//===-- llvm/CodeGen/BinaryObject.h - Binary Object. -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a Binary Object Aka. "blob" for holding data from code // generators, ready for data to the object module code writters. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_BINARYOBJECT_H #define LLVM_CODEGEN_BINARYOBJECT_H #include "llvm/CodeGen/MachineRelocation.h" #include "llvm/Support/DataTypes.h" #include <string> #include <vector> namespace llvm { typedef std::vector<uint8_t> BinaryData; class BinaryObject { protected: std::string Name; bool IsLittleEndian; bool Is64Bit; BinaryData Data; std::vector<MachineRelocation> Relocations; public: /// Constructors and destructor BinaryObject() {} BinaryObject(bool isLittleEndian, bool is64Bit) : IsLittleEndian(isLittleEndian), Is64Bit(is64Bit) {} BinaryObject(const std::string &name, bool isLittleEndian, bool is64Bit) : Name(name), IsLittleEndian(isLittleEndian), Is64Bit(is64Bit) {} ~BinaryObject() {} /// getName - get name of BinaryObject inline std::string getName() const { return Name; } /// get size of binary data size_t size() const { return Data.size(); } /// get binary data BinaryData& getData() { return Data; } /// get machine relocations const std::vector<MachineRelocation>& getRelocations() const { return Relocations; } /// hasRelocations - Return true if 'Relocations' is not empty bool hasRelocations() const { return !Relocations.empty(); } /// emitZeros - This callback is invoked to emit a arbitrary number /// of zero bytes to the data stream. inline void emitZeros(unsigned Size) { for (unsigned i=0; i < Size; ++i) emitByte(0); } /// emitByte - This callback is invoked when a byte needs to be /// written to the data stream. inline void emitByte(uint8_t B) { Data.push_back(B); } /// emitWord16 - This callback is invoked when a 16-bit word needs to be /// written to the data stream in correct endian format and correct size. inline void emitWord16(uint16_t W) { if (IsLittleEndian) emitWord16LE(W); else emitWord16BE(W); } /// emitWord16LE - This callback is invoked when a 16-bit word needs to be /// written to the data stream in correct endian format and correct size. inline void emitWord16LE(uint16_t W) { Data.push_back((uint8_t)(W >> 0)); Data.push_back((uint8_t)(W >> 8)); } /// emitWord16BE - This callback is invoked when a 16-bit word needs to be /// written to the data stream in correct endian format and correct size. inline void emitWord16BE(uint16_t W) { Data.push_back((uint8_t)(W >> 8)); Data.push_back((uint8_t)(W >> 0)); } /// emitWord - This callback is invoked when a word needs to be /// written to the data stream in correct endian format and correct size. inline void emitWord(uint64_t W) { if (!Is64Bit) emitWord32(W); else emitWord64(W); } /// emitWord32 - This callback is invoked when a 32-bit word needs to be /// written to the data stream in correct endian format. inline void emitWord32(uint32_t W) { if (IsLittleEndian) emitWordLE(W); else emitWordBE(W); } /// emitWord64 - This callback is invoked when a 32-bit word needs to be /// written to the data stream in correct endian format. inline void emitWord64(uint64_t W) { if (IsLittleEndian) emitDWordLE(W); else emitDWordBE(W); } /// emitWord64 - This callback is invoked when a x86_fp80 needs to be /// written to the data stream in correct endian format. inline void emitWordFP80(const uint64_t *W, unsigned PadSize) { if (IsLittleEndian) { emitWord64(W[0]); emitWord16(W[1]); } else { emitWord16(W[1]); emitWord64(W[0]); } emitZeros(PadSize); } /// emitWordLE - This callback is invoked when a 32-bit word needs to be /// written to the data stream in little-endian format. inline void emitWordLE(uint32_t W) { Data.push_back((uint8_t)(W >> 0)); Data.push_back((uint8_t)(W >> 8)); Data.push_back((uint8_t)(W >> 16)); Data.push_back((uint8_t)(W >> 24)); } /// emitWordBE - This callback is invoked when a 32-bit word needs to be /// written to the data stream in big-endian format. /// inline void emitWordBE(uint32_t W) { Data.push_back((uint8_t)(W >> 24)); Data.push_back((uint8_t)(W >> 16)); Data.push_back((uint8_t)(W >> 8)); Data.push_back((uint8_t)(W >> 0)); } /// emitDWordLE - This callback is invoked when a 64-bit word needs to be /// written to the data stream in little-endian format. inline void emitDWordLE(uint64_t W) { Data.push_back((uint8_t)(W >> 0)); Data.push_back((uint8_t)(W >> 8)); Data.push_back((uint8_t)(W >> 16)); Data.push_back((uint8_t)(W >> 24)); Data.push_back((uint8_t)(W >> 32)); Data.push_back((uint8_t)(W >> 40)); Data.push_back((uint8_t)(W >> 48)); Data.push_back((uint8_t)(W >> 56)); } /// emitDWordBE - This callback is invoked when a 64-bit word needs to be /// written to the data stream in big-endian format. inline void emitDWordBE(uint64_t W) { Data.push_back((uint8_t)(W >> 56)); Data.push_back((uint8_t)(W >> 48)); Data.push_back((uint8_t)(W >> 40)); Data.push_back((uint8_t)(W >> 32)); Data.push_back((uint8_t)(W >> 24)); Data.push_back((uint8_t)(W >> 16)); Data.push_back((uint8_t)(W >> 8)); Data.push_back((uint8_t)(W >> 0)); } /// fixByte - This callback is invoked when a byte needs to be /// fixup the buffer. inline void fixByte(uint8_t B, uint32_t offset) { Data[offset] = B; } /// fixWord16 - This callback is invoked when a 16-bit word needs to /// fixup the data stream in correct endian format. inline void fixWord16(uint16_t W, uint32_t offset) { if (IsLittleEndian) fixWord16LE(W, offset); else fixWord16BE(W, offset); } /// emitWord16LE - This callback is invoked when a 16-bit word needs to /// fixup the data stream in little endian format. inline void fixWord16LE(uint16_t W, uint32_t offset) { Data[offset] = (uint8_t)(W >> 0); Data[++offset] = (uint8_t)(W >> 8); } /// fixWord16BE - This callback is invoked when a 16-bit word needs to /// fixup data stream in big endian format. inline void fixWord16BE(uint16_t W, uint32_t offset) { Data[offset] = (uint8_t)(W >> 8); Data[++offset] = (uint8_t)(W >> 0); } /// emitWord - This callback is invoked when a word needs to /// fixup the data in correct endian format and correct size. inline void fixWord(uint64_t W, uint32_t offset) { if (!Is64Bit) fixWord32(W, offset); else fixWord64(W, offset); } /// fixWord32 - This callback is invoked when a 32-bit word needs to /// fixup the data in correct endian format. inline void fixWord32(uint32_t W, uint32_t offset) { if (IsLittleEndian) fixWord32LE(W, offset); else fixWord32BE(W, offset); } /// fixWord32LE - This callback is invoked when a 32-bit word needs to /// fixup the data in little endian format. inline void fixWord32LE(uint32_t W, uint32_t offset) { Data[offset] = (uint8_t)(W >> 0); Data[++offset] = (uint8_t)(W >> 8); Data[++offset] = (uint8_t)(W >> 16); Data[++offset] = (uint8_t)(W >> 24); } /// fixWord32BE - This callback is invoked when a 32-bit word needs to /// fixup the data in big endian format. inline void fixWord32BE(uint32_t W, uint32_t offset) { Data[offset] = (uint8_t)(W >> 24); Data[++offset] = (uint8_t)(W >> 16); Data[++offset] = (uint8_t)(W >> 8); Data[++offset] = (uint8_t)(W >> 0); } /// fixWord64 - This callback is invoked when a 64-bit word needs to /// fixup the data in correct endian format. inline void fixWord64(uint64_t W, uint32_t offset) { if (IsLittleEndian) fixWord64LE(W, offset); else fixWord64BE(W, offset); } /// fixWord64BE - This callback is invoked when a 64-bit word needs to /// fixup the data in little endian format. inline void fixWord64LE(uint64_t W, uint32_t offset) { Data[offset] = (uint8_t)(W >> 0); Data[++offset] = (uint8_t)(W >> 8); Data[++offset] = (uint8_t)(W >> 16); Data[++offset] = (uint8_t)(W >> 24); Data[++offset] = (uint8_t)(W >> 32); Data[++offset] = (uint8_t)(W >> 40); Data[++offset] = (uint8_t)(W >> 48); Data[++offset] = (uint8_t)(W >> 56); } /// fixWord64BE - This callback is invoked when a 64-bit word needs to /// fixup the data in big endian format. inline void fixWord64BE(uint64_t W, uint32_t offset) { Data[offset] = (uint8_t)(W >> 56); Data[++offset] = (uint8_t)(W >> 48); Data[++offset] = (uint8_t)(W >> 40); Data[++offset] = (uint8_t)(W >> 32); Data[++offset] = (uint8_t)(W >> 24); Data[++offset] = (uint8_t)(W >> 16); Data[++offset] = (uint8_t)(W >> 8); Data[++offset] = (uint8_t)(W >> 0); } /// emitAlignment - Pad the data to the specified alignment. void emitAlignment(unsigned Alignment, uint8_t fill = 0) { if (Alignment <= 1) return; unsigned PadSize = -Data.size() & (Alignment-1); for (unsigned i = 0; i<PadSize; ++i) Data.push_back(fill); } /// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be /// written to the data stream. void emitULEB128Bytes(uint64_t Value) { do { uint8_t Byte = (uint8_t)(Value & 0x7f); Value >>= 7; if (Value) Byte |= 0x80; emitByte(Byte); } while (Value); } /// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be /// written to the data stream. void emitSLEB128Bytes(int64_t Value) { int Sign = Value >> (8 * sizeof(Value) - 1); bool IsMore; do { uint8_t Byte = (uint8_t)(Value & 0x7f); Value >>= 7; IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; if (IsMore) Byte |= 0x80; emitByte(Byte); } while (IsMore); } /// emitString - This callback is invoked when a String needs to be /// written to the data stream. void emitString(const std::string &String) { for (unsigned i = 0, N = static_cast<unsigned>(String.size()); i<N; ++i) { unsigned char C = String[i]; emitByte(C); } emitByte(0); } /// getCurrentPCOffset - Return the offset from the start of the emitted /// buffer that we are currently writing to. uintptr_t getCurrentPCOffset() const { return Data.size(); } /// addRelocation - Whenever a relocatable address is needed, it should be /// noted with this interface. void addRelocation(const MachineRelocation& relocation) { Relocations.push_back(relocation); } }; } // end namespace llvm #endif