//===- InlineCost.cpp - Cost analysis for inliner -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements inline cost analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/InlineCost.h" #include "llvm/Support/CallSite.h" #include "llvm/CallingConv.h" #include "llvm/IntrinsicInst.h" #include "llvm/Target/TargetData.h" #include "llvm/ADT/SmallPtrSet.h" using namespace llvm; /// callIsSmall - If a call is likely to lower to a single target instruction, /// or is otherwise deemed small return true. /// TODO: Perhaps calls like memcpy, strcpy, etc? bool llvm::callIsSmall(const Function *F) { if (!F) return false; if (F->hasLocalLinkage()) return false; if (!F->hasName()) return false; StringRef Name = F->getName(); // These will all likely lower to a single selection DAG node. if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" || Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" || Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" || Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl" ) return true; // These are all likely to be optimized into something smaller. if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" || Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name == "floorf" || Name == "ceil" || Name == "round" || Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs") return true; return false; } /// analyzeBasicBlock - Fill in the current structure with information gleaned /// from the specified block. void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB, const TargetData *TD) { ++NumBlocks; unsigned NumInstsBeforeThisBB = NumInsts; for (BasicBlock::const_iterator II = BB->begin(), E = BB->end(); II != E; ++II) { if (isa<PHINode>(II)) continue; // PHI nodes don't count. // Special handling for calls. if (isa<CallInst>(II) || isa<InvokeInst>(II)) { if (isa<DbgInfoIntrinsic>(II)) continue; // Debug intrinsics don't count as size. ImmutableCallSite CS(cast<Instruction>(II)); if (const Function *F = CS.getCalledFunction()) { // If a function is both internal and has a single use, then it is // extremely likely to get inlined in the future (it was probably // exposed by an interleaved devirtualization pass). if (F->hasInternalLinkage() && F->hasOneUse()) ++NumInlineCandidates; // If this call is to function itself, then the function is recursive. // Inlining it into other functions is a bad idea, because this is // basically just a form of loop peeling, and our metrics aren't useful // for that case. if (F == BB->getParent()) isRecursive = true; } if (!isa<IntrinsicInst>(II) && !callIsSmall(CS.getCalledFunction())) { // Each argument to a call takes on average one instruction to set up. NumInsts += CS.arg_size(); // We don't want inline asm to count as a call - that would prevent loop // unrolling. The argument setup cost is still real, though. if (!isa<InlineAsm>(CS.getCalledValue())) ++NumCalls; } } if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { if (!AI->isStaticAlloca()) this->usesDynamicAlloca = true; } if (isa<ExtractElementInst>(II) || II->getType()->isVectorTy()) ++NumVectorInsts; if (const CastInst *CI = dyn_cast<CastInst>(II)) { // Noop casts, including ptr <-> int, don't count. if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) || isa<PtrToIntInst>(CI)) continue; // trunc to a native type is free (assuming the target has compare and // shift-right of the same width). if (isa<TruncInst>(CI) && TD && TD->isLegalInteger(TD->getTypeSizeInBits(CI->getType()))) continue; // Result of a cmp instruction is often extended (to be used by other // cmp instructions, logical or return instructions). These are usually // nop on most sane targets. if (isa<CmpInst>(CI->getOperand(0))) continue; } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(II)){ // If a GEP has all constant indices, it will probably be folded with // a load/store. if (GEPI->hasAllConstantIndices()) continue; } ++NumInsts; } if (isa<ReturnInst>(BB->getTerminator())) ++NumRets; // We never want to inline functions that contain an indirectbr. This is // incorrect because all the blockaddress's (in static global initializers // for example) would be referring to the original function, and this indirect // jump would jump from the inlined copy of the function into the original // function which is extremely undefined behavior. if (isa<IndirectBrInst>(BB->getTerminator())) containsIndirectBr = true; // Remember NumInsts for this BB. NumBBInsts[BB] = NumInsts - NumInstsBeforeThisBB; } // CountCodeReductionForConstant - Figure out an approximation for how many // instructions will be constant folded if the specified value is constant. // unsigned CodeMetrics::CountCodeReductionForConstant(Value *V) { unsigned Reduction = 0; for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ User *U = *UI; if (isa<BranchInst>(U) || isa<SwitchInst>(U)) { // We will be able to eliminate all but one of the successors. const TerminatorInst &TI = cast<TerminatorInst>(*U); const unsigned NumSucc = TI.getNumSuccessors(); unsigned Instrs = 0; for (unsigned I = 0; I != NumSucc; ++I) Instrs += NumBBInsts[TI.getSuccessor(I)]; // We don't know which blocks will be eliminated, so use the average size. Reduction += InlineConstants::InstrCost*Instrs*(NumSucc-1)/NumSucc; } else { // Figure out if this instruction will be removed due to simple constant // propagation. Instruction &Inst = cast<Instruction>(*U); // We can't constant propagate instructions which have effects or // read memory. // // FIXME: It would be nice to capture the fact that a load from a // pointer-to-constant-global is actually a *really* good thing to zap. // Unfortunately, we don't know the pointer that may get propagated here, // so we can't make this decision. if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() || isa<AllocaInst>(Inst)) continue; bool AllOperandsConstant = true; for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) { AllOperandsConstant = false; break; } if (AllOperandsConstant) { // We will get to remove this instruction... Reduction += InlineConstants::InstrCost; // And any other instructions that use it which become constants // themselves. Reduction += CountCodeReductionForConstant(&Inst); } } } return Reduction; } // CountCodeReductionForAlloca - Figure out an approximation of how much smaller // the function will be if it is inlined into a context where an argument // becomes an alloca. // unsigned CodeMetrics::CountCodeReductionForAlloca(Value *V) { if (!V->getType()->isPointerTy()) return 0; // Not a pointer unsigned Reduction = 0; for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ Instruction *I = cast<Instruction>(*UI); if (isa<LoadInst>(I) || isa<StoreInst>(I)) Reduction += InlineConstants::InstrCost; else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { // If the GEP has variable indices, we won't be able to do much with it. if (GEP->hasAllConstantIndices()) Reduction += CountCodeReductionForAlloca(GEP); } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(I)) { // Track pointer through bitcasts. Reduction += CountCodeReductionForAlloca(BCI); } else { // If there is some other strange instruction, we're not going to be able // to do much if we inline this. return 0; } } return Reduction; } /// analyzeFunction - Fill in the current structure with information gleaned /// from the specified function. void CodeMetrics::analyzeFunction(Function *F, const TargetData *TD) { // If this function contains a call to setjmp or _setjmp, never inline // it. This is a hack because we depend on the user marking their local // variables as volatile if they are live across a setjmp call, and they // probably won't do this in callers. if (F->callsFunctionThatReturnsTwice()) callsSetJmp = true; // Look at the size of the callee. for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) analyzeBasicBlock(&*BB, TD); } /// analyzeFunction - Fill in the current structure with information gleaned /// from the specified function. void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F, const TargetData *TD) { Metrics.analyzeFunction(F, TD); // A function with exactly one return has it removed during the inlining // process (see InlineFunction), so don't count it. // FIXME: This knowledge should really be encoded outside of FunctionInfo. if (Metrics.NumRets==1) --Metrics.NumInsts; // Check out all of the arguments to the function, figuring out how much // code can be eliminated if one of the arguments is a constant. ArgumentWeights.reserve(F->arg_size()); for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) ArgumentWeights.push_back(ArgInfo(Metrics.CountCodeReductionForConstant(I), Metrics.CountCodeReductionForAlloca(I))); } /// NeverInline - returns true if the function should never be inlined into /// any caller bool InlineCostAnalyzer::FunctionInfo::NeverInline() { return (Metrics.callsSetJmp || Metrics.isRecursive || Metrics.containsIndirectBr); } // getSpecializationBonus - The heuristic used to determine the per-call // performance boost for using a specialization of Callee with argument // specializedArgNo replaced by a constant. int InlineCostAnalyzer::getSpecializationBonus(Function *Callee, SmallVectorImpl<unsigned> &SpecializedArgNos) { if (Callee->mayBeOverridden()) return 0; int Bonus = 0; // If this function uses the coldcc calling convention, prefer not to // specialize it. if (Callee->getCallingConv() == CallingConv::Cold) Bonus -= InlineConstants::ColdccPenalty; // Get information about the callee. FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; // If we haven't calculated this information yet, do so now. if (CalleeFI->Metrics.NumBlocks == 0) CalleeFI->analyzeFunction(Callee, TD); unsigned ArgNo = 0; unsigned i = 0; for (Function::arg_iterator I = Callee->arg_begin(), E = Callee->arg_end(); I != E; ++I, ++ArgNo) if (ArgNo == SpecializedArgNos[i]) { ++i; Bonus += CountBonusForConstant(I); } // Calls usually take a long time, so they make the specialization gain // smaller. Bonus -= CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty; return Bonus; } // ConstantFunctionBonus - Figure out how much of a bonus we can get for // possibly devirtualizing a function. We'll subtract the size of the function // we may wish to inline from the indirect call bonus providing a limit on // growth. Leave an upper limit of 0 for the bonus - we don't want to penalize // inlining because we decide we don't want to give a bonus for // devirtualizing. int InlineCostAnalyzer::ConstantFunctionBonus(CallSite CS, Constant *C) { // This could just be NULL. if (!C) return 0; Function *F = dyn_cast<Function>(C); if (!F) return 0; int Bonus = InlineConstants::IndirectCallBonus + getInlineSize(CS, F); return (Bonus > 0) ? 0 : Bonus; } // CountBonusForConstant - Figure out an approximation for how much per-call // performance boost we can expect if the specified value is constant. int InlineCostAnalyzer::CountBonusForConstant(Value *V, Constant *C) { unsigned Bonus = 0; for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ User *U = *UI; if (CallInst *CI = dyn_cast<CallInst>(U)) { // Turning an indirect call into a direct call is a BIG win if (CI->getCalledValue() == V) Bonus += ConstantFunctionBonus(CallSite(CI), C); } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) { // Turning an indirect call into a direct call is a BIG win if (II->getCalledValue() == V) Bonus += ConstantFunctionBonus(CallSite(II), C); } // FIXME: Eliminating conditional branches and switches should // also yield a per-call performance boost. else { // Figure out the bonuses that wll accrue due to simple constant // propagation. Instruction &Inst = cast<Instruction>(*U); // We can't constant propagate instructions which have effects or // read memory. // // FIXME: It would be nice to capture the fact that a load from a // pointer-to-constant-global is actually a *really* good thing to zap. // Unfortunately, we don't know the pointer that may get propagated here, // so we can't make this decision. if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() || isa<AllocaInst>(Inst)) continue; bool AllOperandsConstant = true; for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) { AllOperandsConstant = false; break; } if (AllOperandsConstant) Bonus += CountBonusForConstant(&Inst); } } return Bonus; } int InlineCostAnalyzer::getInlineSize(CallSite CS, Function *Callee) { // Get information about the callee. FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; // If we haven't calculated this information yet, do so now. if (CalleeFI->Metrics.NumBlocks == 0) CalleeFI->analyzeFunction(Callee, TD); // InlineCost - This value measures how good of an inline candidate this call // site is to inline. A lower inline cost make is more likely for the call to // be inlined. This value may go negative. // int InlineCost = 0; // Compute any size reductions we can expect due to arguments being passed into // the function. // unsigned ArgNo = 0; CallSite::arg_iterator I = CS.arg_begin(); for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end(); FI != FE; ++I, ++FI, ++ArgNo) { // If an alloca is passed in, inlining this function is likely to allow // significant future optimization possibilities (like scalar promotion, and // scalarization), so encourage the inlining of the function. // if (isa<AllocaInst>(I)) InlineCost -= CalleeFI->ArgumentWeights[ArgNo].AllocaWeight; // If this is a constant being passed into the function, use the argument // weights calculated for the callee to determine how much will be folded // away with this information. else if (isa<Constant>(I)) InlineCost -= CalleeFI->ArgumentWeights[ArgNo].ConstantWeight; } // Each argument passed in has a cost at both the caller and the callee // sides. Measurements show that each argument costs about the same as an // instruction. InlineCost -= (CS.arg_size() * InlineConstants::InstrCost); // Now that we have considered all of the factors that make the call site more // likely to be inlined, look at factors that make us not want to inline it. // Calls usually take a long time, so they make the inlining gain smaller. InlineCost += CalleeFI->Metrics.NumCalls * InlineConstants::CallPenalty; // Look at the size of the callee. Each instruction counts as 5. InlineCost += CalleeFI->Metrics.NumInsts*InlineConstants::InstrCost; return InlineCost; } int InlineCostAnalyzer::getInlineBonuses(CallSite CS, Function *Callee) { // Get information about the callee. FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; // If we haven't calculated this information yet, do so now. if (CalleeFI->Metrics.NumBlocks == 0) CalleeFI->analyzeFunction(Callee, TD); bool isDirectCall = CS.getCalledFunction() == Callee; Instruction *TheCall = CS.getInstruction(); int Bonus = 0; // If there is only one call of the function, and it has internal linkage, // make it almost guaranteed to be inlined. // if (Callee->hasLocalLinkage() && Callee->hasOneUse() && isDirectCall) Bonus += InlineConstants::LastCallToStaticBonus; // If the instruction after the call, or if the normal destination of the // invoke is an unreachable instruction, the function is noreturn. As such, // there is little point in inlining this. if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { if (isa<UnreachableInst>(II->getNormalDest()->begin())) Bonus += InlineConstants::NoreturnPenalty; } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall))) Bonus += InlineConstants::NoreturnPenalty; // If this function uses the coldcc calling convention, prefer not to inline // it. if (Callee->getCallingConv() == CallingConv::Cold) Bonus += InlineConstants::ColdccPenalty; // Add to the inline quality for properties that make the call valuable to // inline. This includes factors that indicate that the result of inlining // the function will be optimizable. Currently this just looks at arguments // passed into the function. // CallSite::arg_iterator I = CS.arg_begin(); for (Function::arg_iterator FI = Callee->arg_begin(), FE = Callee->arg_end(); FI != FE; ++I, ++FI) // Compute any constant bonus due to inlining we want to give here. if (isa<Constant>(I)) Bonus += CountBonusForConstant(FI, cast<Constant>(I)); return Bonus; } // getInlineCost - The heuristic used to determine if we should inline the // function call or not. // InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, SmallPtrSet<const Function*, 16> &NeverInline) { return getInlineCost(CS, CS.getCalledFunction(), NeverInline); } InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, Function *Callee, SmallPtrSet<const Function*, 16> &NeverInline) { Instruction *TheCall = CS.getInstruction(); Function *Caller = TheCall->getParent()->getParent(); // Don't inline functions which can be redefined at link-time to mean // something else. Don't inline functions marked noinline or call sites // marked noinline. if (Callee->mayBeOverridden() || Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee) || CS.isNoInline()) return llvm::InlineCost::getNever(); // Get information about the callee. FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; // If we haven't calculated this information yet, do so now. if (CalleeFI->Metrics.NumBlocks == 0) CalleeFI->analyzeFunction(Callee, TD); // If we should never inline this, return a huge cost. if (CalleeFI->NeverInline()) return InlineCost::getNever(); // FIXME: It would be nice to kill off CalleeFI->NeverInline. Then we // could move this up and avoid computing the FunctionInfo for // things we are going to just return always inline for. This // requires handling setjmp somewhere else, however. if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline)) return InlineCost::getAlways(); if (CalleeFI->Metrics.usesDynamicAlloca) { // Get information about the caller. FunctionInfo &CallerFI = CachedFunctionInfo[Caller]; // If we haven't calculated this information yet, do so now. if (CallerFI.Metrics.NumBlocks == 0) { CallerFI.analyzeFunction(Caller, TD); // Recompute the CalleeFI pointer, getting Caller could have invalidated // it. CalleeFI = &CachedFunctionInfo[Callee]; } // Don't inline a callee with dynamic alloca into a caller without them. // Functions containing dynamic alloca's are inefficient in various ways; // don't create more inefficiency. if (!CallerFI.Metrics.usesDynamicAlloca) return InlineCost::getNever(); } // InlineCost - This value measures how good of an inline candidate this call // site is to inline. A lower inline cost make is more likely for the call to // be inlined. This value may go negative due to the fact that bonuses // are negative numbers. // int InlineCost = getInlineSize(CS, Callee) + getInlineBonuses(CS, Callee); return llvm::InlineCost::get(InlineCost); } // getSpecializationCost - The heuristic used to determine the code-size // impact of creating a specialized version of Callee with argument // SpecializedArgNo replaced by a constant. InlineCost InlineCostAnalyzer::getSpecializationCost(Function *Callee, SmallVectorImpl<unsigned> &SpecializedArgNos) { // Don't specialize functions which can be redefined at link-time to mean // something else. if (Callee->mayBeOverridden()) return llvm::InlineCost::getNever(); // Get information about the callee. FunctionInfo *CalleeFI = &CachedFunctionInfo[Callee]; // If we haven't calculated this information yet, do so now. if (CalleeFI->Metrics.NumBlocks == 0) CalleeFI->analyzeFunction(Callee, TD); int Cost = 0; // Look at the original size of the callee. Each instruction counts as 5. Cost += CalleeFI->Metrics.NumInsts * InlineConstants::InstrCost; // Offset that with the amount of code that can be constant-folded // away with the given arguments replaced by constants. for (SmallVectorImpl<unsigned>::iterator an = SpecializedArgNos.begin(), ae = SpecializedArgNos.end(); an != ae; ++an) Cost -= CalleeFI->ArgumentWeights[*an].ConstantWeight; return llvm::InlineCost::get(Cost); } // getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a // higher threshold to determine if the function call should be inlined. float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) { Function *Callee = CS.getCalledFunction(); // Get information about the callee. FunctionInfo &CalleeFI = CachedFunctionInfo[Callee]; // If we haven't calculated this information yet, do so now. if (CalleeFI.Metrics.NumBlocks == 0) CalleeFI.analyzeFunction(Callee, TD); float Factor = 1.0f; // Single BB functions are often written to be inlined. if (CalleeFI.Metrics.NumBlocks == 1) Factor += 0.5f; // Be more aggressive if the function contains a good chunk (if it mades up // at least 10% of the instructions) of vector instructions. if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/2) Factor += 2.0f; else if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/10) Factor += 1.5f; return Factor; } /// growCachedCostInfo - update the cached cost info for Caller after Callee has /// been inlined. void InlineCostAnalyzer::growCachedCostInfo(Function *Caller, Function *Callee) { CodeMetrics &CallerMetrics = CachedFunctionInfo[Caller].Metrics; // For small functions we prefer to recalculate the cost for better accuracy. if (CallerMetrics.NumBlocks < 10 && CallerMetrics.NumInsts < 1000) { resetCachedCostInfo(Caller); return; } // For large functions, we can save a lot of computation time by skipping // recalculations. if (CallerMetrics.NumCalls > 0) --CallerMetrics.NumCalls; if (Callee == 0) return; CodeMetrics &CalleeMetrics = CachedFunctionInfo[Callee].Metrics; // If we don't have metrics for the callee, don't recalculate them just to // update an approximation in the caller. Instead, just recalculate the // caller info from scratch. if (CalleeMetrics.NumBlocks == 0) { resetCachedCostInfo(Caller); return; } // Since CalleeMetrics were already calculated, we know that the CallerMetrics // reference isn't invalidated: both were in the DenseMap. CallerMetrics.usesDynamicAlloca |= CalleeMetrics.usesDynamicAlloca; // FIXME: If any of these three are true for the callee, the callee was // not inlined into the caller, so I think they're redundant here. CallerMetrics.callsSetJmp |= CalleeMetrics.callsSetJmp; CallerMetrics.isRecursive |= CalleeMetrics.isRecursive; CallerMetrics.containsIndirectBr |= CalleeMetrics.containsIndirectBr; CallerMetrics.NumInsts += CalleeMetrics.NumInsts; CallerMetrics.NumBlocks += CalleeMetrics.NumBlocks; CallerMetrics.NumCalls += CalleeMetrics.NumCalls; CallerMetrics.NumVectorInsts += CalleeMetrics.NumVectorInsts; CallerMetrics.NumRets += CalleeMetrics.NumRets; // analyzeBasicBlock counts each function argument as an inst. if (CallerMetrics.NumInsts >= Callee->arg_size()) CallerMetrics.NumInsts -= Callee->arg_size(); else CallerMetrics.NumInsts = 0; // We are not updating the argument weights. We have already determined that // Caller is a fairly large function, so we accept the loss of precision. } /// clear - empty the cache of inline costs void InlineCostAnalyzer::clear() { CachedFunctionInfo.clear(); }