//===- MCContext.h - Machine Code Context -----------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_MC_MCCONTEXT_H #define LLVM_MC_MCCONTEXT_H #include "llvm/MC/SectionKind.h" #include "llvm/MC/MCDwarf.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/StringMap.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/raw_ostream.h" #include <vector> // FIXME: Shouldn't be needed. namespace llvm { class MCAsmInfo; class MCExpr; class MCSection; class MCSymbol; class MCLabel; class MCDwarfFile; class MCDwarfLoc; class MCObjectFileInfo; class MCRegisterInfo; class MCLineSection; class StringRef; class Twine; class MCSectionMachO; class MCSectionELF; /// MCContext - Context object for machine code objects. This class owns all /// of the sections that it creates. /// class MCContext { MCContext(const MCContext&); // DO NOT IMPLEMENT MCContext &operator=(const MCContext&); // DO NOT IMPLEMENT public: typedef StringMap<MCSymbol*, BumpPtrAllocator&> SymbolTable; private: /// The MCAsmInfo for this target. const MCAsmInfo &MAI; /// The MCRegisterInfo for this target. const MCRegisterInfo &MRI; /// The MCObjectFileInfo for this target. const MCObjectFileInfo *MOFI; /// Allocator - Allocator object used for creating machine code objects. /// /// We use a bump pointer allocator to avoid the need to track all allocated /// objects. BumpPtrAllocator Allocator; /// Symbols - Bindings of names to symbols. SymbolTable Symbols; /// UsedNames - Keeps tracks of names that were used both for used declared /// and artificial symbols. StringMap<bool, BumpPtrAllocator&> UsedNames; /// NextUniqueID - The next ID to dole out to an unnamed assembler temporary /// symbol. unsigned NextUniqueID; /// Instances of directional local labels. DenseMap<unsigned, MCLabel *> Instances; /// NextInstance() creates the next instance of the directional local label /// for the LocalLabelVal and adds it to the map if needed. unsigned NextInstance(int64_t LocalLabelVal); /// GetInstance() gets the current instance of the directional local label /// for the LocalLabelVal and adds it to the map if needed. unsigned GetInstance(int64_t LocalLabelVal); /// The file name of the log file from the environment variable /// AS_SECURE_LOG_FILE. Which must be set before the .secure_log_unique /// directive is used or it is an error. char *SecureLogFile; /// The stream that gets written to for the .secure_log_unique directive. raw_ostream *SecureLog; /// Boolean toggled when .secure_log_unique / .secure_log_reset is seen to /// catch errors if .secure_log_unique appears twice without /// .secure_log_reset appearing between them. bool SecureLogUsed; /// The dwarf file and directory tables from the dwarf .file directive. std::vector<MCDwarfFile *> MCDwarfFiles; std::vector<StringRef> MCDwarfDirs; /// The current dwarf line information from the last dwarf .loc directive. MCDwarfLoc CurrentDwarfLoc; bool DwarfLocSeen; /// Honor temporary labels, this is useful for debugging semantic /// differences between temporary and non-temporary labels (primarily on /// Darwin). bool AllowTemporaryLabels; /// The dwarf line information from the .loc directives for the sections /// with assembled machine instructions have after seeing .loc directives. DenseMap<const MCSection *, MCLineSection *> MCLineSections; /// We need a deterministic iteration order, so we remember the order /// the elements were added. std::vector<const MCSection *> MCLineSectionOrder; void *MachOUniquingMap, *ELFUniquingMap, *COFFUniquingMap; MCSymbol *CreateSymbol(StringRef Name); public: explicit MCContext(const MCAsmInfo &MAI, const MCRegisterInfo &MRI, const MCObjectFileInfo *MOFI); ~MCContext(); const MCAsmInfo &getAsmInfo() const { return MAI; } const MCRegisterInfo &getRegisterInfo() const { return MRI; } const MCObjectFileInfo *getObjectFileInfo() const { return MOFI; } void setAllowTemporaryLabels(bool Value) { AllowTemporaryLabels = Value; } /// @name Symbol Management /// @{ /// CreateTempSymbol - Create and return a new assembler temporary symbol /// with a unique but unspecified name. MCSymbol *CreateTempSymbol(); /// CreateDirectionalLocalSymbol - Create the definition of a directional /// local symbol for numbered label (used for "1:" definitions). MCSymbol *CreateDirectionalLocalSymbol(int64_t LocalLabelVal); /// GetDirectionalLocalSymbol - Create and return a directional local /// symbol for numbered label (used for "1b" or 1f" references). MCSymbol *GetDirectionalLocalSymbol(int64_t LocalLabelVal, int bORf); /// GetOrCreateSymbol - Lookup the symbol inside with the specified /// @p Name. If it exists, return it. If not, create a forward /// reference and return it. /// /// @param Name - The symbol name, which must be unique across all symbols. MCSymbol *GetOrCreateSymbol(StringRef Name); MCSymbol *GetOrCreateSymbol(const Twine &Name); /// LookupSymbol - Get the symbol for \p Name, or null. MCSymbol *LookupSymbol(StringRef Name) const; /// getSymbols - Get a reference for the symbol table for clients that /// want to, for example, iterate over all symbols. 'const' because we /// still want any modifications to the table itself to use the MCContext /// APIs. const SymbolTable &getSymbols() const { return Symbols; } /// @} /// @name Section Management /// @{ /// getMachOSection - Return the MCSection for the specified mach-o section. /// This requires the operands to be valid. const MCSectionMachO *getMachOSection(StringRef Segment, StringRef Section, unsigned TypeAndAttributes, unsigned Reserved2, SectionKind K); const MCSectionMachO *getMachOSection(StringRef Segment, StringRef Section, unsigned TypeAndAttributes, SectionKind K) { return getMachOSection(Segment, Section, TypeAndAttributes, 0, K); } const MCSectionELF *getELFSection(StringRef Section, unsigned Type, unsigned Flags, SectionKind Kind); const MCSectionELF *getELFSection(StringRef Section, unsigned Type, unsigned Flags, SectionKind Kind, unsigned EntrySize, StringRef Group); const MCSectionELF *CreateELFGroupSection(); const MCSection *getCOFFSection(StringRef Section, unsigned Characteristics, int Selection, SectionKind Kind); const MCSection *getCOFFSection(StringRef Section, unsigned Characteristics, SectionKind Kind) { return getCOFFSection (Section, Characteristics, 0, Kind); } /// @} /// @name Dwarf Management /// @{ /// GetDwarfFile - creates an entry in the dwarf file and directory tables. unsigned GetDwarfFile(StringRef FileName, unsigned FileNumber); bool isValidDwarfFileNumber(unsigned FileNumber); bool hasDwarfFiles() const { return !MCDwarfFiles.empty(); } const std::vector<MCDwarfFile *> &getMCDwarfFiles() { return MCDwarfFiles; } const std::vector<StringRef> &getMCDwarfDirs() { return MCDwarfDirs; } const DenseMap<const MCSection *, MCLineSection *> &getMCLineSections() const { return MCLineSections; } const std::vector<const MCSection *> &getMCLineSectionOrder() const { return MCLineSectionOrder; } void addMCLineSection(const MCSection *Sec, MCLineSection *Line) { MCLineSections[Sec] = Line; MCLineSectionOrder.push_back(Sec); } /// setCurrentDwarfLoc - saves the information from the currently parsed /// dwarf .loc directive and sets DwarfLocSeen. When the next instruction /// is assembled an entry in the line number table with this information and /// the address of the instruction will be created. void setCurrentDwarfLoc(unsigned FileNum, unsigned Line, unsigned Column, unsigned Flags, unsigned Isa, unsigned Discriminator) { CurrentDwarfLoc.setFileNum(FileNum); CurrentDwarfLoc.setLine(Line); CurrentDwarfLoc.setColumn(Column); CurrentDwarfLoc.setFlags(Flags); CurrentDwarfLoc.setIsa(Isa); CurrentDwarfLoc.setDiscriminator(Discriminator); DwarfLocSeen = true; } void ClearDwarfLocSeen() { DwarfLocSeen = false; } bool getDwarfLocSeen() { return DwarfLocSeen; } const MCDwarfLoc &getCurrentDwarfLoc() { return CurrentDwarfLoc; } /// @} char *getSecureLogFile() { return SecureLogFile; } raw_ostream *getSecureLog() { return SecureLog; } bool getSecureLogUsed() { return SecureLogUsed; } void setSecureLog(raw_ostream *Value) { SecureLog = Value; } void setSecureLogUsed(bool Value) { SecureLogUsed = Value; } void *Allocate(unsigned Size, unsigned Align = 8) { return Allocator.Allocate(Size, Align); } void Deallocate(void *Ptr) { } }; } // end namespace llvm // operator new and delete aren't allowed inside namespaces. // The throw specifications are mandated by the standard. /// @brief Placement new for using the MCContext's allocator. /// /// This placement form of operator new uses the MCContext's allocator for /// obtaining memory. It is a non-throwing new, which means that it returns /// null on error. (If that is what the allocator does. The current does, so if /// this ever changes, this operator will have to be changed, too.) /// Usage looks like this (assuming there's an MCContext 'Context' in scope): /// @code /// // Default alignment (16) /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments); /// // Specific alignment /// IntegerLiteral *Ex2 = new (Context, 8) IntegerLiteral(arguments); /// @endcode /// Please note that you cannot use delete on the pointer; it must be /// deallocated using an explicit destructor call followed by /// @c Context.Deallocate(Ptr). /// /// @param Bytes The number of bytes to allocate. Calculated by the compiler. /// @param C The MCContext that provides the allocator. /// @param Alignment The alignment of the allocated memory (if the underlying /// allocator supports it). /// @return The allocated memory. Could be NULL. inline void *operator new(size_t Bytes, llvm::MCContext &C, size_t Alignment = 16) throw () { return C.Allocate(Bytes, Alignment); } /// @brief Placement delete companion to the new above. /// /// This operator is just a companion to the new above. There is no way of /// invoking it directly; see the new operator for more details. This operator /// is called implicitly by the compiler if a placement new expression using /// the MCContext throws in the object constructor. inline void operator delete(void *Ptr, llvm::MCContext &C, size_t) throw () { C.Deallocate(Ptr); } /// This placement form of operator new[] uses the MCContext's allocator for /// obtaining memory. It is a non-throwing new[], which means that it returns /// null on error. /// Usage looks like this (assuming there's an MCContext 'Context' in scope): /// @code /// // Default alignment (16) /// char *data = new (Context) char[10]; /// // Specific alignment /// char *data = new (Context, 8) char[10]; /// @endcode /// Please note that you cannot use delete on the pointer; it must be /// deallocated using an explicit destructor call followed by /// @c Context.Deallocate(Ptr). /// /// @param Bytes The number of bytes to allocate. Calculated by the compiler. /// @param C The MCContext that provides the allocator. /// @param Alignment The alignment of the allocated memory (if the underlying /// allocator supports it). /// @return The allocated memory. Could be NULL. inline void *operator new[](size_t Bytes, llvm::MCContext& C, size_t Alignment = 16) throw () { return C.Allocate(Bytes, Alignment); } /// @brief Placement delete[] companion to the new[] above. /// /// This operator is just a companion to the new[] above. There is no way of /// invoking it directly; see the new[] operator for more details. This operator /// is called implicitly by the compiler if a placement new[] expression using /// the MCContext throws in the object constructor. inline void operator delete[](void *Ptr, llvm::MCContext &C) throw () { C.Deallocate(Ptr); } #endif