//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the CriticalAntiDepBreaker class, which // implements register anti-dependence breaking along a blocks // critical path during post-RA scheduler. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "post-RA-sched" #include "CriticalAntiDepBreaker.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; CriticalAntiDepBreaker:: CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()), TII(MF.getTarget().getInstrInfo()), TRI(MF.getTarget().getRegisterInfo()), RegClassInfo(RCI), Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)), KillIndices(TRI->getNumRegs(), 0), DefIndices(TRI->getNumRegs(), 0) {} CriticalAntiDepBreaker::~CriticalAntiDepBreaker() { } void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { const unsigned BBSize = BB->size(); for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { // Clear out the register class data. Classes[i] = static_cast<const TargetRegisterClass *>(0); // Initialize the indices to indicate that no registers are live. KillIndices[i] = ~0u; DefIndices[i] = BBSize; } // Clear "do not change" set. KeepRegs.clear(); bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn()); // Determine the live-out physregs for this block. if (IsReturnBlock) { // In a return block, examine the function live-out regs. for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(), E = MRI.liveout_end(); I != E; ++I) { unsigned Reg = *I; Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); KillIndices[Reg] = BB->size(); DefIndices[Reg] = ~0u; // Repeat, for all aliases. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { unsigned AliasReg = *Alias; Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); KillIndices[AliasReg] = BB->size(); DefIndices[AliasReg] = ~0u; } } } // In a non-return block, examine the live-in regs of all successors. // Note a return block can have successors if the return instruction is // predicated. for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), E = (*SI)->livein_end(); I != E; ++I) { unsigned Reg = *I; Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); KillIndices[Reg] = BB->size(); DefIndices[Reg] = ~0u; // Repeat, for all aliases. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { unsigned AliasReg = *Alias; Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); KillIndices[AliasReg] = BB->size(); DefIndices[AliasReg] = ~0u; } } // Mark live-out callee-saved registers. In a return block this is // all callee-saved registers. In non-return this is any // callee-saved register that is not saved in the prolog. const MachineFrameInfo *MFI = MF.getFrameInfo(); BitVector Pristine = MFI->getPristineRegs(BB); for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) { unsigned Reg = *I; if (!IsReturnBlock && !Pristine.test(Reg)) continue; Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); KillIndices[Reg] = BB->size(); DefIndices[Reg] = ~0u; // Repeat, for all aliases. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { unsigned AliasReg = *Alias; Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); KillIndices[AliasReg] = BB->size(); DefIndices[AliasReg] = ~0u; } } } void CriticalAntiDepBreaker::FinishBlock() { RegRefs.clear(); KeepRegs.clear(); } void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count, unsigned InsertPosIndex) { if (MI->isDebugValue()) return; assert(Count < InsertPosIndex && "Instruction index out of expected range!"); for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { if (KillIndices[Reg] != ~0u) { // If Reg is currently live, then mark that it can't be renamed as // we don't know the extent of its live-range anymore (now that it // has been scheduled). Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); KillIndices[Reg] = Count; } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { // Any register which was defined within the previous scheduling region // may have been rescheduled and its lifetime may overlap with registers // in ways not reflected in our current liveness state. For each such // register, adjust the liveness state to be conservatively correct. Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); // Move the def index to the end of the previous region, to reflect // that the def could theoretically have been scheduled at the end. DefIndices[Reg] = InsertPosIndex; } } PrescanInstruction(MI); ScanInstruction(MI, Count); } /// CriticalPathStep - Return the next SUnit after SU on the bottom-up /// critical path. static const SDep *CriticalPathStep(const SUnit *SU) { const SDep *Next = 0; unsigned NextDepth = 0; // Find the predecessor edge with the greatest depth. for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); P != PE; ++P) { const SUnit *PredSU = P->getSUnit(); unsigned PredLatency = P->getLatency(); unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; // In the case of a latency tie, prefer an anti-dependency edge over // other types of edges. if (NextDepth < PredTotalLatency || (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { NextDepth = PredTotalLatency; Next = &*P; } } return Next; } void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) { // It's not safe to change register allocation for source operands of // that have special allocation requirements. Also assume all registers // used in a call must not be changed (ABI). // FIXME: The issue with predicated instruction is more complex. We are being // conservative here because the kill markers cannot be trusted after // if-conversion: // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14] // ... // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395] // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12] // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8) // // The first R6 kill is not really a kill since it's killed by a predicated // instruction which may not be executed. The second R6 def may or may not // re-define R6 so it's not safe to change it since the last R6 use cannot be // changed. bool Special = MI->getDesc().isCall() || MI->getDesc().hasExtraSrcRegAllocReq() || TII->isPredicated(MI); // Scan the register operands for this instruction and update // Classes and RegRefs. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; const TargetRegisterClass *NewRC = 0; if (i < MI->getDesc().getNumOperands()) NewRC = TII->getRegClass(MI->getDesc(), i, TRI); // For now, only allow the register to be changed if its register // class is consistent across all uses. if (!Classes[Reg] && NewRC) Classes[Reg] = NewRC; else if (!NewRC || Classes[Reg] != NewRC) Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); // Now check for aliases. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { // If an alias of the reg is used during the live range, give up. // Note that this allows us to skip checking if AntiDepReg // overlaps with any of the aliases, among other things. unsigned AliasReg = *Alias; if (Classes[AliasReg]) { Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); } } // If we're still willing to consider this register, note the reference. if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) RegRefs.insert(std::make_pair(Reg, &MO)); if (MO.isUse() && Special) { if (KeepRegs.insert(Reg)) { for (const unsigned *Subreg = TRI->getSubRegisters(Reg); *Subreg; ++Subreg) KeepRegs.insert(*Subreg); } } } } void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI, unsigned Count) { // Update liveness. // Proceding upwards, registers that are defed but not used in this // instruction are now dead. if (!TII->isPredicated(MI)) { // Predicated defs are modeled as read + write, i.e. similar to two // address updates. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (!MO.isDef()) continue; // Ignore two-addr defs. if (MI->isRegTiedToUseOperand(i)) continue; DefIndices[Reg] = Count; KillIndices[Reg] = ~0u; assert(((KillIndices[Reg] == ~0u) != (DefIndices[Reg] == ~0u)) && "Kill and Def maps aren't consistent for Reg!"); KeepRegs.erase(Reg); Classes[Reg] = 0; RegRefs.erase(Reg); // Repeat, for all subregs. for (const unsigned *Subreg = TRI->getSubRegisters(Reg); *Subreg; ++Subreg) { unsigned SubregReg = *Subreg; DefIndices[SubregReg] = Count; KillIndices[SubregReg] = ~0u; KeepRegs.erase(SubregReg); Classes[SubregReg] = 0; RegRefs.erase(SubregReg); } // Conservatively mark super-registers as unusable. for (const unsigned *Super = TRI->getSuperRegisters(Reg); *Super; ++Super) { unsigned SuperReg = *Super; Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1); } } } for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (!MO.isUse()) continue; const TargetRegisterClass *NewRC = 0; if (i < MI->getDesc().getNumOperands()) NewRC = TII->getRegClass(MI->getDesc(), i, TRI); // For now, only allow the register to be changed if its register // class is consistent across all uses. if (!Classes[Reg] && NewRC) Classes[Reg] = NewRC; else if (!NewRC || Classes[Reg] != NewRC) Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); RegRefs.insert(std::make_pair(Reg, &MO)); // It wasn't previously live but now it is, this is a kill. if (KillIndices[Reg] == ~0u) { KillIndices[Reg] = Count; DefIndices[Reg] = ~0u; assert(((KillIndices[Reg] == ~0u) != (DefIndices[Reg] == ~0u)) && "Kill and Def maps aren't consistent for Reg!"); } // Repeat, for all aliases. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { unsigned AliasReg = *Alias; if (KillIndices[AliasReg] == ~0u) { KillIndices[AliasReg] = Count; DefIndices[AliasReg] = ~0u; } } } } // Check all machine operands that reference the antidependent register and must // be replaced by NewReg. Return true if any of their parent instructions may // clobber the new register. // // Note: AntiDepReg may be referenced by a two-address instruction such that // it's use operand is tied to a def operand. We guard against the case in which // the two-address instruction also defines NewReg, as may happen with // pre/postincrement loads. In this case, both the use and def operands are in // RegRefs because the def is inserted by PrescanInstruction and not erased // during ScanInstruction. So checking for an instructions with definitions of // both NewReg and AntiDepReg covers it. bool CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, RegRefIter RegRefEnd, unsigned NewReg) { for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { MachineOperand *RefOper = I->second; // Don't allow the instruction defining AntiDepReg to earlyclobber its // operands, in case they may be assigned to NewReg. In this case antidep // breaking must fail, but it's too rare to bother optimizing. if (RefOper->isDef() && RefOper->isEarlyClobber()) return true; // Handle cases in which this instructions defines NewReg. MachineInstr *MI = RefOper->getParent(); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &CheckOper = MI->getOperand(i); if (!CheckOper.isReg() || !CheckOper.isDef() || CheckOper.getReg() != NewReg) continue; // Don't allow the instruction to define NewReg and AntiDepReg. // When AntiDepReg is renamed it will be an illegal op. if (RefOper->isDef()) return true; // Don't allow an instruction using AntiDepReg to be earlyclobbered by // NewReg if (CheckOper.isEarlyClobber()) return true; // Don't allow inline asm to define NewReg at all. Who know what it's // doing with it. if (MI->isInlineAsm()) return true; } } return false; } unsigned CriticalAntiDepBreaker::findSuitableFreeRegister(RegRefIter RegRefBegin, RegRefIter RegRefEnd, unsigned AntiDepReg, unsigned LastNewReg, const TargetRegisterClass *RC) { ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC); for (unsigned i = 0; i != Order.size(); ++i) { unsigned NewReg = Order[i]; // Don't replace a register with itself. if (NewReg == AntiDepReg) continue; // Don't replace a register with one that was recently used to repair // an anti-dependence with this AntiDepReg, because that would // re-introduce that anti-dependence. if (NewReg == LastNewReg) continue; // If any instructions that define AntiDepReg also define the NewReg, it's // not suitable. For example, Instruction with multiple definitions can // result in this condition. if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; // If NewReg is dead and NewReg's most recent def is not before // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) && "Kill and Def maps aren't consistent for AntiDepReg!"); assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) && "Kill and Def maps aren't consistent for NewReg!"); if (KillIndices[NewReg] != ~0u || Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || KillIndices[AntiDepReg] > DefIndices[NewReg]) continue; return NewReg; } // No registers are free and available! return 0; } unsigned CriticalAntiDepBreaker:: BreakAntiDependencies(const std::vector<SUnit>& SUnits, MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, unsigned InsertPosIndex, DbgValueVector &DbgValues) { // The code below assumes that there is at least one instruction, // so just duck out immediately if the block is empty. if (SUnits.empty()) return 0; // Keep a map of the MachineInstr*'s back to the SUnit representing them. // This is used for updating debug information. DenseMap<MachineInstr*,const SUnit*> MISUnitMap; // Find the node at the bottom of the critical path. const SUnit *Max = 0; for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { const SUnit *SU = &SUnits[i]; MISUnitMap[SU->getInstr()] = SU; if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) Max = SU; } #ifndef NDEBUG { DEBUG(dbgs() << "Critical path has total latency " << (Max->getDepth() + Max->Latency) << "\n"); DEBUG(dbgs() << "Available regs:"); for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { if (KillIndices[Reg] == ~0u) DEBUG(dbgs() << " " << TRI->getName(Reg)); } DEBUG(dbgs() << '\n'); } #endif // Track progress along the critical path through the SUnit graph as we walk // the instructions. const SUnit *CriticalPathSU = Max; MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); // Consider this pattern: // A = ... // ... = A // A = ... // ... = A // A = ... // ... = A // A = ... // ... = A // There are three anti-dependencies here, and without special care, // we'd break all of them using the same register: // A = ... // ... = A // B = ... // ... = B // B = ... // ... = B // B = ... // ... = B // because at each anti-dependence, B is the first register that // isn't A which is free. This re-introduces anti-dependencies // at all but one of the original anti-dependencies that we were // trying to break. To avoid this, keep track of the most recent // register that each register was replaced with, avoid // using it to repair an anti-dependence on the same register. // This lets us produce this: // A = ... // ... = A // B = ... // ... = B // C = ... // ... = C // B = ... // ... = B // This still has an anti-dependence on B, but at least it isn't on the // original critical path. // // TODO: If we tracked more than one register here, we could potentially // fix that remaining critical edge too. This is a little more involved, // because unlike the most recent register, less recent registers should // still be considered, though only if no other registers are available. std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0); // Attempt to break anti-dependence edges on the critical path. Walk the // instructions from the bottom up, tracking information about liveness // as we go to help determine which registers are available. unsigned Broken = 0; unsigned Count = InsertPosIndex - 1; for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { MachineInstr *MI = --I; if (MI->isDebugValue()) continue; // Check if this instruction has a dependence on the critical path that // is an anti-dependence that we may be able to break. If it is, set // AntiDepReg to the non-zero register associated with the anti-dependence. // // We limit our attention to the critical path as a heuristic to avoid // breaking anti-dependence edges that aren't going to significantly // impact the overall schedule. There are a limited number of registers // and we want to save them for the important edges. // // TODO: Instructions with multiple defs could have multiple // anti-dependencies. The current code here only knows how to break one // edge per instruction. Note that we'd have to be able to break all of // the anti-dependencies in an instruction in order to be effective. unsigned AntiDepReg = 0; if (MI == CriticalPathMI) { if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) { const SUnit *NextSU = Edge->getSUnit(); // Only consider anti-dependence edges. if (Edge->getKind() == SDep::Anti) { AntiDepReg = Edge->getReg(); assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); if (!RegClassInfo.isAllocatable(AntiDepReg)) // Don't break anti-dependencies on non-allocatable registers. AntiDepReg = 0; else if (KeepRegs.count(AntiDepReg)) // Don't break anti-dependencies if an use down below requires // this exact register. AntiDepReg = 0; else { // If the SUnit has other dependencies on the SUnit that it // anti-depends on, don't bother breaking the anti-dependency // since those edges would prevent such units from being // scheduled past each other regardless. // // Also, if there are dependencies on other SUnits with the // same register as the anti-dependency, don't attempt to // break it. for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(), PE = CriticalPathSU->Preds.end(); P != PE; ++P) if (P->getSUnit() == NextSU ? (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { AntiDepReg = 0; break; } } } CriticalPathSU = NextSU; CriticalPathMI = CriticalPathSU->getInstr(); } else { // We've reached the end of the critical path. CriticalPathSU = 0; CriticalPathMI = 0; } } PrescanInstruction(MI); // If MI's defs have a special allocation requirement, don't allow // any def registers to be changed. Also assume all registers // defined in a call must not be changed (ABI). if (MI->getDesc().isCall() || MI->getDesc().hasExtraDefRegAllocReq() || TII->isPredicated(MI)) // If this instruction's defs have special allocation requirement, don't // break this anti-dependency. AntiDepReg = 0; else if (AntiDepReg) { // If this instruction has a use of AntiDepReg, breaking it // is invalid. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) { AntiDepReg = 0; break; } } } // Determine AntiDepReg's register class, if it is live and is // consistently used within a single class. const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0; assert((AntiDepReg == 0 || RC != NULL) && "Register should be live if it's causing an anti-dependence!"); if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) AntiDepReg = 0; // Look for a suitable register to use to break the anti-depenence. // // TODO: Instead of picking the first free register, consider which might // be the best. if (AntiDepReg != 0) { std::pair<std::multimap<unsigned, MachineOperand *>::iterator, std::multimap<unsigned, MachineOperand *>::iterator> Range = RegRefs.equal_range(AntiDepReg); if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second, AntiDepReg, LastNewReg[AntiDepReg], RC)) { DEBUG(dbgs() << "Breaking anti-dependence edge on " << TRI->getName(AntiDepReg) << " with " << RegRefs.count(AntiDepReg) << " references" << " using " << TRI->getName(NewReg) << "!\n"); // Update the references to the old register to refer to the new // register. for (std::multimap<unsigned, MachineOperand *>::iterator Q = Range.first, QE = Range.second; Q != QE; ++Q) { Q->second->setReg(NewReg); // If the SU for the instruction being updated has debug information // related to the anti-dependency register, make sure to update that // as well. const SUnit *SU = MISUnitMap[Q->second->getParent()]; if (!SU) continue; for (DbgValueVector::iterator DVI = DbgValues.begin(), DVE = DbgValues.end(); DVI != DVE; ++DVI) if (DVI->second == Q->second->getParent()) UpdateDbgValue(DVI->first, AntiDepReg, NewReg); } // We just went back in time and modified history; the // liveness information for the anti-dependence reg is now // inconsistent. Set the state as if it were dead. Classes[NewReg] = Classes[AntiDepReg]; DefIndices[NewReg] = DefIndices[AntiDepReg]; KillIndices[NewReg] = KillIndices[AntiDepReg]; assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) && "Kill and Def maps aren't consistent for NewReg!"); Classes[AntiDepReg] = 0; DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; KillIndices[AntiDepReg] = ~0u; assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) && "Kill and Def maps aren't consistent for AntiDepReg!"); RegRefs.erase(AntiDepReg); LastNewReg[AntiDepReg] = NewReg; ++Broken; } } ScanInstruction(MI, Count); } return Broken; }