(*===---------------------------------------------------------------------===
 * Parser
 *===---------------------------------------------------------------------===*)

(* binop_precedence - This holds the precedence for each binary operator that is
 * defined *)
let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10

(* precedence - Get the precedence of the pending binary operator token. *)
let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1

(* primary
 *   ::= identifier
 *   ::= numberexpr
 *   ::= parenexpr *)
let rec parse_primary = parser
  (* numberexpr ::= number *)
  | [< 'Token.Number n >] -> Ast.Number n

  (* parenexpr ::= '(' expression ')' *)
  | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e

  (* identifierexpr
   *   ::= identifier
   *   ::= identifier '(' argumentexpr ')' *)
  | [< 'Token.Ident id; stream >] ->
      let rec parse_args accumulator = parser
        | [< e=parse_expr; stream >] ->
            begin parser
              | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
              | [< >] -> e :: accumulator
            end stream
        | [< >] -> accumulator
      in
      let rec parse_ident id = parser
        (* Call. *)
        | [< 'Token.Kwd '(';
             args=parse_args [];
             'Token.Kwd ')' ?? "expected ')'">] ->
            Ast.Call (id, Array.of_list (List.rev args))

        (* Simple variable ref. *)
        | [< >] -> Ast.Variable id
      in
      parse_ident id stream

  | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")

(* binoprhs
 *   ::= ('+' primary)* *)
and parse_bin_rhs expr_prec lhs stream =
  match Stream.peek stream with
  (* If this is a binop, find its precedence. *)
  | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
      let token_prec = precedence c in

      (* If this is a binop that binds at least as tightly as the current binop,
       * consume it, otherwise we are done. *)
      if token_prec < expr_prec then lhs else begin
        (* Eat the binop. *)
        Stream.junk stream;

        (* Parse the primary expression after the binary operator. *)
        let rhs = parse_primary stream in

        (* Okay, we know this is a binop. *)
        let rhs =
          match Stream.peek stream with
          | Some (Token.Kwd c2) ->
              (* If BinOp binds less tightly with rhs than the operator after
               * rhs, let the pending operator take rhs as its lhs. *)
              let next_prec = precedence c2 in
              if token_prec < next_prec
              then parse_bin_rhs (token_prec + 1) rhs stream
              else rhs
          | _ -> rhs
        in

        (* Merge lhs/rhs. *)
        let lhs = Ast.Binary (c, lhs, rhs) in
        parse_bin_rhs expr_prec lhs stream
      end
  | _ -> lhs

(* expression
 *   ::= primary binoprhs *)
and parse_expr = parser
  | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream

(* prototype
 *   ::= id '(' id* ')' *)
let parse_prototype =
  let rec parse_args accumulator = parser
    | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
    | [< >] -> accumulator
  in

  parser
  | [< 'Token.Ident id;
       'Token.Kwd '(' ?? "expected '(' in prototype";
       args=parse_args [];
       'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
      (* success. *)
      Ast.Prototype (id, Array.of_list (List.rev args))

  | [< >] ->
      raise (Stream.Error "expected function name in prototype")

(* definition ::= 'def' prototype expression *)
let parse_definition = parser
  | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
      Ast.Function (p, e)

(* toplevelexpr ::= expression *)
let parse_toplevel = parser
  | [< e=parse_expr >] ->
      (* Make an anonymous proto. *)
      Ast.Function (Ast.Prototype ("", [||]), e)

(*  external ::= 'extern' prototype *)
let parse_extern = parser
  | [< 'Token.Extern; e=parse_prototype >] -> e