//===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the MachineRegisterInfo class. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H #define LLVM_CODEGEN_MACHINEREGISTERINFO_H #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/IndexedMap.h" #include <vector> namespace llvm { /// MachineRegisterInfo - Keep track of information for virtual and physical /// registers, including vreg register classes, use/def chains for registers, /// etc. class MachineRegisterInfo { const TargetRegisterInfo *const TRI; /// IsSSA - True when the machine function is in SSA form and virtual /// registers have a single def. bool IsSSA; /// VRegInfo - Information we keep for each virtual register. /// /// Each element in this list contains the register class of the vreg and the /// start of the use/def list for the register. IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>, VirtReg2IndexFunctor> VRegInfo; /// RegAllocHints - This vector records register allocation hints for virtual /// registers. For each virtual register, it keeps a register and hint type /// pair making up the allocation hint. Hint type is target specific except /// for the value 0 which means the second value of the pair is the preferred /// register for allocation. For example, if the hint is <0, 1024>, it means /// the allocator should prefer the physical register allocated to the virtual /// register of the hint. IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints; /// PhysRegUseDefLists - This is an array of the head of the use/def list for /// physical registers. MachineOperand **PhysRegUseDefLists; /// UsedPhysRegs - This is a bit vector that is computed and set by the /// register allocator, and must be kept up to date by passes that run after /// register allocation (though most don't modify this). This is used /// so that the code generator knows which callee save registers to save and /// for other target specific uses. BitVector UsedPhysRegs; /// LiveIns/LiveOuts - Keep track of the physical registers that are /// livein/liveout of the function. Live in values are typically arguments in /// registers, live out values are typically return values in registers. /// LiveIn values are allowed to have virtual registers associated with them, /// stored in the second element. std::vector<std::pair<unsigned, unsigned> > LiveIns; std::vector<unsigned> LiveOuts; MachineRegisterInfo(const MachineRegisterInfo&); // DO NOT IMPLEMENT void operator=(const MachineRegisterInfo&); // DO NOT IMPLEMENT public: explicit MachineRegisterInfo(const TargetRegisterInfo &TRI); ~MachineRegisterInfo(); //===--------------------------------------------------------------------===// // Function State //===--------------------------------------------------------------------===// // isSSA - Returns true when the machine function is in SSA form. Early // passes require the machine function to be in SSA form where every virtual // register has a single defining instruction. // // The TwoAddressInstructionPass and PHIElimination passes take the machine // function out of SSA form when they introduce multiple defs per virtual // register. bool isSSA() const { return IsSSA; } // leaveSSA - Indicates that the machine function is no longer in SSA form. void leaveSSA() { IsSSA = false; } //===--------------------------------------------------------------------===// // Register Info //===--------------------------------------------------------------------===// /// reg_begin/reg_end - Provide iteration support to walk over all definitions /// and uses of a register within the MachineFunction that corresponds to this /// MachineRegisterInfo object. template<bool Uses, bool Defs, bool SkipDebug> class defusechain_iterator; /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified /// register. typedef defusechain_iterator<true,true,false> reg_iterator; reg_iterator reg_begin(unsigned RegNo) const { return reg_iterator(getRegUseDefListHead(RegNo)); } static reg_iterator reg_end() { return reg_iterator(0); } /// reg_empty - Return true if there are no instructions using or defining the /// specified register (it may be live-in). bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); } /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses /// of the specified register, skipping those marked as Debug. typedef defusechain_iterator<true,true,true> reg_nodbg_iterator; reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const { return reg_nodbg_iterator(getRegUseDefListHead(RegNo)); } static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); } /// reg_nodbg_empty - Return true if the only instructions using or defining /// Reg are Debug instructions. bool reg_nodbg_empty(unsigned RegNo) const { return reg_nodbg_begin(RegNo) == reg_nodbg_end(); } /// def_iterator/def_begin/def_end - Walk all defs of the specified register. typedef defusechain_iterator<false,true,false> def_iterator; def_iterator def_begin(unsigned RegNo) const { return def_iterator(getRegUseDefListHead(RegNo)); } static def_iterator def_end() { return def_iterator(0); } /// def_empty - Return true if there are no instructions defining the /// specified register (it may be live-in). bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); } /// use_iterator/use_begin/use_end - Walk all uses of the specified register. typedef defusechain_iterator<true,false,false> use_iterator; use_iterator use_begin(unsigned RegNo) const { return use_iterator(getRegUseDefListHead(RegNo)); } static use_iterator use_end() { return use_iterator(0); } /// use_empty - Return true if there are no instructions using the specified /// register. bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); } /// hasOneUse - Return true if there is exactly one instruction using the /// specified register. bool hasOneUse(unsigned RegNo) const; /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the /// specified register, skipping those marked as Debug. typedef defusechain_iterator<true,false,true> use_nodbg_iterator; use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const { return use_nodbg_iterator(getRegUseDefListHead(RegNo)); } static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); } /// use_nodbg_empty - Return true if there are no non-Debug instructions /// using the specified register. bool use_nodbg_empty(unsigned RegNo) const { return use_nodbg_begin(RegNo) == use_nodbg_end(); } /// hasOneNonDBGUse - Return true if there is exactly one non-Debug /// instruction using the specified register. bool hasOneNonDBGUse(unsigned RegNo) const; /// replaceRegWith - Replace all instances of FromReg with ToReg in the /// machine function. This is like llvm-level X->replaceAllUsesWith(Y), /// except that it also changes any definitions of the register as well. void replaceRegWith(unsigned FromReg, unsigned ToReg); /// getRegUseDefListHead - Return the head pointer for the register use/def /// list for the specified virtual or physical register. MachineOperand *&getRegUseDefListHead(unsigned RegNo) { if (TargetRegisterInfo::isVirtualRegister(RegNo)) return VRegInfo[RegNo].second; return PhysRegUseDefLists[RegNo]; } MachineOperand *getRegUseDefListHead(unsigned RegNo) const { if (TargetRegisterInfo::isVirtualRegister(RegNo)) return VRegInfo[RegNo].second; return PhysRegUseDefLists[RegNo]; } /// getVRegDef - Return the machine instr that defines the specified virtual /// register or null if none is found. This assumes that the code is in SSA /// form, so there should only be one definition. MachineInstr *getVRegDef(unsigned Reg) const; /// clearKillFlags - Iterate over all the uses of the given register and /// clear the kill flag from the MachineOperand. This function is used by /// optimization passes which extend register lifetimes and need only /// preserve conservative kill flag information. void clearKillFlags(unsigned Reg) const; #ifndef NDEBUG void dumpUses(unsigned RegNo) const; #endif //===--------------------------------------------------------------------===// // Virtual Register Info //===--------------------------------------------------------------------===// /// getRegClass - Return the register class of the specified virtual register. /// const TargetRegisterClass *getRegClass(unsigned Reg) const { return VRegInfo[Reg].first; } /// setRegClass - Set the register class of the specified virtual register. /// void setRegClass(unsigned Reg, const TargetRegisterClass *RC); /// constrainRegClass - Constrain the register class of the specified virtual /// register to be a common subclass of RC and the current register class, /// but only if the new class has at least MinNumRegs registers. Return the /// new register class, or NULL if no such class exists. /// This should only be used when the constraint is known to be trivial, like /// GR32 -> GR32_NOSP. Beware of increasing register pressure. /// const TargetRegisterClass *constrainRegClass(unsigned Reg, const TargetRegisterClass *RC, unsigned MinNumRegs = 0); /// recomputeRegClass - Try to find a legal super-class of Reg's register /// class that still satisfies the constraints from the instructions using /// Reg. Returns true if Reg was upgraded. /// /// This method can be used after constraints have been removed from a /// virtual register, for example after removing instructions or splitting /// the live range. /// bool recomputeRegClass(unsigned Reg, const TargetMachine&); /// createVirtualRegister - Create and return a new virtual register in the /// function with the specified register class. /// unsigned createVirtualRegister(const TargetRegisterClass *RegClass); /// getNumVirtRegs - Return the number of virtual registers created. /// unsigned getNumVirtRegs() const { return VRegInfo.size(); } /// setRegAllocationHint - Specify a register allocation hint for the /// specified virtual register. void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) { RegAllocHints[Reg].first = Type; RegAllocHints[Reg].second = PrefReg; } /// getRegAllocationHint - Return the register allocation hint for the /// specified virtual register. std::pair<unsigned, unsigned> getRegAllocationHint(unsigned Reg) const { return RegAllocHints[Reg]; } /// getSimpleHint - Return the preferred register allocation hint, or 0 if a /// standard simple hint (Type == 0) is not set. unsigned getSimpleHint(unsigned Reg) const { std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg); return Hint.first ? 0 : Hint.second; } //===--------------------------------------------------------------------===// // Physical Register Use Info //===--------------------------------------------------------------------===// /// isPhysRegUsed - Return true if the specified register is used in this /// function. This only works after register allocation. bool isPhysRegUsed(unsigned Reg) const { return UsedPhysRegs[Reg]; } /// setPhysRegUsed - Mark the specified register used in this function. /// This should only be called during and after register allocation. void setPhysRegUsed(unsigned Reg) { UsedPhysRegs[Reg] = true; } /// addPhysRegsUsed - Mark the specified registers used in this function. /// This should only be called during and after register allocation. void addPhysRegsUsed(const BitVector &Regs) { UsedPhysRegs |= Regs; } /// setPhysRegUnused - Mark the specified register unused in this function. /// This should only be called during and after register allocation. void setPhysRegUnused(unsigned Reg) { UsedPhysRegs[Reg] = false; } /// closePhysRegsUsed - Expand UsedPhysRegs to its transitive closure over /// subregisters. That means that if R is used, so are all subregisters. void closePhysRegsUsed(const TargetRegisterInfo&); //===--------------------------------------------------------------------===// // LiveIn/LiveOut Management //===--------------------------------------------------------------------===// /// addLiveIn/Out - Add the specified register as a live in/out. Note that it /// is an error to add the same register to the same set more than once. void addLiveIn(unsigned Reg, unsigned vreg = 0) { LiveIns.push_back(std::make_pair(Reg, vreg)); } void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); } // Iteration support for live in/out sets. These sets are kept in sorted // order by their register number. typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator livein_iterator; typedef std::vector<unsigned>::const_iterator liveout_iterator; livein_iterator livein_begin() const { return LiveIns.begin(); } livein_iterator livein_end() const { return LiveIns.end(); } bool livein_empty() const { return LiveIns.empty(); } liveout_iterator liveout_begin() const { return LiveOuts.begin(); } liveout_iterator liveout_end() const { return LiveOuts.end(); } bool liveout_empty() const { return LiveOuts.empty(); } bool isLiveIn(unsigned Reg) const; bool isLiveOut(unsigned Reg) const; /// getLiveInPhysReg - If VReg is a live-in virtual register, return the /// corresponding live-in physical register. unsigned getLiveInPhysReg(unsigned VReg) const; /// getLiveInVirtReg - If PReg is a live-in physical register, return the /// corresponding live-in physical register. unsigned getLiveInVirtReg(unsigned PReg) const; /// EmitLiveInCopies - Emit copies to initialize livein virtual registers /// into the given entry block. void EmitLiveInCopies(MachineBasicBlock *EntryMBB, const TargetRegisterInfo &TRI, const TargetInstrInfo &TII); private: void HandleVRegListReallocation(); public: /// defusechain_iterator - This class provides iterator support for machine /// operands in the function that use or define a specific register. If /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it /// returns defs. If neither are true then you are silly and it always /// returns end(). If SkipDebug is true it skips uses marked Debug /// when incrementing. template<bool ReturnUses, bool ReturnDefs, bool SkipDebug> class defusechain_iterator : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> { MachineOperand *Op; explicit defusechain_iterator(MachineOperand *op) : Op(op) { // If the first node isn't one we're interested in, advance to one that // we are interested in. if (op) { if ((!ReturnUses && op->isUse()) || (!ReturnDefs && op->isDef()) || (SkipDebug && op->isDebug())) ++*this; } } friend class MachineRegisterInfo; public: typedef std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t>::reference reference; typedef std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t>::pointer pointer; defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {} defusechain_iterator() : Op(0) {} bool operator==(const defusechain_iterator &x) const { return Op == x.Op; } bool operator!=(const defusechain_iterator &x) const { return !operator==(x); } /// atEnd - return true if this iterator is equal to reg_end() on the value. bool atEnd() const { return Op == 0; } // Iterator traversal: forward iteration only defusechain_iterator &operator++() { // Preincrement assert(Op && "Cannot increment end iterator!"); Op = Op->getNextOperandForReg(); // If this is an operand we don't care about, skip it. while (Op && ((!ReturnUses && Op->isUse()) || (!ReturnDefs && Op->isDef()) || (SkipDebug && Op->isDebug()))) Op = Op->getNextOperandForReg(); return *this; } defusechain_iterator operator++(int) { // Postincrement defusechain_iterator tmp = *this; ++*this; return tmp; } /// skipInstruction - move forward until reaching a different instruction. /// Return the skipped instruction that is no longer pointed to, or NULL if /// already pointing to end(). MachineInstr *skipInstruction() { if (!Op) return 0; MachineInstr *MI = Op->getParent(); do ++*this; while (Op && Op->getParent() == MI); return MI; } MachineOperand &getOperand() const { assert(Op && "Cannot dereference end iterator!"); return *Op; } /// getOperandNo - Return the operand # of this MachineOperand in its /// MachineInstr. unsigned getOperandNo() const { assert(Op && "Cannot dereference end iterator!"); return Op - &Op->getParent()->getOperand(0); } // Retrieve a reference to the current operand. MachineInstr &operator*() const { assert(Op && "Cannot dereference end iterator!"); return *Op->getParent(); } MachineInstr *operator->() const { assert(Op && "Cannot dereference end iterator!"); return Op->getParent(); } }; }; } // End llvm namespace #endif