//===- SparsePropagation.h - Sparse Conditional Property Propagation ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements an abstract sparse conditional propagation algorithm, // modeled after SCCP, but with a customizable lattice function. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_SPARSE_PROPAGATION_H #define LLVM_ANALYSIS_SPARSE_PROPAGATION_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include <vector> #include <set> namespace llvm { class Value; class Constant; class Argument; class Instruction; class PHINode; class TerminatorInst; class BasicBlock; class Function; class SparseSolver; class raw_ostream; template<typename T> class SmallVectorImpl; /// AbstractLatticeFunction - This class is implemented by the dataflow instance /// to specify what the lattice values are and how they handle merges etc. /// This gives the client the power to compute lattice values from instructions, /// constants, etc. The requirement is that lattice values must all fit into /// a void*. If a void* is not sufficient, the implementation should use this /// pointer to be a pointer into a uniquing set or something. /// class AbstractLatticeFunction { public: typedef void *LatticeVal; private: LatticeVal UndefVal, OverdefinedVal, UntrackedVal; public: AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal, LatticeVal untrackedVal) { UndefVal = undefVal; OverdefinedVal = overdefinedVal; UntrackedVal = untrackedVal; } virtual ~AbstractLatticeFunction(); LatticeVal getUndefVal() const { return UndefVal; } LatticeVal getOverdefinedVal() const { return OverdefinedVal; } LatticeVal getUntrackedVal() const { return UntrackedVal; } /// IsUntrackedValue - If the specified Value is something that is obviously /// uninteresting to the analysis (and would always return UntrackedVal), /// this function can return true to avoid pointless work. virtual bool IsUntrackedValue(Value *V) { return false; } /// ComputeConstant - Given a constant value, compute and return a lattice /// value corresponding to the specified constant. virtual LatticeVal ComputeConstant(Constant *C) { return getOverdefinedVal(); // always safe } /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is /// one that the we want to handle through ComputeInstructionState. virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; } /// GetConstant - If the specified lattice value is representable as an LLVM /// constant value, return it. Otherwise return null. The returned value /// must be in the same LLVM type as Val. virtual Constant *GetConstant(LatticeVal LV, Value *Val, SparseSolver &SS) { return 0; } /// ComputeArgument - Given a formal argument value, compute and return a /// lattice value corresponding to the specified argument. virtual LatticeVal ComputeArgument(Argument *I) { return getOverdefinedVal(); // always safe } /// MergeValues - Compute and return the merge of the two specified lattice /// values. Merging should only move one direction down the lattice to /// guarantee convergence (toward overdefined). virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) { return getOverdefinedVal(); // always safe, never useful. } /// ComputeInstructionState - Given an instruction and a vector of its operand /// values, compute the result value of the instruction. virtual LatticeVal ComputeInstructionState(Instruction &I, SparseSolver &SS) { return getOverdefinedVal(); // always safe, never useful. } /// PrintValue - Render the specified lattice value to the specified stream. virtual void PrintValue(LatticeVal V, raw_ostream &OS); }; /// SparseSolver - This class is a general purpose solver for Sparse Conditional /// Propagation with a programmable lattice function. /// class SparseSolver { typedef AbstractLatticeFunction::LatticeVal LatticeVal; /// LatticeFunc - This is the object that knows the lattice and how to do /// compute transfer functions. AbstractLatticeFunction *LatticeFunc; DenseMap<Value*, LatticeVal> ValueState; // The state each value is in. SmallPtrSet<BasicBlock*, 16> BBExecutable; // The bbs that are executable. std::vector<Instruction*> InstWorkList; // Worklist of insts to process. std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list /// KnownFeasibleEdges - Entries in this set are edges which have already had /// PHI nodes retriggered. typedef std::pair<BasicBlock*,BasicBlock*> Edge; std::set<Edge> KnownFeasibleEdges; SparseSolver(const SparseSolver&); // DO NOT IMPLEMENT void operator=(const SparseSolver&); // DO NOT IMPLEMENT public: explicit SparseSolver(AbstractLatticeFunction *Lattice) : LatticeFunc(Lattice) {} ~SparseSolver() { delete LatticeFunc; } /// Solve - Solve for constants and executable blocks. /// void Solve(Function &F); void Print(Function &F, raw_ostream &OS) const; /// getLatticeState - Return the LatticeVal object that corresponds to the /// value. If an value is not in the map, it is returned as untracked, /// unlike the getOrInitValueState method. LatticeVal getLatticeState(Value *V) const { DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V); return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal(); } /// getOrInitValueState - Return the LatticeVal object that corresponds to the /// value, initializing the value's state if it hasn't been entered into the /// map yet. This function is necessary because not all values should start /// out in the underdefined state... Arguments should be overdefined, and /// constants should be marked as constants. /// LatticeVal getOrInitValueState(Value *V); /// isEdgeFeasible - Return true if the control flow edge from the 'From' /// basic block to the 'To' basic block is currently feasible. If /// AggressiveUndef is true, then this treats values with unknown lattice /// values as undefined. This is generally only useful when solving the /// lattice, not when querying it. bool isEdgeFeasible(BasicBlock *From, BasicBlock *To, bool AggressiveUndef = false); /// isBlockExecutable - Return true if there are any known feasible /// edges into the basic block. This is generally only useful when /// querying the lattice. bool isBlockExecutable(BasicBlock *BB) const { return BBExecutable.count(BB); } private: /// UpdateState - When the state for some instruction is potentially updated, /// this function notices and adds I to the worklist if needed. void UpdateState(Instruction &Inst, LatticeVal V); /// MarkBlockExecutable - This method can be used by clients to mark all of /// the blocks that are known to be intrinsically live in the processed unit. void MarkBlockExecutable(BasicBlock *BB); /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB /// work list if it is not already executable. void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); /// getFeasibleSuccessors - Return a vector of booleans to indicate which /// successors are reachable from a given terminator instruction. void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef); void visitInst(Instruction &I); void visitPHINode(PHINode &I); void visitTerminatorInst(TerminatorInst &TI); }; } // end namespace llvm #endif // LLVM_ANALYSIS_SPARSE_PROPAGATION_H