value[1], -1.0f, 1.0f)); short z = iround(4095 * clamp_s(value[2], -1.0f, 1.0f)); short w = iround(4095 * clamp_s(value[3], -1.0f, 1.0f)); cW[index][0][0] = x; cW[index][0][1] = x; cW[index][0][2] = x; cW[index][0][3] = x; cW[index][1][0] = y; cW[index][1][1] = y; cW[index][1][2] = y; cW[index][1][3] = y; cW[index][2][0] = z; cW[index][2][1] = z; cW[index][2][2] = z; cW[index][2][3] = z; cW[index][3][0] = w; cW[index][3][1] = w; cW[index][3][2] = w; cW[index][3][3] = w; } } void PixelProcessor::setIntegerConstant(unsigned int index, const int value[4]) { if(index < 16) { i[index][0] = value[0]; i[index][1] = value[1]; i[index][2] = value[2]; i[index][3] = value[3]; } else ASSERT(false); } void PixelProcessor::setBooleanConstant(unsigned int index, int boolean) { if(index < 16) { b[index] = boolean != 0; } else ASSERT(false); } void PixelProcessor::setUniformBuffer(int index, sw::Resource* buffer, int offset) { uniformBufferInfo[index].buffer = buffer; uniformBufferInfo[index].offset = offset; } void PixelProcessor::lockUniformBuffers(byte** u, sw::Resource* uniformBuffers[]) { for(int i = 0; i < MAX_UNIFORM_BUFFER_BINDINGS; ++i) { u[i] = uniformBufferInfo[i].buffer ? static_cast<byte*>(uniformBufferInfo[i].buffer->lock(PUBLIC, PRIVATE)) + uniformBufferInfo[i].offset : nullptr; uniformBuffers[i] = uniformBufferInfo[i].buffer; } } void PixelProcessor::setRenderTarget(int index, Surface *renderTarget, unsigned int layer) { context->renderTarget[index] = renderTarget; context->renderTargetLayer[index] = layer; } void PixelProcessor::setDepthBuffer(Surface *depthBuffer, unsigned int layer) { context->depthBuffer = depthBuffer; context->depthBufferLayer = layer; } void PixelProcessor::setStencilBuffer(Surface *stencilBuffer, unsigned int layer) { context->stencilBuffer = stencilBuffer; context->stencilBufferLayer = layer; } void PixelProcessor::setTexCoordIndex(unsigned int stage, int texCoordIndex) { if(stage < 8) { context->textureStage[stage].setTexCoordIndex(texCoordIndex); } else ASSERT(false); } void PixelProcessor::setStageOperation(unsigned int stage, TextureStage::StageOperation stageOperation) { if(stage < 8) { context->textureStage[stage].setStageOperation(stageOperation); } else ASSERT(false); } void PixelProcessor::setFirstArgument(unsigned int stage, TextureStage::SourceArgument firstArgument) { if(stage < 8) { context->textureStage[stage].setFirstArgument(firstArgument); } else ASSERT(false); } void PixelProcessor::setSecondArgument(unsigned int stage, TextureStage::SourceArgument secondArgument) { if(stage < 8) { context->textureStage[stage].setSecondArgument(secondArgument); } else ASSERT(false); } void PixelProcessor::setThirdArgument(unsigned int stage, TextureStage::SourceArgument thirdArgument) { if(stage < 8) { context->textureStage[stage].setThirdArgument(thirdArgument); } else ASSERT(false); } void PixelProcessor::setStageOperationAlpha(unsigned int stage, TextureStage::StageOperation stageOperationAlpha) { if(stage < 8) { context->textureStage[stage].setStageOperationAlpha(stageOperationAlpha); } else ASSERT(false); } void PixelProcessor::setFirstArgumentAlpha(unsigned int stage, TextureStage::SourceArgument firstArgumentAlpha) { if(stage < 8) { context->textureStage[stage].setFirstArgumentAlpha(firstArgumentAlpha); } else ASSERT(false); } void PixelProcessor::setSecondArgumentAlpha(unsigned int stage, TextureStage::SourceArgument secondArgumentAlpha) { if(stage < 8) { context->textureStage[stage].setSecondArgumentAlpha(secondArgumentAlpha); } else ASSERT(false); } void PixelProcessor::setThirdArgumentAlpha(unsigned int stage, TextureStage::SourceArgument thirdArgumentAlpha) { if(stage < 8) { context->textureStage[stage].setThirdArgumentAlpha(thirdArgumentAlpha); } else ASSERT(false); } void PixelProcessor::setFirstModifier(unsigned int stage, TextureStage::ArgumentModifier firstModifier) { if(stage < 8) { context->textureStage[stage].setFirstModifier(firstModifier); } else ASSERT(false); } void PixelProcessor::setSecondModifier(unsigned int stage, TextureStage::ArgumentModifier secondModifier) { if(stage < 8) { context->textureStage[stage].setSecondModifier(secondModifier); } else ASSERT(false); } void PixelProcessor::setThirdModifier(unsigned int stage, TextureStage::ArgumentModifier thirdModifier) { if(stage < 8) { context->textureStage[stage].setThirdModifier(thirdModifier); } else ASSERT(false); } void PixelProcessor::setFirstModifierAlpha(unsigned int stage, TextureStage::ArgumentModifier firstModifierAlpha) { if(stage < 8) { context->textureStage[stage].setFirstModifierAlpha(firstModifierAlpha); } else ASSERT(false); } void PixelProcessor::setSecondModifierAlpha(unsigned int stage, TextureStage::ArgumentModifier secondModifierAlpha) { if(stage < 8) { context->textureStage[stage].setSecondModifierAlpha(secondModifierAlpha); } else ASSERT(false); } void PixelProcessor::setThirdModifierAlpha(unsigned int stage, TextureStage::ArgumentModifier thirdModifierAlpha) { if(stage < 8) { context->textureStage[stage].setThirdModifierAlpha(thirdModifierAlpha); } else ASSERT(false); } void PixelProcessor::setDestinationArgument(unsigned int stage, TextureStage::DestinationArgument destinationArgument) { if(stage < 8) { context->textureStage[stage].setDestinationArgument(destinationArgument); } else ASSERT(false); } void PixelProcessor::setConstantColor(unsigned int stage, const Color<float> &constantColor) { if(stage < 8) { context->textureStage[stage].setConstantColor(constantColor); } else ASSERT(false); } void PixelProcessor::setBumpmapMatrix(unsigned int stage, int element, float value) { if(stage < 8) { context->textureStage[stage].setBumpmapMatrix(element, value); } else ASSERT(false); } void PixelProcessor::setLuminanceScale(unsigned int stage, float value) { if(stage < 8) { context->textureStage[stage].setLuminanceScale(value); } else ASSERT(false); } void PixelProcessor::setLuminanceOffset(unsigned int stage, float value) { if(stage < 8) { context->textureStage[stage].setLuminanceOffset(value); } else ASSERT(false); } void PixelProcessor::setTextureFilter(unsigned int sampler, FilterType textureFilter) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setTextureFilter(textureFilter); } else ASSERT(false); } void PixelProcessor::setMipmapFilter(unsigned int sampler, MipmapType mipmapFilter) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setMipmapFilter(mipmapFilter); } else ASSERT(false); } void PixelProcessor::setGatherEnable(unsigned int sampler, bool enable) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setGatherEnable(enable); } else ASSERT(false); } void PixelProcessor::setAddressingModeU(unsigned int sampler, AddressingMode addressMode) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setAddressingModeU(addressMode); } else ASSERT(false); } void PixelProcessor::setAddressingModeV(unsigned int sampler, AddressingMode addressMode) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setAddressingModeV(addressMode); } else ASSERT(false); } void PixelProcessor::setAddressingModeW(unsigned int sampler, AddressingMode addressMode) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setAddressingModeW(addressMode); } else ASSERT(false); } void PixelProcessor::setReadSRGB(unsigned int sampler, bool sRGB) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setReadSRGB(sRGB); } else ASSERT(false); } void PixelProcessor::setMipmapLOD(unsigned int sampler, float bias) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setMipmapLOD(bias); } else ASSERT(false); } void PixelProcessor::setBorderColor(unsigned int sampler, const Color<float> &borderColor) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setBorderColor(borderColor); } else ASSERT(false); } void PixelProcessor::setMaxAnisotropy(unsigned int sampler, float maxAnisotropy) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setMaxAnisotropy(maxAnisotropy); } else ASSERT(false); } void PixelProcessor::setHighPrecisionFiltering(unsigned int sampler, bool highPrecisionFiltering) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setHighPrecisionFiltering(highPrecisionFiltering); } else ASSERT(false); } void PixelProcessor::setSwizzleR(unsigned int sampler, SwizzleType swizzleR) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setSwizzleR(swizzleR); } else ASSERT(false); } void PixelProcessor::setSwizzleG(unsigned int sampler, SwizzleType swizzleG) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setSwizzleG(swizzleG); } else ASSERT(false); } void PixelProcessor::setSwizzleB(unsigned int sampler, SwizzleType swizzleB) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setSwizzleB(swizzleB); } else ASSERT(false); } void PixelProcessor::setSwizzleA(unsigned int sampler, SwizzleType swizzleA) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setSwizzleA(swizzleA); } else ASSERT(false); } void PixelProcessor::setCompareFunc(unsigned int sampler, CompareFunc compFunc) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setCompareFunc(compFunc); } else ASSERT(false); } void PixelProcessor::setBaseLevel(unsigned int sampler, int baseLevel) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setBaseLevel(baseLevel); } else ASSERT(false); } void PixelProcessor::setMaxLevel(unsigned int sampler, int maxLevel) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setMaxLevel(maxLevel); } else ASSERT(false); } void PixelProcessor::setMinLod(unsigned int sampler, float minLod) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setMinLod(minLod); } else ASSERT(false); } void PixelProcessor::setMaxLod(unsigned int sampler, float maxLod) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setMaxLod(maxLod); } else ASSERT(false); } void PixelProcessor::setSyncRequired(unsigned int sampler, bool isSincRequired) { if(sampler < TEXTURE_IMAGE_UNITS) { context->sampler[sampler].setSyncRequired(isSincRequired); } else ASSERT(false); } void PixelProcessor::setWriteSRGB(bool sRGB) { context->setWriteSRGB(sRGB); } void PixelProcessor::setColorLogicOpEnabled(bool colorLogicOpEnabled) { context->setColorLogicOpEnabled(colorLogicOpEnabled); } void PixelProcessor::setLogicalOperation(LogicalOperation logicalOperation) { context->setLogicalOperation(logicalOperation); } void PixelProcessor::setDepthBufferEnable(bool depthBufferEnable) { context->setDepthBufferEnable(depthBufferEnable); } void PixelProcessor::setDepthCompare(DepthCompareMode depthCompareMode) { context->depthCompareMode = depthCompareMode; } void PixelProcessor::setAlphaCompare(AlphaCompareMode alphaCompareMode) { context->alphaCompareMode = alphaCompareMode; } void PixelProcessor::setDepthWriteEnable(bool depthWriteEnable) { context->depthWriteEnable = depthWriteEnable; } void PixelProcessor::setAlphaTestEnable(bool alphaTestEnable) { context->alphaTestEnable = alphaTestEnable; } void PixelProcessor::setCullMode(CullMode cullMode, bool frontFacingCCW) { context->cullMode = cullMode; context->frontFacingCCW = frontFacingCCW; } void PixelProcessor::setColorWriteMask(int index, int rgbaMask) { context->setColorWriteMask(index, rgbaMask); } void PixelProcessor::setStencilEnable(bool stencilEnable) { context->stencilEnable = stencilEnable; } void PixelProcessor::setStencilCompare(StencilCompareMode stencilCompareMode) { context->stencilCompareMode = stencilCompareMode; } void PixelProcessor::setStencilReference(int stencilReference) { context->stencilReference = stencilReference; stencil.set(stencilReference, context->stencilMask, context->stencilWriteMask); } void PixelProcessor::setStencilReferenceCCW(int stencilReferenceCCW) { context->stencilReferenceCCW = stencilReferenceCCW; stencilCCW.set(stencilReferenceCCW, context->stencilMaskCCW, context->stencilWriteMaskCCW); } void PixelProcessor::setStencilMask(int stencilMask) { context->stencilMask = stencilMask; stencil.set(context->stencilReference, stencilMask, context->stencilWriteMask); } void PixelProcessor::setStencilMaskCCW(int stencilMaskCCW) { context->stencilMaskCCW = stencilMaskCCW; stencilCCW.set(context->stencilReferenceCCW, stencilMaskCCW, context->stencilWriteMaskCCW); } void PixelProcessor::setStencilFailOperation(StencilOperation stencilFailOperation) { context->stencilFailOperation = stencilFailOperation; } void PixelProcessor::setStencilPassOperation(StencilOperation stencilPassOperation) { context->stencilPassOperation = stencilPassOperation; } void PixelProcessor::setStencilZFailOperation(StencilOperation stencilZFailOperation) { context->stencilZFailOperation = stencilZFailOperation; } void PixelProcessor::setStencilWriteMask(int stencilWriteMask) { context->stencilWriteMask = stencilWriteMask; stencil.set(context->stencilReference, context->stencilMask, stencilWriteMask); } void PixelProcessor::setStencilWriteMaskCCW(int stencilWriteMaskCCW) { context->stencilWriteMaskCCW = stencilWriteMaskCCW; stencilCCW.set(context->stencilReferenceCCW, context->stencilMaskCCW, stencilWriteMaskCCW); } void PixelProcessor::setTwoSidedStencil(bool enable) { context->twoSidedStencil = enable; } void PixelProcessor::setStencilCompareCCW(StencilCompareMode stencilCompareMode) { context->stencilCompareModeCCW = stencilCompareMode; } void PixelProcessor::setStencilFailOperationCCW(StencilOperation stencilFailOperation) { context->stencilFailOperationCCW = stencilFailOperation; } void PixelProcessor::setStencilPassOperationCCW(StencilOperation stencilPassOperation) { context->stencilPassOperationCCW = stencilPassOperation; } void PixelProcessor::setStencilZFailOperationCCW(StencilOperation stencilZFailOperation) { context->stencilZFailOperationCCW = stencilZFailOperation; } void PixelProcessor::setTextureFactor(const Color<float> &textureFactor) { // FIXME: Compact into generic function // FIXME: Clamp short textureFactorR = iround(4095 * textureFactor.r); short textureFactorG = iround(4095 * textureFactor.g); short textureFactorB = iround(4095 * textureFactor.b); short textureFactorA = iround(4095 * textureFactor.a); factor.textureFactor4[0][0] = textureFactorR; factor.textureFactor4[0][1] = textureFactorR; factor.textureFactor4[0][2] = textureFactorR; factor.textureFactor4[0][3] = textureFactorR; factor.textureFactor4[1][0] = textureFactorG; factor.textureFactor4[1][1] = textureFactorG; factor.textureFactor4[1][2] = textureFactorG; factor.textureFactor4[1][3] = textureFactorG; factor.textureFactor4[2][0] = textureFactorB; factor.textureFactor4[2][1] = textureFactorB; factor.textureFactor4[2][2] = textureFactorB; factor.textureFactor4[2][3] = textureFactorB; factor.textureFactor4[3][0] = textureFactorA; factor.textureFactor4[3][1] = textureFactorA; factor.textureFactor4[3][2] = textureFactorA; factor.textureFactor4[3][3] = textureFactorA; } void PixelProcessor::setBlendConstant(const Color<float> &blendConstant) { // FIXME: Compact into generic function // FIXME: Clamp short blendConstantR = iround(65535 * blendConstant.r); short blendConstantG = iround(65535 * blendConstant.g); short blendConstantB = iround(65535 * blendConstant.b); short blendConstantA = iround(65535 * blendConstant.a); factor.blendConstant4W[0][0] = blendConstantR; factor.blendConstant4W[0][1] = blendConstantR; factor.blendConstant4W[0][2] = blendConstantR; factor.blendConstant4W[0][3] = blendConstantR; factor.blendConstant4W[1][0] = blendConstantG; factor.blendConstant4W[1][1] = blendConstantG; factor.blendConstant4W[1][2] = blendConstantG; factor.blendConstant4W[1][3] = blendConstantG; factor.blendConstant4W[2][0] = blendConstantB; factor.blendConstant4W[2][1] = blendConstantB; factor.blendConstant4W[2][2] = blendConstantB; factor.blendConstant4W[2][3] = blendConstantB; factor.blendConstant4W[3][0] = blendConstantA; factor.blendConstant4W[3][1] = blendConstantA; factor.blendConstant4W[3][2] = blendConstantA; factor.blendConstant4W[3][3] = blendConstantA; // FIXME: Compact into generic function // FIXME: Clamp short invBlendConstantR = iround(65535 * (1 - blendConstant.r)); short invBlendConstantG = iround(65535 * (1 - blendConstant.g)); short invBlendConstantB = iround(65535 * (1 - blendConstant.b)); short invBlendConstantA = iround(65535 * (1 - blendConstant.a)); factor.invBlendConstant4W[0][0] = invBlendConstantR; factor.invBlendConstant4W[0][1] = invBlendConstantR; factor.invBlendConstant4W[0][2] = invBlendConstantR; factor.invBlendConstant4W[0][3] = invBlendConstantR; factor.invBlendConstant4W[1][0] = invBlendConstantG; factor.invBlendConstant4W[1][1] = invBlendConstantG; factor.invBlendConstant4W[1][2] = invBlendConstantG; factor.invBlendConstant4W[1][3] = invBlendConstantG; factor.invBlendConstant4W[2][0] = invBlendConstantB; factor.invBlendConstant4W[2][1] = invBlendConstantB; factor.invBlendConstant4W[2][2] = invBlendConstantB; factor.invBlendConstant4W[2][3] = invBlendConstantB; factor.invBlendConstant4W[3][0] = invBlendConstantA; factor.invBlendConstant4W[3][1] = invBlendConstantA; factor.invBlendConstant4W[3][2] = invBlendConstantA; factor.invBlendConstant4W[3][3] = invBlendConstantA; factor.blendConstant4F[0][0] = blendConstant.r; factor.blendConstant4F[0][1] = blendConstant.r; factor.blendConstant4F[0][2] = blendConstant.r; factor.blendConstant4F[0][3] = blendConstant.r; factor.blendConstant4F[1][0] = blendConstant.g; factor.blendConstant4F[1][1] = blendConstant.g; factor.blendConstant4F[1][2] = blendConstant.g; factor.blendConstant4F[1][3] = blendConstant.g; factor.blendConstant4F[2][0] = blendConstant.b; factor.blendConstant4F[2][1] = blendConstant.b; factor.blendConstant4F[2][2] = blendConstant.b; factor.blendConstant4F[2][3] = blendConstant.b; factor.blendConstant4F[3][0] = blendConstant.a; factor.blendConstant4F[3][1] = blendConstant.a; factor.blendConstant4F[3][2] = blendConstant.a; factor.blendConstant4F[3][3] = blendConstant.a; factor.invBlendConstant4F[0][0] = 1 - blendConstant.r; factor.invBlendConstant4F[0][1] = 1 - blendConstant.r; factor.invBlendConstant4F[0][2] = 1 - blendConstant.r; factor.invBlendConstant4F[0][3] = 1 - blendConstant.r; factor.invBlendConstant4F[1][0] = 1 - blendConstant.g; factor.invBlendConstant4F[1][1] = 1 - blendConstant.g; factor.invBlendConstant4F[1][2] = 1 - blendConstant.g; factor.invBlendConstant4F[1][3] = 1 - blendConstant.g; factor.invBlendConstant4F[2][0] = 1 - blendConstant.b; factor.invBlendConstant4F[2][1] = 1 - blendConstant.b; factor.invBlendConstant4F[2][2] = 1 - blendConstant.b; factor.invBlendConstant4F[2][3] = 1 - blendConstant.b; factor.invBlendConstant4F[3][0] = 1 - blendConstant.a; factor.invBlendConstant4F[3][1] = 1 - blendConstant.a; factor.invBlendConstant4F[3][2] = 1 - blendConstant.a; factor.invBlendConstant4F[3][3] = 1 - blendConstant.a; } void PixelProcessor::setFillMode(FillMode fillMode) { context->fillMode = fillMode; } void PixelProcessor::setShadingMode(ShadingMode shadingMode) { context->shadingMode = shadingMode; } void PixelProcessor::setAlphaBlendEnable(bool alphaBlendEnable) { context->setAlphaBlendEnable(alphaBlendEnable); } void PixelProcessor::setSourceBlendFactor(BlendFactor sourceBlendFactor) { context->setSourceBlendFactor(sourceBlendFactor); } void PixelProcessor::setDestBlendFactor(BlendFactor destBlendFactor) { context->setDestBlendFactor(destBlendFactor); } void PixelProcessor::setBlendOperation(BlendOperation blendOperation) { context->setBlendOperation(blendOperation); } void PixelProcessor::setSeparateAlphaBlendEnable(bool separateAlphaBlendEnable) { context->setSeparateAlphaBlendEnable(separateAlphaBlendEnable); } void PixelProcessor::setSourceBlendFactorAlpha(BlendFactor sourceBlendFactorAlpha) { context->setSourceBlendFactorAlpha(sourceBlendFactorAlpha); } void PixelProcessor::setDestBlendFactorAlpha(BlendFactor destBlendFactorAlpha) { context->setDestBlendFactorAlpha(destBlendFactorAlpha); } void PixelProcessor::setBlendOperationAlpha(BlendOperation blendOperationAlpha) { context->setBlendOperationAlpha(blendOperationAlpha); } void PixelProcessor::setAlphaReference(float alphaReference) { context->alphaReference = alphaReference; factor.alphaReference4[0] = (word)iround(alphaReference * 0x1000 / 0xFF); factor.alphaReference4[1] = (word)iround(alphaReference * 0x1000 / 0xFF); factor.alphaReference4[2] = (word)iround(alphaReference * 0x1000 / 0xFF); factor.alphaReference4[3] = (word)iround(alphaReference * 0x1000 / 0xFF); } void PixelProcessor::setGlobalMipmapBias(float bias) { context->setGlobalMipmapBias(bias); } void PixelProcessor::setFogStart(float start) { setFogRanges(start, context->fogEnd); } void PixelProcessor::setFogEnd(float end) { setFogRanges(context->fogStart, end); } void PixelProcessor::setFogColor(Color<float> fogColor) { // TODO: Compact into generic function word fogR = (unsigned short)(65535 * fogColor.r); word fogG = (unsigned short)(65535 * fogColor.g); word fogB = (unsigned short)(65535 * fogColor.b); fog.color4[0][0] = fogR; fog.color4[0][1] = fogR; fog.color4[0][2] = fogR; fog.color4[0][3] = fogR; fog.color4[1][0] = fogG; fog.color4[1][1] = fogG; fog.color4[1][2] = fogG; fog.color4[1][3] = fogG; fog.color4[2][0] = fogB; fog.color4[2][1] = fogB; fog.color4[2][2] = fogB; fog.color4[2][3] = fogB; fog.colorF[0] = replicate(fogColor.r); fog.colorF[1] = replicate(fogColor.g); fog.colorF[2] = replicate(fogColor.b); } void PixelProcessor::setFogDensity(float fogDensity) { fog.densityE = replicate(-fogDensity * 1.442695f); // 1/e^x = 2^(-x*1.44) fog.density2E = replicate(-fogDensity * fogDensity * 1.442695f); } void PixelProcessor::setPixelFogMode(FogMode fogMode) { context->pixelFogMode = fogMode; } void PixelProcessor::setPerspectiveCorrection(bool perspectiveEnable) { perspectiveCorrection = perspectiveEnable; } void PixelProcessor::setOcclusionEnabled(bool enable) { context->occlusionEnabled = enable; } void PixelProcessor::setRoutineCacheSize(int cacheSize) { delete routineCache; routineCache = new RoutineCache<State>(clamp(cacheSize, 1, 65536), precachePixel ? "sw-pixel" : 0); } void PixelProcessor::setFogRanges(float start, float end) { context->fogStart = start; context->fogEnd = end; if(start == end) { end += 0.001f; // Hack: ensure there is a small range } float fogScale = -1.0f / (end - start); float fogOffset = end * -fogScale; fog.scale = replicate(fogScale); fog.offset = replicate(fogOffset); } const PixelProcessor::State PixelProcessor::update() const { State state; if(context->pixelShader) { state.shaderID = context->pixelShader->getSerialID(); } else { state.shaderID = 0; } state.depthOverride = context->pixelShader && context->pixelShader->depthOverride(); state.shaderContainsKill = context->pixelShader ? context->pixelShader->containsKill() : false; if(context->alphaTestActive()) { state.alphaCompareMode = context->alphaCompareMode; state.transparencyAntialiasing = context->getMultiSampleCount() > 1 ? transparencyAntialiasing : TRANSPARENCY_NONE; } state.depthWriteEnable = context->depthWriteActive(); if(context->stencilActive()) { state.stencilActive = true; state.stencilCompareMode = context->stencilCompareMode; state.stencilFailOperation = context->stencilFailOperation; state.stencilPassOperation = context->stencilPassOperation; state.stencilZFailOperation = context->stencilZFailOperation; state.noStencilMask = (context->stencilMask == 0xFF); state.noStencilWriteMask = (context->stencilWriteMask == 0xFF); state.stencilWriteMasked = (context->stencilWriteMask == 0x00); state.twoSidedStencil = context->twoSidedStencil; state.stencilCompareModeCCW = context->twoSidedStencil ? context->stencilCompareModeCCW : state.stencilCompareMode; state.stencilFailOperationCCW = context->twoSidedStencil ? context->stencilFailOperationCCW : state.stencilFailOperation; state.stencilPassOperationCCW = context->twoSidedStencil ? context->stencilPassOperationCCW : state.stencilPassOperation; state.stencilZFailOperationCCW = context->twoSidedStencil ? context->stencilZFailOperationCCW : state.stencilZFailOperation; state.noStencilMaskCCW = context->twoSidedStencil ? (context->stencilMaskCCW == 0xFF) : state.noStencilMask; state.noStencilWriteMaskCCW = context->twoSidedStencil ? (context->stencilWriteMaskCCW == 0xFF) : state.noStencilWriteMask; state.stencilWriteMaskedCCW = context->twoSidedStencil ? (context->stencilWriteMaskCCW == 0x00) : state.stencilWriteMasked; } if(context->depthBufferActive()) { state.depthTestActive = true; state.depthCompareMode = context->depthCompareMode; state.quadLayoutDepthBuffer = Surface::hasQuadLayout(context->depthBuffer->getInternalFormat()); } state.occlusionEnabled = context->occlusionEnabled; state.fogActive = context->fogActive(); state.pixelFogMode = context->pixelFogActive(); state.wBasedFog = context->wBasedFog && context->pixelFogActive() != FOG_NONE; state.perspective = context->perspectiveActive(); state.depthClamp = (context->depthBias != 0.0f) || (context->slopeDepthBias != 0.0f); if(context->alphaBlendActive()) { state.alphaBlendActive = true; state.sourceBlendFactor = context->sourceBlendFactor(); state.destBlendFactor = context->destBlendFactor(); state.blendOperation = context->blendOperation(); state.sourceBlendFactorAlpha = context->sourceBlendFactorAlpha(); state.destBlendFactorAlpha = context->destBlendFactorAlpha(); state.blendOperationAlpha = context->blendOperationAlpha(); } state.logicalOperation = context->colorLogicOp(); for(int i = 0; i < RENDERTARGETS; i++) { state.colorWriteMask |= context->colorWriteActive(i) << (4 * i); state.targetFormat[i] = context->renderTargetInternalFormat(i); } state.writeSRGB = context->writeSRGB && context->renderTarget[0] && Surface::isSRGBwritable(context->renderTarget[0]->getExternalFormat()); state.multiSample = context->getMultiSampleCount(); state.multiSampleMask = context->multiSampleMask; if(state.multiSample > 1 && context->pixelShader) { state.centroid = context->pixelShader->containsCentroid(); } state.frontFaceCCW = context->frontFacingCCW; if(!context->pixelShader) { for(unsigned int i = 0; i < 8; i++) { state.textureStage[i] = context->textureStage[i].textureStageState(); } state.specularAdd = context->specularActive() && context->specularEnable; } for(unsigned int i = 0; i < 16; i++) { if(context->pixelShader) { if(context->pixelShader->usesSampler(i)) { state.sampler[i] = context->sampler[i].samplerState(); } } else { if(i < 8 && state.textureStage[i].stageOperation != TextureStage::STAGE_DISABLE) { state.sampler[i] = context->sampler[i].samplerState(); } else break; } } const bool point = context->isDrawPoint(true); const bool sprite = context->pointSpriteActive(); const bool flatShading = (context->shadingMode == SHADING_FLAT) || point; if(context->pixelShaderModel() < 0x0300) { for(int coordinate = 0; coordinate < 8; coordinate++) { for(int component = 0; component < 4; component++) { if(context->textureActive(coordinate, component)) { state.texture[coordinate].component |= 1 << component; if(point && !sprite) { state.texture[coordinate].flat |= 1 << component; } } } if(context->textureTransformProject[coordinate] && context->pixelShaderModel() <= 0x0103) { if(context->textureTransformCount[coordinate] == 2) { state.texture[coordinate].project = 1; } else if(context->textureTransformCount[coordinate] == 3) { state.texture[coordinate].project = 2; } else if(context->textureTransformCount[coordinate] == 4 || context->textureTransformCount[coordinate] == 0) { state.texture[coordinate].project = 3; } } } for(int color = 0; color < 2; color++) { for(int component = 0; component < 4; component++) { if(context->colorActive(color, component)) { state.color[color].component |= 1 << component; if(point || flatShading) { state.color[color].flat |= 1 << component; } } } } if(context->fogActive()) { state.fog.component = true; if(point) { state.fog.flat = true; } } } else { for(int interpolant = 0; interpolant < MAX_FRAGMENT_INPUTS; interpolant++) { for(int component = 0; component < 4; component++) { const Shader::Semantic &semantic = context->pixelShader->getInput(interpolant, component); if(semantic.active()) { bool flat = point; switch(semantic.usage) { case Shader::USAGE_TEXCOORD: flat = point && !sprite; break; case Shader::USAGE_COLOR: flat = semantic.flat || flatShading; break; } state.interpolant[interpolant].component |= 1 << component; if(flat) { state.interpolant[interpolant].flat |= 1 << component; } } } } } if(state.centroid) { for(int interpolant = 0; interpolant < MAX_FRAGMENT_INPUTS; interpolant++) { for(int component = 0; component < 4; component++) { state.interpolant[interpolant].centroid = context->pixelShader->getInput(interpolant, 0).centroid; } } } state.hash = state.computeHash(); return state; } Routine *PixelProcessor::routine(const State &state) { Routine *routine = routineCache->query(state); if(!routine) { const bool integerPipeline = (context->pixelShaderModel() <= 0x0104); QuadRasterizer *generator = nullptr; if(integerPipeline) { generator = new PixelPipeline(state, context->pixelShader); } else { generator = new PixelProgram(state, context->pixelShader); } generator->generate(); routine = (*generator)("PixelRoutine_%0.8X", state.shaderID); delete generator; routineCache->add(state, routine); } return routine; } }