//===- llvm/ADT/ValueMap.h - Safe map from Values to data -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ValueMap class. ValueMap maps Value* or any subclass // to an arbitrary other type. It provides the DenseMap interface but updates // itself to remain safe when keys are RAUWed or deleted. By default, when a // key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new // mapping V2->target is added. If V2 already existed, its old target is // overwritten. When a key is deleted, its mapping is removed. // // You can override a ValueMap's Config parameter to control exactly what // happens on RAUW and destruction and to get called back on each event. It's // legal to call back into the ValueMap from a Config's callbacks. Config // parameters should inherit from ValueMapConfig<KeyT> to get default // implementations of all the methods ValueMap uses. See ValueMapConfig for // documentation of the functions you can override. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_VALUEMAP_H #define LLVM_ADT_VALUEMAP_H #include "llvm/ADT/DenseMap.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Support/type_traits.h" #include "llvm/Support/Mutex.h" #include <iterator> namespace llvm { template<typename KeyT, typename ValueT, typename Config, typename ValueInfoT> class ValueMapCallbackVH; template<typename DenseMapT, typename KeyT> class ValueMapIterator; template<typename DenseMapT, typename KeyT> class ValueMapConstIterator; /// This class defines the default behavior for configurable aspects of /// ValueMap<>. User Configs should inherit from this class to be as compatible /// as possible with future versions of ValueMap. template<typename KeyT> struct ValueMapConfig { /// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's /// false, the ValueMap will leave the original mapping in place. enum { FollowRAUW = true }; // All methods will be called with a first argument of type ExtraData. The // default implementations in this class take a templated first argument so // that users' subclasses can use any type they want without having to // override all the defaults. struct ExtraData {}; template<typename ExtraDataT> static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {} template<typename ExtraDataT> static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {} /// Returns a mutex that should be acquired around any changes to the map. /// This is only acquired from the CallbackVH (and held around calls to onRAUW /// and onDelete) and not inside other ValueMap methods. NULL means that no /// mutex is necessary. template<typename ExtraDataT> static sys::Mutex *getMutex(const ExtraDataT &/*Data*/) { return NULL; } }; /// See the file comment. template<typename KeyT, typename ValueT, typename Config = ValueMapConfig<KeyT>, typename ValueInfoT = DenseMapInfo<ValueT> > class ValueMap { friend class ValueMapCallbackVH<KeyT, ValueT, Config, ValueInfoT>; typedef ValueMapCallbackVH<KeyT, ValueT, Config, ValueInfoT> ValueMapCVH; typedef DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH>, ValueInfoT> MapT; typedef typename Config::ExtraData ExtraData; MapT Map; ExtraData Data; ValueMap(const ValueMap&); // DO NOT IMPLEMENT ValueMap& operator=(const ValueMap&); // DO NOT IMPLEMENT public: typedef KeyT key_type; typedef ValueT mapped_type; typedef std::pair<KeyT, ValueT> value_type; explicit ValueMap(unsigned NumInitBuckets = 64) : Map(NumInitBuckets), Data() {} explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64) : Map(NumInitBuckets), Data(Data) {} ~ValueMap() {} typedef ValueMapIterator<MapT, KeyT> iterator; typedef ValueMapConstIterator<MapT, KeyT> const_iterator; inline iterator begin() { return iterator(Map.begin()); } inline iterator end() { return iterator(Map.end()); } inline const_iterator begin() const { return const_iterator(Map.begin()); } inline const_iterator end() const { return const_iterator(Map.end()); } bool empty() const { return Map.empty(); } unsigned size() const { return Map.size(); } /// Grow the map so that it has at least Size buckets. Does not shrink void resize(size_t Size) { Map.resize(Size); } void clear() { Map.clear(); } /// count - Return true if the specified key is in the map. bool count(const KeyT &Val) const { return Map.count(Wrap(Val)); } iterator find(const KeyT &Val) { return iterator(Map.find(Wrap(Val))); } const_iterator find(const KeyT &Val) const { return const_iterator(Map.find(Wrap(Val))); } /// lookup - Return the entry for the specified key, or a default /// constructed value if no such entry exists. ValueT lookup(const KeyT &Val) const { return Map.lookup(Wrap(Val)); } // Inserts key,value pair into the map if the key isn't already in the map. // If the key is already in the map, it returns false and doesn't update the // value. std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) { std::pair<typename MapT::iterator, bool> map_result= Map.insert(std::make_pair(Wrap(KV.first), KV.second)); return std::make_pair(iterator(map_result.first), map_result.second); } /// insert - Range insertion of pairs. template<typename InputIt> void insert(InputIt I, InputIt E) { for (; I != E; ++I) insert(*I); } bool erase(const KeyT &Val) { return Map.erase(Wrap(Val)); } void erase(iterator I) { return Map.erase(I.base()); } value_type& FindAndConstruct(const KeyT &Key) { return Map.FindAndConstruct(Wrap(Key)); } ValueT &operator[](const KeyT &Key) { return Map[Wrap(Key)]; } /// isPointerIntoBucketsArray - Return true if the specified pointer points /// somewhere into the ValueMap's array of buckets (i.e. either to a key or /// value in the ValueMap). bool isPointerIntoBucketsArray(const void *Ptr) const { return Map.isPointerIntoBucketsArray(Ptr); } /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets /// array. In conjunction with the previous method, this can be used to /// determine whether an insertion caused the ValueMap to reallocate. const void *getPointerIntoBucketsArray() const { return Map.getPointerIntoBucketsArray(); } private: // Takes a key being looked up in the map and wraps it into a // ValueMapCallbackVH, the actual key type of the map. We use a helper // function because ValueMapCVH is constructed with a second parameter. ValueMapCVH Wrap(KeyT key) const { // The only way the resulting CallbackVH could try to modify *this (making // the const_cast incorrect) is if it gets inserted into the map. But then // this function must have been called from a non-const method, making the // const_cast ok. return ValueMapCVH(key, const_cast<ValueMap*>(this)); } }; // This CallbackVH updates its ValueMap when the contained Value changes, // according to the user's preferences expressed through the Config object. template<typename KeyT, typename ValueT, typename Config, typename ValueInfoT> class ValueMapCallbackVH : public CallbackVH { friend class ValueMap<KeyT, ValueT, Config, ValueInfoT>; friend struct DenseMapInfo<ValueMapCallbackVH>; typedef ValueMap<KeyT, ValueT, Config, ValueInfoT> ValueMapT; typedef typename llvm::remove_pointer<KeyT>::type KeySansPointerT; ValueMapT *Map; ValueMapCallbackVH(KeyT Key, ValueMapT *Map) : CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))), Map(Map) {} public: KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); } virtual void deleted() { // Make a copy that won't get changed even when *this is destroyed. ValueMapCallbackVH Copy(*this); sys::Mutex *M = Config::getMutex(Copy.Map->Data); if (M) M->acquire(); Config::onDelete(Copy.Map->Data, Copy.Unwrap()); // May destroy *this. Copy.Map->Map.erase(Copy); // Definitely destroys *this. if (M) M->release(); } virtual void allUsesReplacedWith(Value *new_key) { assert(isa<KeySansPointerT>(new_key) && "Invalid RAUW on key of ValueMap<>"); // Make a copy that won't get changed even when *this is destroyed. ValueMapCallbackVH Copy(*this); sys::Mutex *M = Config::getMutex(Copy.Map->Data); if (M) M->acquire(); KeyT typed_new_key = cast<KeySansPointerT>(new_key); // Can destroy *this: Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key); if (Config::FollowRAUW) { typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy); // I could == Copy.Map->Map.end() if the onRAUW callback already // removed the old mapping. if (I != Copy.Map->Map.end()) { ValueT Target(I->second); Copy.Map->Map.erase(I); // Definitely destroys *this. Copy.Map->insert(std::make_pair(typed_new_key, Target)); } } if (M) M->release(); } }; template<typename KeyT, typename ValueT, typename Config, typename ValueInfoT> struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config, ValueInfoT> > { typedef ValueMapCallbackVH<KeyT, ValueT, Config, ValueInfoT> VH; typedef DenseMapInfo<KeyT> PointerInfo; static inline VH getEmptyKey() { return VH(PointerInfo::getEmptyKey(), NULL); } static inline VH getTombstoneKey() { return VH(PointerInfo::getTombstoneKey(), NULL); } static unsigned getHashValue(const VH &Val) { return PointerInfo::getHashValue(Val.Unwrap()); } static bool isEqual(const VH &LHS, const VH &RHS) { return LHS == RHS; } }; template<typename DenseMapT, typename KeyT> class ValueMapIterator : public std::iterator<std::forward_iterator_tag, std::pair<KeyT, typename DenseMapT::mapped_type>, ptrdiff_t> { typedef typename DenseMapT::iterator BaseT; typedef typename DenseMapT::mapped_type ValueT; BaseT I; public: ValueMapIterator() : I() {} ValueMapIterator(BaseT I) : I(I) {} BaseT base() const { return I; } struct ValueTypeProxy { const KeyT first; ValueT& second; ValueTypeProxy *operator->() { return this; } operator std::pair<KeyT, ValueT>() const { return std::make_pair(first, second); } }; ValueTypeProxy operator*() const { ValueTypeProxy Result = {I->first.Unwrap(), I->second}; return Result; } ValueTypeProxy operator->() const { return operator*(); } bool operator==(const ValueMapIterator &RHS) const { return I == RHS.I; } bool operator!=(const ValueMapIterator &RHS) const { return I != RHS.I; } inline ValueMapIterator& operator++() { // Preincrement ++I; return *this; } ValueMapIterator operator++(int) { // Postincrement ValueMapIterator tmp = *this; ++*this; return tmp; } }; template<typename DenseMapT, typename KeyT> class ValueMapConstIterator : public std::iterator<std::forward_iterator_tag, std::pair<KeyT, typename DenseMapT::mapped_type>, ptrdiff_t> { typedef typename DenseMapT::const_iterator BaseT; typedef typename DenseMapT::mapped_type ValueT; BaseT I; public: ValueMapConstIterator() : I() {} ValueMapConstIterator(BaseT I) : I(I) {} ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other) : I(Other.base()) {} BaseT base() const { return I; } struct ValueTypeProxy { const KeyT first; const ValueT& second; ValueTypeProxy *operator->() { return this; } operator std::pair<KeyT, ValueT>() const { return std::make_pair(first, second); } }; ValueTypeProxy operator*() const { ValueTypeProxy Result = {I->first.Unwrap(), I->second}; return Result; } ValueTypeProxy operator->() const { return operator*(); } bool operator==(const ValueMapConstIterator &RHS) const { return I == RHS.I; } bool operator!=(const ValueMapConstIterator &RHS) const { return I != RHS.I; } inline ValueMapConstIterator& operator++() { // Preincrement ++I; return *this; } ValueMapConstIterator operator++(int) { // Postincrement ValueMapConstIterator tmp = *this; ++*this; return tmp; } }; } // end namespace llvm #endif