//===-- LiveIntervalUnion.cpp - Live interval union data structure --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // LiveIntervalUnion represents a coalesced set of live intervals. This may be // used during coalescing to represent a congruence class, or during register // allocation to model liveness of a physical register. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "LiveIntervalUnion.h" #include "llvm/ADT/SparseBitVector.h" #include "llvm/CodeGen/MachineLoopRanges.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; // Merge a LiveInterval's segments. Guarantee no overlaps. void LiveIntervalUnion::unify(LiveInterval &VirtReg) { if (VirtReg.empty()) return; ++Tag; // Insert each of the virtual register's live segments into the map. LiveInterval::iterator RegPos = VirtReg.begin(); LiveInterval::iterator RegEnd = VirtReg.end(); SegmentIter SegPos = Segments.find(RegPos->start); while (SegPos.valid()) { SegPos.insert(RegPos->start, RegPos->end, &VirtReg); if (++RegPos == RegEnd) return; SegPos.advanceTo(RegPos->start); } // We have reached the end of Segments, so it is no longer necessary to search // for the insertion position. // It is faster to insert the end first. --RegEnd; SegPos.insert(RegEnd->start, RegEnd->end, &VirtReg); for (; RegPos != RegEnd; ++RegPos, ++SegPos) SegPos.insert(RegPos->start, RegPos->end, &VirtReg); } // Remove a live virtual register's segments from this union. void LiveIntervalUnion::extract(LiveInterval &VirtReg) { if (VirtReg.empty()) return; ++Tag; // Remove each of the virtual register's live segments from the map. LiveInterval::iterator RegPos = VirtReg.begin(); LiveInterval::iterator RegEnd = VirtReg.end(); SegmentIter SegPos = Segments.find(RegPos->start); for (;;) { assert(SegPos.value() == &VirtReg && "Inconsistent LiveInterval"); SegPos.erase(); if (!SegPos.valid()) return; // Skip all segments that may have been coalesced. RegPos = VirtReg.advanceTo(RegPos, SegPos.start()); if (RegPos == RegEnd) return; SegPos.advanceTo(RegPos->start); } } void LiveIntervalUnion::print(raw_ostream &OS, const TargetRegisterInfo *TRI) const { OS << "LIU " << PrintReg(RepReg, TRI); if (empty()) { OS << " empty\n"; return; } for (LiveSegments::const_iterator SI = Segments.begin(); SI.valid(); ++SI) { OS << " [" << SI.start() << ' ' << SI.stop() << "):" << PrintReg(SI.value()->reg, TRI); } OS << '\n'; } #ifndef NDEBUG // Verify the live intervals in this union and add them to the visited set. void LiveIntervalUnion::verify(LiveVirtRegBitSet& VisitedVRegs) { for (SegmentIter SI = Segments.begin(); SI.valid(); ++SI) VisitedVRegs.set(SI.value()->reg); } #endif //!NDEBUG // Scan the vector of interfering virtual registers in this union. Assume it's // quite small. bool LiveIntervalUnion::Query::isSeenInterference(LiveInterval *VirtReg) const { SmallVectorImpl<LiveInterval*>::const_iterator I = std::find(InterferingVRegs.begin(), InterferingVRegs.end(), VirtReg); return I != InterferingVRegs.end(); } // Collect virtual registers in this union that interfere with this // query's live virtual register. // // The query state is one of: // // 1. CheckedFirstInterference == false: Iterators are uninitialized. // 2. SeenAllInterferences == true: InterferingVRegs complete, iterators unused. // 3. Iterators left at the last seen intersection. // unsigned LiveIntervalUnion::Query:: collectInterferingVRegs(unsigned MaxInterferingRegs) { // Fast path return if we already have the desired information. if (SeenAllInterferences || InterferingVRegs.size() >= MaxInterferingRegs) return InterferingVRegs.size(); // Set up iterators on the first call. if (!CheckedFirstInterference) { CheckedFirstInterference = true; // Quickly skip interference check for empty sets. if (VirtReg->empty() || LiveUnion->empty()) { SeenAllInterferences = true; return 0; } // In most cases, the union will start before VirtReg. VirtRegI = VirtReg->begin(); LiveUnionI.setMap(LiveUnion->getMap()); LiveUnionI.find(VirtRegI->start); } LiveInterval::iterator VirtRegEnd = VirtReg->end(); LiveInterval *RecentReg = 0; while (LiveUnionI.valid()) { assert(VirtRegI != VirtRegEnd && "Reached end of VirtReg"); // Check for overlapping interference. while (VirtRegI->start < LiveUnionI.stop() && VirtRegI->end > LiveUnionI.start()) { // This is an overlap, record the interfering register. LiveInterval *VReg = LiveUnionI.value(); if (VReg != RecentReg && !isSeenInterference(VReg)) { RecentReg = VReg; InterferingVRegs.push_back(VReg); if (InterferingVRegs.size() >= MaxInterferingRegs) return InterferingVRegs.size(); } // This LiveUnion segment is no longer interesting. if (!(++LiveUnionI).valid()) { SeenAllInterferences = true; return InterferingVRegs.size(); } } // The iterators are now not overlapping, LiveUnionI has been advanced // beyond VirtRegI. assert(VirtRegI->end <= LiveUnionI.start() && "Expected non-overlap"); // Advance the iterator that ends first. VirtRegI = VirtReg->advanceTo(VirtRegI, LiveUnionI.start()); if (VirtRegI == VirtRegEnd) break; // Detect overlap, handle above. if (VirtRegI->start < LiveUnionI.stop()) continue; // Still not overlapping. Catch up LiveUnionI. LiveUnionI.advanceTo(VirtRegI->start); } SeenAllInterferences = true; return InterferingVRegs.size(); } bool LiveIntervalUnion::Query::checkLoopInterference(MachineLoopRange *Loop) { // VirtReg is likely live throughout the loop, so start by checking LIU-Loop // overlaps. IntervalMapOverlaps<LiveIntervalUnion::Map, MachineLoopRange::Map> Overlaps(LiveUnion->getMap(), Loop->getMap()); if (!Overlaps.valid()) return false; // The loop is overlapping an LIU assignment. Check VirtReg as well. LiveInterval::iterator VRI = VirtReg->find(Overlaps.start()); for (;;) { if (VRI == VirtReg->end()) return false; if (VRI->start < Overlaps.stop()) return true; Overlaps.advanceTo(VRI->start); if (!Overlaps.valid()) return false; if (Overlaps.start() < VRI->end) return true; VRI = VirtReg->advanceTo(VRI, Overlaps.start()); } }