// Copyright 2018 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "VkDeviceMemory.hpp" #include "VkBuffer.hpp" #include "VkImage.hpp" #include "Device/Blitter.hpp" #include "Device/Surface.hpp" #include <cstring> namespace vk { Image::Image(const VkImageCreateInfo* pCreateInfo, void* mem) : flags(pCreateInfo->flags), imageType(pCreateInfo->imageType), format(pCreateInfo->format), extent(pCreateInfo->extent), mipLevels(pCreateInfo->mipLevels), arrayLayers(pCreateInfo->arrayLayers), samples(pCreateInfo->samples), tiling(pCreateInfo->tiling) { blitter = new sw::Blitter(); } void Image::destroy(const VkAllocationCallbacks* pAllocator) { delete blitter; } size_t Image::ComputeRequiredAllocationSize(const VkImageCreateInfo* pCreateInfo) { return 0; } const VkMemoryRequirements Image::getMemoryRequirements() const { VkMemoryRequirements memoryRequirements; memoryRequirements.alignment = vk::REQUIRED_MEMORY_ALIGNMENT; memoryRequirements.memoryTypeBits = vk::MEMORY_TYPE_GENERIC_BIT; memoryRequirements.size = getStorageSize(flags); return memoryRequirements; } void Image::bind(VkDeviceMemory pDeviceMemory, VkDeviceSize pMemoryOffset) { deviceMemory = Cast(pDeviceMemory); memoryOffset = pMemoryOffset; } void Image::getSubresourceLayout(const VkImageSubresource* pSubresource, VkSubresourceLayout* pLayout) const { uint32_t bpp = bytesPerTexel(flags); pLayout->offset = getMemoryOffset(flags, pSubresource->mipLevel, pSubresource->arrayLayer); pLayout->size = getMipLevelSize(flags, pSubresource->mipLevel); pLayout->rowPitch = rowPitchBytes(flags, pSubresource->mipLevel); pLayout->depthPitch = slicePitchBytes(flags, pSubresource->mipLevel); pLayout->arrayPitch = getLayerSize(flags); } void Image::copyTo(VkImage dstImage, const VkImageCopy& pRegion) { // Image copy does not perform any conversion, it simply copies memory from // an image to another image that has the same number of bytes per pixel. Image* dst = Cast(dstImage); int srcBytesPerTexel = bytesPerTexel(pRegion.srcSubresource.aspectMask); ASSERT(srcBytesPerTexel == dst->bytesPerTexel(pRegion.dstSubresource.aspectMask)); if(!((pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || (pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) || (pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT)) || (pRegion.srcSubresource.baseArrayLayer != 0) || (pRegion.srcSubresource.layerCount != 1)) { UNIMPLEMENTED(); } if(!((pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || (pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) || (pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT)) || (pRegion.dstSubresource.baseArrayLayer != 0) || (pRegion.dstSubresource.layerCount != 1)) { UNIMPLEMENTED(); } const char* srcMem = static_cast<const char*>(getTexelPointer(pRegion.srcOffset, pRegion.srcSubresource)); char* dstMem = static_cast<char*>(dst->getTexelPointer(pRegion.dstOffset, pRegion.dstSubresource)); int srcRowPitchBytes = rowPitchBytes(pRegion.srcSubresource.aspectMask, pRegion.srcSubresource.mipLevel); int srcSlicePitchBytes = slicePitchBytes(pRegion.srcSubresource.aspectMask, pRegion.srcSubresource.mipLevel); int dstRowPitchBytes = dst->rowPitchBytes(pRegion.dstSubresource.aspectMask, pRegion.dstSubresource.mipLevel); int dstSlicePitchBytes = dst->slicePitchBytes(pRegion.dstSubresource.aspectMask, pRegion.dstSubresource.mipLevel); VkExtent3D srcExtent = getMipLevelExtent(pRegion.srcSubresource.mipLevel); VkExtent3D dstExtent = dst->getMipLevelExtent(pRegion.dstSubresource.mipLevel); bool isSinglePlane = (pRegion.extent.depth == 1); bool isSingleLine = (pRegion.extent.height == 1) && isSinglePlane; // In order to copy multiple lines using a single memcpy call, we // have to make sure that we need to copy the entire line and that // both source and destination lines have the same length in bytes bool isEntireLine = (pRegion.extent.width == srcExtent.width) && (pRegion.extent.width == dstExtent.width) && (srcRowPitchBytes == dstRowPitchBytes); // In order to copy multiple planes using a single memcpy call, we // have to make sure that we need to copy the entire plane and that // both source and destination planes have the same length in bytes bool isEntirePlane = isEntireLine && (pRegion.extent.height == srcExtent.height) && (pRegion.extent.height == dstExtent.height) && (srcSlicePitchBytes == dstSlicePitchBytes); if(isSingleLine) // Copy one line { memcpy(dstMem, srcMem, pRegion.extent.width * srcBytesPerTexel); } else if(isEntireLine && isSinglePlane) // Copy one plane { memcpy(dstMem, srcMem, pRegion.extent.height * srcRowPitchBytes); } else if(isEntirePlane) // Copy multiple planes { memcpy(dstMem, srcMem, pRegion.extent.depth * srcSlicePitchBytes); } else if(isEntireLine) // Copy plane by plane { for(uint32_t z = 0; z < pRegion.extent.depth; z++, dstMem += dstSlicePitchBytes, srcMem += srcSlicePitchBytes) { memcpy(dstMem, srcMem, pRegion.extent.height * srcRowPitchBytes); } } else // Copy line by line { for(uint32_t z = 0; z < pRegion.extent.depth; z++) { for(uint32_t y = 0; y < pRegion.extent.height; y++, dstMem += dstRowPitchBytes, srcMem += srcRowPitchBytes) { memcpy(dstMem, srcMem, pRegion.extent.width * srcBytesPerTexel); } } } } void Image::copy(VkBuffer buffer, const VkBufferImageCopy& region, bool bufferIsSource) { if(!((region.imageSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || (region.imageSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) || (region.imageSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT))) { UNIMPLEMENTED(); } VkExtent3D mipLevelExtent = getMipLevelExtent(region.imageSubresource.mipLevel); int imageBytesPerTexel = bytesPerTexel(region.imageSubresource.aspectMask); int imageRowPitchBytes = rowPitchBytes(region.imageSubresource.aspectMask, region.imageSubresource.mipLevel); int imageSlicePitchBytes = slicePitchBytes(region.imageSubresource.aspectMask, region.imageSubresource.mipLevel); int bufferRowPitchBytes = ((region.bufferRowLength == 0) ? region.imageExtent.width : region.bufferRowLength) * imageBytesPerTexel; int bufferSlicePitchBytes = (((region.bufferImageHeight == 0) || (region.bufferRowLength == 0))) ? region.imageExtent.height * bufferRowPitchBytes : (region.bufferImageHeight * region.bufferRowLength) * imageBytesPerTexel; int srcSlicePitchBytes = bufferIsSource ? bufferSlicePitchBytes : imageSlicePitchBytes; int dstSlicePitchBytes = bufferIsSource ? imageSlicePitchBytes : bufferSlicePitchBytes; int srcRowPitchBytes = bufferIsSource ? bufferRowPitchBytes : imageRowPitchBytes; int dstRowPitchBytes = bufferIsSource ? imageRowPitchBytes : bufferRowPitchBytes; bool isSinglePlane = (region.imageExtent.depth == 1); bool isSingleLine = (region.imageExtent.height == 1) && isSinglePlane; bool isEntireLine = (region.imageExtent.width == mipLevelExtent.width) && (imageRowPitchBytes == bufferRowPitchBytes); bool isEntirePlane = isEntireLine && (region.imageExtent.height == mipLevelExtent.height) && (imageSlicePitchBytes == bufferSlicePitchBytes); VkDeviceSize layerSize = getLayerSize(flags); char* bufferMemory = static_cast<char*>(Cast(buffer)->getOffsetPointer(region.bufferOffset)); char* imageMemory = static_cast<char*>(deviceMemory->getOffsetPointer( getMemoryOffset(region.imageSubresource.aspectMask, region.imageSubresource.mipLevel, region.imageSubresource.baseArrayLayer) + texelOffsetBytesInStorage(region.imageOffset, region.imageSubresource))); char* srcMemory = bufferIsSource ? bufferMemory : imageMemory; char* dstMemory = bufferIsSource ? imageMemory : bufferMemory; VkDeviceSize copySize = 0; if(isSingleLine) { copySize = region.imageExtent.width * imageBytesPerTexel; } else if(isEntireLine && isSinglePlane) { copySize = region.imageExtent.height * imageRowPitchBytes; } else if(isEntirePlane) { copySize = region.imageExtent.depth * imageSlicePitchBytes; // Copy multiple planes } else if(isEntireLine) // Copy plane by plane { copySize = region.imageExtent.height * imageRowPitchBytes; } else // Copy line by line { copySize = region.imageExtent.width * imageBytesPerTexel; } for(uint32_t i = 0; i < region.imageSubresource.layerCount; i++) { if(isSingleLine || (isEntireLine && isSinglePlane) || isEntirePlane) { memcpy(dstMemory, srcMemory, copySize); } else if(isEntireLine) // Copy plane by plane { for(uint32_t z = 0; z < region.imageExtent.depth; z++) { memcpy(dstMemory, srcMemory, copySize); srcMemory += srcSlicePitchBytes; dstMemory += dstSlicePitchBytes; } } else // Copy line by line { for(uint32_t z = 0; z < region.imageExtent.depth; z++) { for(uint32_t y = 0; y < region.imageExtent.height; y++) { memcpy(dstMemory, srcMemory, copySize); srcMemory += srcRowPitchBytes; dstMemory += dstRowPitchBytes; } } } srcMemory += layerSize; dstMemory += layerSize; } } void Image::copyTo(VkBuffer dstBuffer, const VkBufferImageCopy& region) { copy(dstBuffer, region, false); } void Image::copyFrom(VkBuffer srcBuffer, const VkBufferImageCopy& region) { copy(srcBuffer, region, true); } void* Image::getTexelPointer(const VkOffset3D& offset, const VkImageSubresourceLayers& subresource) const { return deviceMemory->getOffsetPointer(texelOffsetBytesInStorage(offset, subresource) + getMemoryOffset(flags, subresource.mipLevel, subresource.baseArrayLayer)); } VkDeviceSize Image::texelOffsetBytesInStorage(const VkOffset3D& offset, const VkImageSubresourceLayers& subresource) const { return offset.z * slicePitchBytes(flags, subresource.mipLevel) + offset.y * rowPitchBytes(flags, subresource.mipLevel) + offset.x * bytesPerTexel(flags); } VkExtent3D Image::getMipLevelExtent(uint32_t mipLevel) const { VkExtent3D mipLevelExtent; mipLevelExtent.width = extent.width >> mipLevel; mipLevelExtent.height = extent.height >> mipLevel; mipLevelExtent.depth = extent.depth >> mipLevel; if(mipLevelExtent.width == 0) { mipLevelExtent.width = 1; } if(mipLevelExtent.height == 0) { mipLevelExtent.height = 1; } if(mipLevelExtent.depth == 0) { mipLevelExtent.depth = 1; } return mipLevelExtent; } int Image::rowPitchBytes(const VkImageAspectFlags& flags, uint32_t mipLevel) const { // Depth and Stencil pitch should be computed separately ASSERT((flags & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) != (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); return sw::Surface::pitchB(getMipLevelExtent(mipLevel).width, isCube() ? 1 : 0, getFormat(flags), false); } int Image::slicePitchBytes(const VkImageAspectFlags& flags, uint32_t mipLevel) const { // Depth and Stencil slice should be computed separately ASSERT((flags & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) != (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); VkExtent3D mipLevelExtent = getMipLevelExtent(mipLevel); return sw::Surface::sliceB(mipLevelExtent.width, mipLevelExtent.height, isCube() ? 1 : 0, getFormat(flags), false); } int Image::bytesPerTexel(const VkImageAspectFlags& flags) const { // Depth and Stencil bytes should be computed separately ASSERT((flags & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) != (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); return sw::Surface::bytes(getFormat(flags)); } VkFormat Image::getFormat(const VkImageAspectFlags& flags) const { switch(flags) { case VK_IMAGE_ASPECT_DEPTH_BIT: switch(format) { case VK_FORMAT_D16_UNORM_S8_UINT: return VK_FORMAT_D16_UNORM; case VK_FORMAT_D24_UNORM_S8_UINT: return VK_FORMAT_X8_D24_UNORM_PACK32; // FIXME: This will allocate an extra byte per pixel case VK_FORMAT_D32_SFLOAT_S8_UINT: return VK_FORMAT_D32_SFLOAT; default: break; } break; case VK_IMAGE_ASPECT_STENCIL_BIT: switch(format) { case VK_FORMAT_D16_UNORM_S8_UINT: case VK_FORMAT_D24_UNORM_S8_UINT: case VK_FORMAT_D32_SFLOAT_S8_UINT: return VK_FORMAT_S8_UINT; default: break; } break; default: break; } return format; } bool Image::isCube() const { return (flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) && (imageType == VK_IMAGE_TYPE_2D); } VkDeviceSize Image::getMemoryOffset(const VkImageAspectFlags& flags) const { switch(format) { case VK_FORMAT_D16_UNORM_S8_UINT: case VK_FORMAT_D24_UNORM_S8_UINT: case VK_FORMAT_D32_SFLOAT_S8_UINT: if(flags == VK_IMAGE_ASPECT_STENCIL_BIT) { // Offset by depth buffer to get to stencil buffer return memoryOffset + getStorageSize(VK_IMAGE_ASPECT_DEPTH_BIT); } break; default: break; } return memoryOffset; } VkDeviceSize Image::getMemoryOffset(const VkImageAspectFlags& flags, uint32_t mipLevel) const { VkDeviceSize offset = getMemoryOffset(flags); for(uint32_t i = 0; i < mipLevel; ++i) { offset += getMipLevelSize(flags, i); } return offset; } VkDeviceSize Image::getMemoryOffset(const VkImageAspectFlags& flags, uint32_t mipLevel, uint32_t layer) const { return layer * getLayerSize(flags) + getMemoryOffset(flags, mipLevel); } VkDeviceSize Image::getMipLevelSize(const VkImageAspectFlags& flags, uint32_t mipLevel) const { int slicePitchB = 0; if(sw::Surface::isDepth(format) && sw::Surface::isStencil(format)) { switch(flags) { case VK_IMAGE_ASPECT_DEPTH_BIT: case VK_IMAGE_ASPECT_STENCIL_BIT: slicePitchB = slicePitchBytes(flags, mipLevel); break; default: // Allow allocating both depth and stencil contiguously slicePitchB = (slicePitchBytes(VK_IMAGE_ASPECT_DEPTH_BIT, mipLevel) + slicePitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, mipLevel)); break; } } else { slicePitchB = slicePitchBytes(flags, mipLevel); } return getMipLevelExtent(mipLevel).depth * slicePitchB; } VkDeviceSize Image::getLayerSize(const VkImageAspectFlags& flags) const { VkDeviceSize layerSize = 0; for(uint32_t mipLevel = 0; mipLevel < mipLevels; ++mipLevel) { layerSize += getMipLevelSize(flags, mipLevel); } return layerSize; } VkDeviceSize Image::getStorageSize(const VkImageAspectFlags& flags) const { return arrayLayers * getLayerSize(flags); } sw::Surface* Image::asSurface(const VkImageAspectFlags& flags, uint32_t mipLevel, uint32_t layer) const { VkExtent3D mipLevelExtent = getMipLevelExtent(mipLevel); return sw::Surface::create(mipLevelExtent.width, mipLevelExtent.height, mipLevelExtent.depth, getFormat(flags), deviceMemory->getOffsetPointer(getMemoryOffset(flags, mipLevel, layer)), rowPitchBytes(flags, mipLevel), slicePitchBytes(flags, mipLevel)); } void Image::blit(VkImage dstImage, const VkImageBlit& region, VkFilter filter) { VkImageAspectFlags srcFlags = region.srcSubresource.aspectMask; VkImageAspectFlags dstFlags = region.dstSubresource.aspectMask; if((region.srcSubresource.baseArrayLayer != 0) || (region.dstSubresource.baseArrayLayer != 0) || (region.srcSubresource.layerCount != 1) || (region.dstSubresource.layerCount != 1) || (srcFlags != dstFlags)) { UNIMPLEMENTED(); } int32_t numSlices = (region.srcOffsets[1].z - region.srcOffsets[0].z); ASSERT(numSlices == (region.dstOffsets[1].z - region.dstOffsets[0].z)); sw::Surface* srcSurface = asSurface(srcFlags, region.srcSubresource.mipLevel, 0); sw::Surface* dstSurface = Cast(dstImage)->asSurface(dstFlags, region.dstSubresource.mipLevel, 0); sw::SliceRectF sRect(static_cast<float>(region.srcOffsets[0].x), static_cast<float>(region.srcOffsets[0].y), static_cast<float>(region.srcOffsets[1].x), static_cast<float>(region.srcOffsets[1].y), region.srcOffsets[0].z); sw::SliceRect dRect(region.dstOffsets[0].x, region.dstOffsets[0].y, region.dstOffsets[1].x, region.dstOffsets[1].y, region.dstOffsets[0].z); for(int i = 0; i < numSlices; i++) { blitter->blit(srcSurface, sRect, dstSurface, dRect, {filter != VK_FILTER_NEAREST, srcFlags == VK_IMAGE_ASPECT_STENCIL_BIT, false}); sRect.slice++; dRect.slice++; } delete srcSurface; delete dstSurface; } VkFormat Image::getClearFormat() const { // Set the proper format for the clear value, as described here: // https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#clears-values if(sw::Surface::isSignedNonNormalizedInteger(format)) { return VK_FORMAT_R32G32B32A32_SINT; } else if(sw::Surface::isUnsignedNonNormalizedInteger(format)) { return VK_FORMAT_R32G32B32A32_UINT; } return VK_FORMAT_R32G32B32A32_SFLOAT; } uint32_t Image::getLastLayerIndex(const VkImageSubresourceRange& subresourceRange) const { return ((subresourceRange.layerCount == VK_REMAINING_ARRAY_LAYERS) ? arrayLayers : (subresourceRange.baseArrayLayer + subresourceRange.layerCount)) - 1; } uint32_t Image::getLastMipLevel(const VkImageSubresourceRange& subresourceRange) const { return ((subresourceRange.levelCount == VK_REMAINING_MIP_LEVELS) ? mipLevels : (subresourceRange.baseMipLevel + subresourceRange.levelCount)) - 1; } void Image::clear(void* pixelData, VkFormat format, const VkImageSubresourceRange& subresourceRange, VkImageAspectFlags aspectMask) { uint32_t firstLayer = subresourceRange.baseArrayLayer; uint32_t lastLayer = getLastLayerIndex(subresourceRange); for(uint32_t layer = firstLayer; layer <= lastLayer; ++layer) { uint32_t lastLevel = getLastMipLevel(subresourceRange); for(uint32_t mipLevel = subresourceRange.baseMipLevel; mipLevel <= lastLevel; ++mipLevel) { VkExtent3D mipLevelExtent = getMipLevelExtent(mipLevel); for(uint32_t s = 0; s < mipLevelExtent.depth; ++s) { const sw::SliceRect dRect(0, 0, mipLevelExtent.width, mipLevelExtent.height, s); sw::Surface* surface = asSurface(aspectMask, mipLevel, layer); blitter->clear(pixelData, format, surface, dRect, 0xF); delete surface; } } } } void Image::clear(void* pixelData, VkFormat format, const VkRect2D& renderArea, const VkImageSubresourceRange& subresourceRange, VkImageAspectFlags aspectMask) { if((subresourceRange.baseMipLevel != 0) || (subresourceRange.levelCount != 1)) { UNIMPLEMENTED(); } sw::SliceRect dRect(renderArea.offset.x, renderArea.offset.y, renderArea.offset.x + renderArea.extent.width, renderArea.offset.y + renderArea.extent.height, 0); uint32_t firstLayer = subresourceRange.baseArrayLayer; uint32_t lastLayer = getLastLayerIndex(subresourceRange); for(uint32_t layer = firstLayer; layer <= lastLayer; ++layer) { for(uint32_t s = 0; s < extent.depth; ++s) { dRect.slice = s; sw::Surface* surface = asSurface(aspectMask, 0, layer); blitter->clear(pixelData, format, surface, dRect, 0xF); delete surface; } } } void Image::clear(const VkClearColorValue& color, const VkImageSubresourceRange& subresourceRange) { if(!(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT)) { UNIMPLEMENTED(); } clear((void*)color.float32, getClearFormat(), subresourceRange, VK_IMAGE_ASPECT_COLOR_BIT); } void Image::clear(const VkClearDepthStencilValue& color, const VkImageSubresourceRange& subresourceRange) { if((subresourceRange.aspectMask & ~(VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) != 0) { UNIMPLEMENTED(); } if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) { clear((void*)(&color.depth), VK_FORMAT_D32_SFLOAT, subresourceRange, VK_IMAGE_ASPECT_DEPTH_BIT); } if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) { clear((void*)(&color.stencil), VK_FORMAT_S8_UINT, subresourceRange, VK_IMAGE_ASPECT_STENCIL_BIT); } } void Image::clear(const VkClearValue& clearValue, const VkRect2D& renderArea, const VkImageSubresourceRange& subresourceRange) { if(!((subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || (subresourceRange.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))) || (subresourceRange.baseMipLevel != 0) || (subresourceRange.levelCount != 1)) { UNIMPLEMENTED(); } if(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) { clear((void*)(clearValue.color.float32), getClearFormat(), renderArea, subresourceRange, VK_IMAGE_ASPECT_COLOR_BIT); } else { if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) { clear((void*)(&clearValue.depthStencil.depth), VK_FORMAT_D32_SFLOAT, renderArea, subresourceRange, VK_IMAGE_ASPECT_DEPTH_BIT); } if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) { clear((void*)(&clearValue.depthStencil.stencil), VK_FORMAT_S8_UINT, renderArea, subresourceRange, VK_IMAGE_ASPECT_STENCIL_BIT); } } } } // namespace vk