//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs global common subexpression elimination on machine // instructions using a scoped hash table based value numbering scheme. It // must be run while the machine function is still in SSA form. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "machine-cse" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/ScopedHashTable.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Debug.h" #include "llvm/Support/RecyclingAllocator.h" using namespace llvm; STATISTIC(NumCoalesces, "Number of copies coalesced"); STATISTIC(NumCSEs, "Number of common subexpression eliminated"); STATISTIC(NumPhysCSEs, "Number of physreg referencing common subexpr eliminated"); STATISTIC(NumCommutes, "Number of copies coalesced after commuting"); namespace { class MachineCSE : public MachineFunctionPass { const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; AliasAnalysis *AA; MachineDominatorTree *DT; MachineRegisterInfo *MRI; public: static char ID; // Pass identification MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) { initializeMachineCSEPass(*PassRegistry::getPassRegistry()); } virtual bool runOnMachineFunction(MachineFunction &MF); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); AU.addRequired<AliasAnalysis>(); AU.addPreservedID(MachineLoopInfoID); AU.addRequired<MachineDominatorTree>(); AU.addPreserved<MachineDominatorTree>(); } virtual void releaseMemory() { ScopeMap.clear(); Exps.clear(); } private: const unsigned LookAheadLimit; typedef RecyclingAllocator<BumpPtrAllocator, ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy; typedef ScopedHashTable<MachineInstr*, unsigned, MachineInstrExpressionTrait, AllocatorTy> ScopedHTType; typedef ScopedHTType::ScopeTy ScopeType; DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap; ScopedHTType VNT; SmallVector<MachineInstr*, 64> Exps; unsigned CurrVN; bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB); bool isPhysDefTriviallyDead(unsigned Reg, MachineBasicBlock::const_iterator I, MachineBasicBlock::const_iterator E) const ; bool hasLivePhysRegDefUses(const MachineInstr *MI, const MachineBasicBlock *MBB, SmallSet<unsigned,8> &PhysRefs) const; bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, SmallSet<unsigned,8> &PhysRefs) const; bool isCSECandidate(MachineInstr *MI); bool isProfitableToCSE(unsigned CSReg, unsigned Reg, MachineInstr *CSMI, MachineInstr *MI); void EnterScope(MachineBasicBlock *MBB); void ExitScope(MachineBasicBlock *MBB); bool ProcessBlock(MachineBasicBlock *MBB); void ExitScopeIfDone(MachineDomTreeNode *Node, DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap); bool PerformCSE(MachineDomTreeNode *Node); }; } // end anonymous namespace char MachineCSE::ID = 0; INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse", "Machine Common Subexpression Elimination", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_END(MachineCSE, "machine-cse", "Machine Common Subexpression Elimination", false, false) FunctionPass *llvm::createMachineCSEPass() { return new MachineCSE(); } bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB) { bool Changed = false; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isUse()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; if (!MRI->hasOneNonDBGUse(Reg)) // Only coalesce single use copies. This ensure the copy will be // deleted. continue; MachineInstr *DefMI = MRI->getVRegDef(Reg); if (DefMI->getParent() != MBB) continue; if (!DefMI->isCopy()) continue; unsigned SrcReg = DefMI->getOperand(1).getReg(); if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) continue; if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg()) continue; if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg))) continue; DEBUG(dbgs() << "Coalescing: " << *DefMI); DEBUG(dbgs() << "*** to: " << *MI); MO.setReg(SrcReg); MRI->clearKillFlags(SrcReg); DefMI->eraseFromParent(); ++NumCoalesces; Changed = true; } return Changed; } bool MachineCSE::isPhysDefTriviallyDead(unsigned Reg, MachineBasicBlock::const_iterator I, MachineBasicBlock::const_iterator E) const { unsigned LookAheadLeft = LookAheadLimit; while (LookAheadLeft) { // Skip over dbg_value's. while (I != E && I->isDebugValue()) ++I; if (I == E) // Reached end of block, register is obviously dead. return true; bool SeenDef = false; for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { const MachineOperand &MO = I->getOperand(i); if (!MO.isReg() || !MO.getReg()) continue; if (!TRI->regsOverlap(MO.getReg(), Reg)) continue; if (MO.isUse()) // Found a use! return false; SeenDef = true; } if (SeenDef) // See a def of Reg (or an alias) before encountering any use, it's // trivially dead. return true; --LookAheadLeft; ++I; } return false; } /// hasLivePhysRegDefUses - Return true if the specified instruction read/write /// physical registers (except for dead defs of physical registers). It also /// returns the physical register def by reference if it's the only one and the /// instruction does not uses a physical register. bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI, const MachineBasicBlock *MBB, SmallSet<unsigned,8> &PhysRefs) const { MachineBasicBlock::const_iterator I = MI; I = llvm::next(I); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; if (TargetRegisterInfo::isVirtualRegister(Reg)) continue; // If the def is dead, it's ok. But the def may not marked "dead". That's // common since this pass is run before livevariables. We can scan // forward a few instructions and check if it is obviously dead. if (MO.isDef() && (MO.isDead() || isPhysDefTriviallyDead(Reg, I, MBB->end()))) continue; PhysRefs.insert(Reg); for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) PhysRefs.insert(*Alias); } return !PhysRefs.empty(); } bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI, SmallSet<unsigned,8> &PhysRefs) const { // For now conservatively returns false if the common subexpression is // not in the same basic block as the given instruction. MachineBasicBlock *MBB = MI->getParent(); if (CSMI->getParent() != MBB) return false; MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I); MachineBasicBlock::const_iterator E = MI; unsigned LookAheadLeft = LookAheadLimit; while (LookAheadLeft) { // Skip over dbg_value's. while (I != E && I->isDebugValue()) ++I; if (I == E) return true; for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { const MachineOperand &MO = I->getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; unsigned MOReg = MO.getReg(); if (TargetRegisterInfo::isVirtualRegister(MOReg)) continue; if (PhysRefs.count(MOReg)) return false; } --LookAheadLeft; ++I; } return false; } bool MachineCSE::isCSECandidate(MachineInstr *MI) { if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() || MI->isInlineAsm() || MI->isDebugValue()) return false; // Ignore copies. if (MI->isCopyLike()) return false; // Ignore stuff that we obviously can't move. const MCInstrDesc &MCID = MI->getDesc(); if (MCID.mayStore() || MCID.isCall() || MCID.isTerminator() || MI->hasUnmodeledSideEffects()) return false; if (MCID.mayLoad()) { // Okay, this instruction does a load. As a refinement, we allow the target // to decide whether the loaded value is actually a constant. If so, we can // actually use it as a load. if (!MI->isInvariantLoad(AA)) // FIXME: we should be able to hoist loads with no other side effects if // there are no other instructions which can change memory in this loop. // This is a trivial form of alias analysis. return false; } return true; } /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a /// common expression that defines Reg. bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg, MachineInstr *CSMI, MachineInstr *MI) { // FIXME: Heuristics that works around the lack the live range splitting. // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in // an immediate predecessor. We don't want to increase register pressure and // end up causing other computation to be spilled. if (MI->getDesc().isAsCheapAsAMove()) { MachineBasicBlock *CSBB = CSMI->getParent(); MachineBasicBlock *BB = MI->getParent(); if (CSBB != BB && !CSBB->isSuccessor(BB)) return false; } // Heuristics #2: If the expression doesn't not use a vr and the only use // of the redundant computation are copies, do not cse. bool HasVRegUse = false; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isUse() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { HasVRegUse = true; break; } } if (!HasVRegUse) { bool HasNonCopyUse = false; for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end(); I != E; ++I) { MachineInstr *Use = &*I; // Ignore copies. if (!Use->isCopyLike()) { HasNonCopyUse = true; break; } } if (!HasNonCopyUse) return false; } // Heuristics #3: If the common subexpression is used by PHIs, do not reuse // it unless the defined value is already used in the BB of the new use. bool HasPHI = false; SmallPtrSet<MachineBasicBlock*, 4> CSBBs; for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(CSReg), E = MRI->use_nodbg_end(); I != E; ++I) { MachineInstr *Use = &*I; HasPHI |= Use->isPHI(); CSBBs.insert(Use->getParent()); } if (!HasPHI) return true; return CSBBs.count(MI->getParent()); } void MachineCSE::EnterScope(MachineBasicBlock *MBB) { DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n'); ScopeType *Scope = new ScopeType(VNT); ScopeMap[MBB] = Scope; } void MachineCSE::ExitScope(MachineBasicBlock *MBB) { DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n'); DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB); assert(SI != ScopeMap.end()); ScopeMap.erase(SI); delete SI->second; } bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) { bool Changed = false; SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs; for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) { MachineInstr *MI = &*I; ++I; if (!isCSECandidate(MI)) continue; bool FoundCSE = VNT.count(MI); if (!FoundCSE) { // Look for trivial copy coalescing opportunities. if (PerformTrivialCoalescing(MI, MBB)) { Changed = true; // After coalescing MI itself may become a copy. if (MI->isCopyLike()) continue; FoundCSE = VNT.count(MI); } } // Commute commutable instructions. bool Commuted = false; if (!FoundCSE && MI->getDesc().isCommutable()) { MachineInstr *NewMI = TII->commuteInstruction(MI); if (NewMI) { Commuted = true; FoundCSE = VNT.count(NewMI); if (NewMI != MI) { // New instruction. It doesn't need to be kept. NewMI->eraseFromParent(); Changed = true; } else if (!FoundCSE) // MI was changed but it didn't help, commute it back! (void)TII->commuteInstruction(MI); } } // If the instruction defines physical registers and the values *may* be // used, then it's not safe to replace it with a common subexpression. // It's also not safe if the instruction uses physical registers. SmallSet<unsigned,8> PhysRefs; if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs)) { FoundCSE = false; // ... Unless the CS is local and it also defines the physical register // which is not clobbered in between and the physical register uses // were not clobbered. unsigned CSVN = VNT.lookup(MI); MachineInstr *CSMI = Exps[CSVN]; if (PhysRegDefsReach(CSMI, MI, PhysRefs)) FoundCSE = true; } if (!FoundCSE) { VNT.insert(MI, CurrVN++); Exps.push_back(MI); continue; } // Found a common subexpression, eliminate it. unsigned CSVN = VNT.lookup(MI); MachineInstr *CSMI = Exps[CSVN]; DEBUG(dbgs() << "Examining: " << *MI); DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI); // Check if it's profitable to perform this CSE. bool DoCSE = true; unsigned NumDefs = MI->getDesc().getNumDefs(); for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; unsigned OldReg = MO.getReg(); unsigned NewReg = CSMI->getOperand(i).getReg(); if (OldReg == NewReg) continue; assert(TargetRegisterInfo::isVirtualRegister(OldReg) && TargetRegisterInfo::isVirtualRegister(NewReg) && "Do not CSE physical register defs!"); if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) { DoCSE = false; break; } // Don't perform CSE if the result of the old instruction cannot exist // within the register class of the new instruction. const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg); if (!MRI->constrainRegClass(NewReg, OldRC)) { DoCSE = false; break; } CSEPairs.push_back(std::make_pair(OldReg, NewReg)); --NumDefs; } // Actually perform the elimination. if (DoCSE) { for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) { MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second); MRI->clearKillFlags(CSEPairs[i].second); } MI->eraseFromParent(); ++NumCSEs; if (!PhysRefs.empty()) ++NumPhysCSEs; if (Commuted) ++NumCommutes; Changed = true; } else { DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n"); VNT.insert(MI, CurrVN++); Exps.push_back(MI); } CSEPairs.clear(); } return Changed; } /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given /// dominator tree node if its a leaf or all of its children are done. Walk /// up the dominator tree to destroy ancestors which are now done. void MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node, DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { if (OpenChildren[Node]) return; // Pop scope. ExitScope(Node->getBlock()); // Now traverse upwards to pop ancestors whose offsprings are all done. while (MachineDomTreeNode *Parent = ParentMap[Node]) { unsigned Left = --OpenChildren[Parent]; if (Left != 0) break; ExitScope(Parent->getBlock()); Node = Parent; } } bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) { SmallVector<MachineDomTreeNode*, 32> Scopes; SmallVector<MachineDomTreeNode*, 8> WorkList; DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; CurrVN = 0; // Perform a DFS walk to determine the order of visit. WorkList.push_back(Node); do { Node = WorkList.pop_back_val(); Scopes.push_back(Node); const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); unsigned NumChildren = Children.size(); OpenChildren[Node] = NumChildren; for (unsigned i = 0; i != NumChildren; ++i) { MachineDomTreeNode *Child = Children[i]; ParentMap[Child] = Node; WorkList.push_back(Child); } } while (!WorkList.empty()); // Now perform CSE. bool Changed = false; for (unsigned i = 0, e = Scopes.size(); i != e; ++i) { MachineDomTreeNode *Node = Scopes[i]; MachineBasicBlock *MBB = Node->getBlock(); EnterScope(MBB); Changed |= ProcessBlock(MBB); // If it's a leaf node, it's done. Traverse upwards to pop ancestors. ExitScopeIfDone(Node, OpenChildren, ParentMap); } return Changed; } bool MachineCSE::runOnMachineFunction(MachineFunction &MF) { TII = MF.getTarget().getInstrInfo(); TRI = MF.getTarget().getRegisterInfo(); MRI = &MF.getRegInfo(); AA = &getAnalysis<AliasAnalysis>(); DT = &getAnalysis<MachineDominatorTree>(); return PerformCSE(DT->getRootNode()); }