//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains some templates that are useful if you are working with the // STL at all. // // No library is required when using these functions. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_STLEXTRAS_H #define LLVM_ADT_STLEXTRAS_H #include <cstddef> // for std::size_t #include <cstdlib> // for qsort #include <functional> #include <iterator> #include <utility> // for std::pair namespace llvm { //===----------------------------------------------------------------------===// // Extra additions to <functional> //===----------------------------------------------------------------------===// template<class Ty> struct less_ptr : public std::binary_function<Ty, Ty, bool> { bool operator()(const Ty* left, const Ty* right) const { return *left < *right; } }; template<class Ty> struct greater_ptr : public std::binary_function<Ty, Ty, bool> { bool operator()(const Ty* left, const Ty* right) const { return *right < *left; } }; // deleter - Very very very simple method that is used to invoke operator // delete on something. It is used like this: // // for_each(V.begin(), B.end(), deleter<Interval>); // template <class T> static inline void deleter(T *Ptr) { delete Ptr; } //===----------------------------------------------------------------------===// // Extra additions to <iterator> //===----------------------------------------------------------------------===// // mapped_iterator - This is a simple iterator adapter that causes a function to // be dereferenced whenever operator* is invoked on the iterator. // template <class RootIt, class UnaryFunc> class mapped_iterator { RootIt current; UnaryFunc Fn; public: typedef typename std::iterator_traits<RootIt>::iterator_category iterator_category; typedef typename std::iterator_traits<RootIt>::difference_type difference_type; typedef typename UnaryFunc::result_type value_type; typedef void pointer; //typedef typename UnaryFunc::result_type *pointer; typedef void reference; // Can't modify value returned by fn typedef RootIt iterator_type; typedef mapped_iterator<RootIt, UnaryFunc> _Self; inline const RootIt &getCurrent() const { return current; } inline const UnaryFunc &getFunc() const { return Fn; } inline explicit mapped_iterator(const RootIt &I, UnaryFunc F) : current(I), Fn(F) {} inline mapped_iterator(const mapped_iterator &It) : current(It.current), Fn(It.Fn) {} inline value_type operator*() const { // All this work to do this return Fn(*current); // little change } _Self& operator++() { ++current; return *this; } _Self& operator--() { --current; return *this; } _Self operator++(int) { _Self __tmp = *this; ++current; return __tmp; } _Self operator--(int) { _Self __tmp = *this; --current; return __tmp; } _Self operator+ (difference_type n) const { return _Self(current + n, Fn); } _Self& operator+= (difference_type n) { current += n; return *this; } _Self operator- (difference_type n) const { return _Self(current - n, Fn); } _Self& operator-= (difference_type n) { current -= n; return *this; } reference operator[](difference_type n) const { return *(*this + n); } inline bool operator!=(const _Self &X) const { return !operator==(X); } inline bool operator==(const _Self &X) const { return current == X.current; } inline bool operator< (const _Self &X) const { return current < X.current; } inline difference_type operator-(const _Self &X) const { return current - X.current; } }; template <class _Iterator, class Func> inline mapped_iterator<_Iterator, Func> operator+(typename mapped_iterator<_Iterator, Func>::difference_type N, const mapped_iterator<_Iterator, Func>& X) { return mapped_iterator<_Iterator, Func>(X.getCurrent() - N, X.getFunc()); } // map_iterator - Provide a convenient way to create mapped_iterators, just like // make_pair is useful for creating pairs... // template <class ItTy, class FuncTy> inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) { return mapped_iterator<ItTy, FuncTy>(I, F); } // next/prior - These functions unlike std::advance do not modify the // passed iterator but return a copy. // // next(myIt) returns copy of myIt incremented once // next(myIt, n) returns copy of myIt incremented n times // prior(myIt) returns copy of myIt decremented once // prior(myIt, n) returns copy of myIt decremented n times template <typename ItTy, typename Dist> inline ItTy next(ItTy it, Dist n) { std::advance(it, n); return it; } template <typename ItTy> inline ItTy next(ItTy it) { return ++it; } template <typename ItTy, typename Dist> inline ItTy prior(ItTy it, Dist n) { std::advance(it, -n); return it; } template <typename ItTy> inline ItTy prior(ItTy it) { return --it; } //===----------------------------------------------------------------------===// // Extra additions to <utility> //===----------------------------------------------------------------------===// // tie - this function ties two objects and returns a temporary object // that is assignable from a std::pair. This can be used to make code // more readable when using values returned from functions bundled in // a std::pair. Since an example is worth 1000 words: // // typedef std::map<int, int> Int2IntMap; // // Int2IntMap myMap; // Int2IntMap::iterator where; // bool inserted; // tie(where, inserted) = myMap.insert(std::make_pair(123,456)); // // if (inserted) // // do stuff // else // // do other stuff template <typename T1, typename T2> struct tier { typedef T1 &first_type; typedef T2 &second_type; first_type first; second_type second; tier(first_type f, second_type s) : first(f), second(s) { } tier& operator=(const std::pair<T1, T2>& p) { first = p.first; second = p.second; return *this; } }; template <typename T1, typename T2> inline tier<T1, T2> tie(T1& f, T2& s) { return tier<T1, T2>(f, s); } //===----------------------------------------------------------------------===// // Extra additions for arrays //===----------------------------------------------------------------------===// /// Find where an array ends (for ending iterators) /// This returns a pointer to the byte immediately /// after the end of an array. template<class T, std::size_t N> inline T *array_endof(T (&x)[N]) { return x+N; } /// Find the length of an array. template<class T, std::size_t N> inline size_t array_lengthof(T (&)[N]) { return N; } /// array_pod_sort_comparator - This is helper function for array_pod_sort, /// which just uses operator< on T. template<typename T> static inline int array_pod_sort_comparator(const void *P1, const void *P2) { if (*reinterpret_cast<const T*>(P1) < *reinterpret_cast<const T*>(P2)) return -1; if (*reinterpret_cast<const T*>(P2) < *reinterpret_cast<const T*>(P1)) return 1; return 0; } /// get_array_pad_sort_comparator - This is an internal helper function used to /// get type deduction of T right. template<typename T> static int (*get_array_pad_sort_comparator(const T &)) (const void*, const void*) { return array_pod_sort_comparator<T>; } /// array_pod_sort - This sorts an array with the specified start and end /// extent. This is just like std::sort, except that it calls qsort instead of /// using an inlined template. qsort is slightly slower than std::sort, but /// most sorts are not performance critical in LLVM and std::sort has to be /// template instantiated for each type, leading to significant measured code /// bloat. This function should generally be used instead of std::sort where /// possible. /// /// This function assumes that you have simple POD-like types that can be /// compared with operator< and can be moved with memcpy. If this isn't true, /// you should use std::sort. /// /// NOTE: If qsort_r were portable, we could allow a custom comparator and /// default to std::less. template<class IteratorTy> static inline void array_pod_sort(IteratorTy Start, IteratorTy End) { // Don't dereference start iterator of empty sequence. if (Start == End) return; qsort(&*Start, End-Start, sizeof(*Start), get_array_pad_sort_comparator(*Start)); } template<class IteratorTy> static inline void array_pod_sort(IteratorTy Start, IteratorTy End, int (*Compare)(const void*, const void*)) { // Don't dereference start iterator of empty sequence. if (Start == End) return; qsort(&*Start, End-Start, sizeof(*Start), Compare); } //===----------------------------------------------------------------------===// // Extra additions to <algorithm> //===----------------------------------------------------------------------===// /// For a container of pointers, deletes the pointers and then clears the /// container. template<typename Container> void DeleteContainerPointers(Container &C) { for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I) delete *I; C.clear(); } /// In a container of pairs (usually a map) whose second element is a pointer, /// deletes the second elements and then clears the container. template<typename Container> void DeleteContainerSeconds(Container &C) { for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I) delete I->second; C.clear(); } } // End llvm namespace #endif