//=== llvm/Analysis/DominatorInternals.h - Dominator Calculation -*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_DOMINATOR_INTERNALS_H #define LLVM_ANALYSIS_DOMINATOR_INTERNALS_H #include "llvm/Analysis/Dominators.h" #include "llvm/ADT/SmallPtrSet.h" //===----------------------------------------------------------------------===// // // DominatorTree construction - This pass constructs immediate dominator // information for a flow-graph based on the algorithm described in this // document: // // A Fast Algorithm for Finding Dominators in a Flowgraph // T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141. // // This implements the O(n*log(n)) versions of EVAL and LINK, because it turns // out that the theoretically slower O(n*log(n)) implementation is actually // faster than the almost-linear O(n*alpha(n)) version, even for large CFGs. // //===----------------------------------------------------------------------===// namespace llvm { template<class GraphT> unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT, typename GraphT::NodeType* V, unsigned N) { // This is more understandable as a recursive algorithm, but we can't use the // recursive algorithm due to stack depth issues. Keep it here for // documentation purposes. #if 0 InfoRec &VInfo = DT.Info[DT.Roots[i]]; VInfo.DFSNum = VInfo.Semi = ++N; VInfo.Label = V; Vertex.push_back(V); // Vertex[n] = V; for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) { InfoRec &SuccVInfo = DT.Info[*SI]; if (SuccVInfo.Semi == 0) { SuccVInfo.Parent = V; N = DTDFSPass(DT, *SI, N); } } #else bool IsChildOfArtificialExit = (N != 0); SmallVector<std::pair<typename GraphT::NodeType*, typename GraphT::ChildIteratorType>, 32> Worklist; Worklist.push_back(std::make_pair(V, GraphT::child_begin(V))); while (!Worklist.empty()) { typename GraphT::NodeType* BB = Worklist.back().first; typename GraphT::ChildIteratorType NextSucc = Worklist.back().second; typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo = DT.Info[BB]; // First time we visited this BB? if (NextSucc == GraphT::child_begin(BB)) { BBInfo.DFSNum = BBInfo.Semi = ++N; BBInfo.Label = BB; DT.Vertex.push_back(BB); // Vertex[n] = V; if (IsChildOfArtificialExit) BBInfo.Parent = 1; IsChildOfArtificialExit = false; } // store the DFS number of the current BB - the reference to BBInfo might // get invalidated when processing the successors. unsigned BBDFSNum = BBInfo.DFSNum; // If we are done with this block, remove it from the worklist. if (NextSucc == GraphT::child_end(BB)) { Worklist.pop_back(); continue; } // Increment the successor number for the next time we get to it. ++Worklist.back().second; // Visit the successor next, if it isn't already visited. typename GraphT::NodeType* Succ = *NextSucc; typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo = DT.Info[Succ]; if (SuccVInfo.Semi == 0) { SuccVInfo.Parent = BBDFSNum; Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ))); } } #endif return N; } template<class GraphT> typename GraphT::NodeType* Eval(DominatorTreeBase<typename GraphT::NodeType>& DT, typename GraphT::NodeType *VIn, unsigned LastLinked) { typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo = DT.Info[VIn]; if (VInInfo.DFSNum < LastLinked) return VIn; SmallVector<typename GraphT::NodeType*, 32> Work; SmallPtrSet<typename GraphT::NodeType*, 32> Visited; if (VInInfo.Parent >= LastLinked) Work.push_back(VIn); while (!Work.empty()) { typename GraphT::NodeType* V = Work.back(); typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo = DT.Info[V]; typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent]; // Process Ancestor first if (Visited.insert(VAncestor) && VInfo.Parent >= LastLinked) { Work.push_back(VAncestor); continue; } Work.pop_back(); // Update VInfo based on Ancestor info if (VInfo.Parent < LastLinked) continue; typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo = DT.Info[VAncestor]; typename GraphT::NodeType* VAncestorLabel = VAInfo.Label; typename GraphT::NodeType* VLabel = VInfo.Label; if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi) VInfo.Label = VAncestorLabel; VInfo.Parent = VAInfo.Parent; } return VInInfo.Label; } template<class FuncT, class NodeT> void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT, FuncT& F) { typedef GraphTraits<NodeT> GraphT; unsigned N = 0; bool MultipleRoots = (DT.Roots.size() > 1); if (MultipleRoots) { typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo = DT.Info[NULL]; BBInfo.DFSNum = BBInfo.Semi = ++N; BBInfo.Label = NULL; DT.Vertex.push_back(NULL); // Vertex[n] = V; } // Step #1: Number blocks in depth-first order and initialize variables used // in later stages of the algorithm. for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size()); i != e; ++i) N = DFSPass<GraphT>(DT, DT.Roots[i], N); // it might be that some blocks did not get a DFS number (e.g., blocks of // infinite loops). In these cases an artificial exit node is required. MultipleRoots |= (DT.isPostDominator() && N != F.size()); // When naively implemented, the Lengauer-Tarjan algorithm requires a separate // bucket for each vertex. However, this is unnecessary, because each vertex // is only placed into a single bucket (that of its semidominator), and each // vertex's bucket is processed before it is added to any bucket itself. // // Instead of using a bucket per vertex, we use a single array Buckets that // has two purposes. Before the vertex V with preorder number i is processed, // Buckets[i] stores the index of the first element in V's bucket. After V's // bucket is processed, Buckets[i] stores the index of the next element in the // bucket containing V, if any. SmallVector<unsigned, 32> Buckets; Buckets.resize(N + 1); for (unsigned i = 1; i <= N; ++i) Buckets[i] = i; for (unsigned i = N; i >= 2; --i) { typename GraphT::NodeType* W = DT.Vertex[i]; typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo = DT.Info[W]; // Step #2: Implicitly define the immediate dominator of vertices for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) { typename GraphT::NodeType* V = DT.Vertex[Buckets[j]]; typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1); DT.IDoms[V] = DT.Info[U].Semi < i ? U : W; } // Step #3: Calculate the semidominators of all vertices // initialize the semi dominator to point to the parent node WInfo.Semi = WInfo.Parent; typedef GraphTraits<Inverse<NodeT> > InvTraits; for (typename InvTraits::ChildIteratorType CI = InvTraits::child_begin(W), E = InvTraits::child_end(W); CI != E; ++CI) { typename InvTraits::NodeType *N = *CI; if (DT.Info.count(N)) { // Only if this predecessor is reachable! unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi; if (SemiU < WInfo.Semi) WInfo.Semi = SemiU; } } // If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is // necessarily parent(V). In this case, set idom(V) here and avoid placing // V into a bucket. if (WInfo.Semi == WInfo.Parent) { DT.IDoms[W] = DT.Vertex[WInfo.Parent]; } else { Buckets[i] = Buckets[WInfo.Semi]; Buckets[WInfo.Semi] = i; } } if (N >= 1) { typename GraphT::NodeType* Root = DT.Vertex[1]; for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) { typename GraphT::NodeType* V = DT.Vertex[Buckets[j]]; DT.IDoms[V] = Root; } } // Step #4: Explicitly define the immediate dominator of each vertex for (unsigned i = 2; i <= N; ++i) { typename GraphT::NodeType* W = DT.Vertex[i]; typename GraphT::NodeType*& WIDom = DT.IDoms[W]; if (WIDom != DT.Vertex[DT.Info[W].Semi]) WIDom = DT.IDoms[WIDom]; } if (DT.Roots.empty()) return; // Add a node for the root. This node might be the actual root, if there is // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0) // which postdominates all real exits if there are multiple exit blocks, or // an infinite loop. typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : 0; DT.DomTreeNodes[Root] = DT.RootNode = new DomTreeNodeBase<typename GraphT::NodeType>(Root, 0); // Loop over all of the reachable blocks in the function... for (unsigned i = 2; i <= N; ++i) { typename GraphT::NodeType* W = DT.Vertex[i]; DomTreeNodeBase<typename GraphT::NodeType> *BBNode = DT.DomTreeNodes[W]; if (BBNode) continue; // Haven't calculated this node yet? typename GraphT::NodeType* ImmDom = DT.getIDom(W); assert(ImmDom || DT.DomTreeNodes[NULL]); // Get or calculate the node for the immediate dominator DomTreeNodeBase<typename GraphT::NodeType> *IDomNode = DT.getNodeForBlock(ImmDom); // Add a new tree node for this BasicBlock, and link it as a child of // IDomNode DomTreeNodeBase<typename GraphT::NodeType> *C = new DomTreeNodeBase<typename GraphT::NodeType>(W, IDomNode); DT.DomTreeNodes[W] = IDomNode->addChild(C); } // Free temporary memory used to construct idom's DT.IDoms.clear(); DT.Info.clear(); std::vector<typename GraphT::NodeType*>().swap(DT.Vertex); DT.updateDFSNumbers(); } } #endif