//===-- llvm/Support/Casting.h - Allow flexible, checked, casts -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(), // and dyn_cast_or_null<X>() templates. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_CASTING_H #define LLVM_SUPPORT_CASTING_H #include <cassert> namespace llvm { //===----------------------------------------------------------------------===// // isa<x> Support Templates //===----------------------------------------------------------------------===// // Define a template that can be specialized by smart pointers to reflect the // fact that they are automatically dereferenced, and are not involved with the // template selection process... the default implementation is a noop. // template<typename From> struct simplify_type { typedef From SimpleType; // The real type this represents... // An accessor to get the real value... static SimpleType &getSimplifiedValue(From &Val) { return Val; } }; template<typename From> struct simplify_type<const From> { typedef const From SimpleType; static SimpleType &getSimplifiedValue(const From &Val) { return simplify_type<From>::getSimplifiedValue(static_cast<From&>(Val)); } }; // The core of the implementation of isa<X> is here; To and From should be // the names of classes. This template can be specialized to customize the // implementation of isa<> without rewriting it from scratch. template <typename To, typename From> struct isa_impl { static inline bool doit(const From &Val) { return To::classof(&Val); } }; template <typename To, typename From> struct isa_impl_cl { static inline bool doit(const From &Val) { return isa_impl<To, From>::doit(Val); } }; template <typename To, typename From> struct isa_impl_cl<To, const From> { static inline bool doit(const From &Val) { return isa_impl<To, From>::doit(Val); } }; template <typename To, typename From> struct isa_impl_cl<To, From*> { static inline bool doit(const From *Val) { return isa_impl<To, From>::doit(*Val); } }; template <typename To, typename From> struct isa_impl_cl<To, const From*> { static inline bool doit(const From *Val) { return isa_impl<To, From>::doit(*Val); } }; template <typename To, typename From> struct isa_impl_cl<To, const From*const> { static inline bool doit(const From *Val) { return isa_impl<To, From>::doit(*Val); } }; template<typename To, typename From, typename SimpleFrom> struct isa_impl_wrap { // When From != SimplifiedType, we can simplify the type some more by using // the simplify_type template. static bool doit(const From &Val) { return isa_impl_wrap<To, SimpleFrom, typename simplify_type<SimpleFrom>::SimpleType>::doit( simplify_type<From>::getSimplifiedValue(Val)); } }; template<typename To, typename FromTy> struct isa_impl_wrap<To, FromTy, FromTy> { // When From == SimpleType, we are as simple as we are going to get. static bool doit(const FromTy &Val) { return isa_impl_cl<To,FromTy>::doit(Val); } }; // isa<X> - Return true if the parameter to the template is an instance of the // template type argument. Used like this: // // if (isa<Type>(myVal)) { ... } // template <class X, class Y> inline bool isa(const Y &Val) { return isa_impl_wrap<X, Y, typename simplify_type<Y>::SimpleType>::doit(Val); } //===----------------------------------------------------------------------===// // cast<x> Support Templates //===----------------------------------------------------------------------===// template<class To, class From> struct cast_retty; // Calculate what type the 'cast' function should return, based on a requested // type of To and a source type of From. template<class To, class From> struct cast_retty_impl { typedef To& ret_type; // Normal case, return Ty& }; template<class To, class From> struct cast_retty_impl<To, const From> { typedef const To &ret_type; // Normal case, return Ty& }; template<class To, class From> struct cast_retty_impl<To, From*> { typedef To* ret_type; // Pointer arg case, return Ty* }; template<class To, class From> struct cast_retty_impl<To, const From*> { typedef const To* ret_type; // Constant pointer arg case, return const Ty* }; template<class To, class From> struct cast_retty_impl<To, const From*const> { typedef const To* ret_type; // Constant pointer arg case, return const Ty* }; template<class To, class From, class SimpleFrom> struct cast_retty_wrap { // When the simplified type and the from type are not the same, use the type // simplifier to reduce the type, then reuse cast_retty_impl to get the // resultant type. typedef typename cast_retty<To, SimpleFrom>::ret_type ret_type; }; template<class To, class FromTy> struct cast_retty_wrap<To, FromTy, FromTy> { // When the simplified type is equal to the from type, use it directly. typedef typename cast_retty_impl<To,FromTy>::ret_type ret_type; }; template<class To, class From> struct cast_retty { typedef typename cast_retty_wrap<To, From, typename simplify_type<From>::SimpleType>::ret_type ret_type; }; // Ensure the non-simple values are converted using the simplify_type template // that may be specialized by smart pointers... // template<class To, class From, class SimpleFrom> struct cast_convert_val { // This is not a simple type, use the template to simplify it... static typename cast_retty<To, From>::ret_type doit(const From &Val) { return cast_convert_val<To, SimpleFrom, typename simplify_type<SimpleFrom>::SimpleType>::doit( simplify_type<From>::getSimplifiedValue(Val)); } }; template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> { // This _is_ a simple type, just cast it. static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) { typename cast_retty<To, FromTy>::ret_type Res2 = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val); return Res2; } }; // cast<X> - Return the argument parameter cast to the specified type. This // casting operator asserts that the type is correct, so it does not return null // on failure. It does not allow a null argument (use cast_or_null for that). // It is typically used like this: // // cast<Instruction>(myVal)->getParent() // template <class X, class Y> inline typename cast_retty<X, Y>::ret_type cast(const Y &Val) { assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!"); return cast_convert_val<X, Y, typename simplify_type<Y>::SimpleType>::doit(Val); } // cast_or_null<X> - Functionally identical to cast, except that a null value is // accepted. // template <class X, class Y> inline typename cast_retty<X, Y*>::ret_type cast_or_null(Y *Val) { if (Val == 0) return 0; assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"); return cast<X>(Val); } // dyn_cast<X> - Return the argument parameter cast to the specified type. This // casting operator returns null if the argument is of the wrong type, so it can // be used to test for a type as well as cast if successful. This should be // used in the context of an if statement like this: // // if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... } // template <class X, class Y> inline typename cast_retty<X, Y>::ret_type dyn_cast(const Y &Val) { return isa<X>(Val) ? cast<X, Y>(Val) : 0; } // dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null // value is accepted. // template <class X, class Y> inline typename cast_retty<X, Y*>::ret_type dyn_cast_or_null(Y *Val) { return (Val && isa<X>(Val)) ? cast<X>(Val) : 0; } } // End llvm namespace #endif