//===-- MachineSink.cpp - Sinking for machine instructions ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass moves instructions into successor blocks when possible, so that // they aren't executed on paths where their results aren't needed. // // This pass is not intended to be a replacement or a complete alternative // for an LLVM-IR-level sinking pass. It is only designed to sink simple // constructs that are not exposed before lowering and instruction selection. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "machine-sink" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; static cl::opt<bool> SplitEdges("machine-sink-split", cl::desc("Split critical edges during machine sinking"), cl::init(true), cl::Hidden); STATISTIC(NumSunk, "Number of machine instructions sunk"); STATISTIC(NumSplit, "Number of critical edges split"); STATISTIC(NumCoalesces, "Number of copies coalesced"); namespace { class MachineSinking : public MachineFunctionPass { const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; MachineRegisterInfo *MRI; // Machine register information MachineDominatorTree *DT; // Machine dominator tree MachineLoopInfo *LI; AliasAnalysis *AA; BitVector AllocatableSet; // Which physregs are allocatable? // Remember which edges have been considered for breaking. SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8> CEBCandidates; public: static char ID; // Pass identification MachineSinking() : MachineFunctionPass(ID) { initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); } virtual bool runOnMachineFunction(MachineFunction &MF); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); AU.addRequired<AliasAnalysis>(); AU.addRequired<MachineDominatorTree>(); AU.addRequired<MachineLoopInfo>(); AU.addPreserved<MachineDominatorTree>(); AU.addPreserved<MachineLoopInfo>(); } virtual void releaseMemory() { CEBCandidates.clear(); } private: bool ProcessBlock(MachineBasicBlock &MBB); bool isWorthBreakingCriticalEdge(MachineInstr *MI, MachineBasicBlock *From, MachineBasicBlock *To); MachineBasicBlock *SplitCriticalEdge(MachineInstr *MI, MachineBasicBlock *From, MachineBasicBlock *To, bool BreakPHIEdge); bool SinkInstruction(MachineInstr *MI, bool &SawStore); bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, MachineBasicBlock *DefMBB, bool &BreakPHIEdge, bool &LocalUse) const; bool PerformTrivialForwardCoalescing(MachineInstr *MI, MachineBasicBlock *MBB); }; } // end anonymous namespace char MachineSinking::ID = 0; INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink", "Machine code sinking", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_END(MachineSinking, "machine-sink", "Machine code sinking", false, false) FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); } bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI, MachineBasicBlock *MBB) { if (!MI->isCopy()) return false; unsigned SrcReg = MI->getOperand(1).getReg(); unsigned DstReg = MI->getOperand(0).getReg(); if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || !TargetRegisterInfo::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) return false; const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); if (SRC != DRC) return false; MachineInstr *DefMI = MRI->getVRegDef(SrcReg); if (DefMI->isCopyLike()) return false; DEBUG(dbgs() << "Coalescing: " << *DefMI); DEBUG(dbgs() << "*** to: " << *MI); MRI->replaceRegWith(DstReg, SrcReg); MI->eraseFromParent(); ++NumCoalesces; return true; } /// AllUsesDominatedByBlock - Return true if all uses of the specified register /// occur in blocks dominated by the specified block. If any use is in the /// definition block, then return false since it is never legal to move def /// after uses. bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, MachineBasicBlock *DefMBB, bool &BreakPHIEdge, bool &LocalUse) const { assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Only makes sense for vregs"); if (MRI->use_nodbg_empty(Reg)) return true; // Ignoring debug uses is necessary so debug info doesn't affect the code. // This may leave a referencing dbg_value in the original block, before // the definition of the vreg. Dwarf generator handles this although the // user might not get the right info at runtime. // BreakPHIEdge is true if all the uses are in the successor MBB being sunken // into and they are all PHI nodes. In this case, machine-sink must break // the critical edge first. e.g. // // BB#1: derived from LLVM BB %bb4.preheader // Predecessors according to CFG: BB#0 // ... // %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead> // ... // JE_4 <BB#37>, %EFLAGS<imp-use> // Successors according to CFG: BB#37 BB#2 // // BB#2: derived from LLVM BB %bb.nph // Predecessors according to CFG: BB#0 BB#1 // %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1> BreakPHIEdge = true; for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end(); I != E; ++I) { MachineInstr *UseInst = &*I; MachineBasicBlock *UseBlock = UseInst->getParent(); if (!(UseBlock == MBB && UseInst->isPHI() && UseInst->getOperand(I.getOperandNo()+1).getMBB() == DefMBB)) { BreakPHIEdge = false; break; } } if (BreakPHIEdge) return true; for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg), E = MRI->use_nodbg_end(); I != E; ++I) { // Determine the block of the use. MachineInstr *UseInst = &*I; MachineBasicBlock *UseBlock = UseInst->getParent(); if (UseInst->isPHI()) { // PHI nodes use the operand in the predecessor block, not the block with // the PHI. UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB(); } else if (UseBlock == DefMBB) { LocalUse = true; return false; } // Check that it dominates. if (!DT->dominates(MBB, UseBlock)) return false; } return true; } bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { DEBUG(dbgs() << "******** Machine Sinking ********\n"); const TargetMachine &TM = MF.getTarget(); TII = TM.getInstrInfo(); TRI = TM.getRegisterInfo(); MRI = &MF.getRegInfo(); DT = &getAnalysis<MachineDominatorTree>(); LI = &getAnalysis<MachineLoopInfo>(); AA = &getAnalysis<AliasAnalysis>(); AllocatableSet = TRI->getAllocatableSet(MF); bool EverMadeChange = false; while (1) { bool MadeChange = false; // Process all basic blocks. CEBCandidates.clear(); for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) MadeChange |= ProcessBlock(*I); // If this iteration over the code changed anything, keep iterating. if (!MadeChange) break; EverMadeChange = true; } return EverMadeChange; } bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { // Can't sink anything out of a block that has less than two successors. if (MBB.succ_size() <= 1 || MBB.empty()) return false; // Don't bother sinking code out of unreachable blocks. In addition to being // unprofitable, it can also lead to infinite looping, because in an // unreachable loop there may be nowhere to stop. if (!DT->isReachableFromEntry(&MBB)) return false; bool MadeChange = false; // Walk the basic block bottom-up. Remember if we saw a store. MachineBasicBlock::iterator I = MBB.end(); --I; bool ProcessedBegin, SawStore = false; do { MachineInstr *MI = I; // The instruction to sink. // Predecrement I (if it's not begin) so that it isn't invalidated by // sinking. ProcessedBegin = I == MBB.begin(); if (!ProcessedBegin) --I; if (MI->isDebugValue()) continue; bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); if (Joined) { MadeChange = true; continue; } if (SinkInstruction(MI, SawStore)) ++NumSunk, MadeChange = true; // If we just processed the first instruction in the block, we're done. } while (!ProcessedBegin); return MadeChange; } bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI, MachineBasicBlock *From, MachineBasicBlock *To) { // FIXME: Need much better heuristics. // If the pass has already considered breaking this edge (during this pass // through the function), then let's go ahead and break it. This means // sinking multiple "cheap" instructions into the same block. if (!CEBCandidates.insert(std::make_pair(From, To))) return true; if (!MI->isCopy() && !MI->getDesc().isAsCheapAsAMove()) return true; // MI is cheap, we probably don't want to break the critical edge for it. // However, if this would allow some definitions of its source operands // to be sunk then it's probably worth it. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; if (MRI->hasOneNonDBGUse(Reg)) return true; } return false; } MachineBasicBlock *MachineSinking::SplitCriticalEdge(MachineInstr *MI, MachineBasicBlock *FromBB, MachineBasicBlock *ToBB, bool BreakPHIEdge) { if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) return 0; // Avoid breaking back edge. From == To means backedge for single BB loop. if (!SplitEdges || FromBB == ToBB) return 0; // Check for backedges of more "complex" loops. if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && LI->isLoopHeader(ToBB)) return 0; // It's not always legal to break critical edges and sink the computation // to the edge. // // BB#1: // v1024 // Beq BB#3 // <fallthrough> // BB#2: // ... no uses of v1024 // <fallthrough> // BB#3: // ... // = v1024 // // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted: // // BB#1: // ... // Bne BB#2 // BB#4: // v1024 = // B BB#3 // BB#2: // ... no uses of v1024 // <fallthrough> // BB#3: // ... // = v1024 // // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3 // flow. We need to ensure the new basic block where the computation is // sunk to dominates all the uses. // It's only legal to break critical edge and sink the computation to the // new block if all the predecessors of "To", except for "From", are // not dominated by "From". Given SSA property, this means these // predecessors are dominated by "To". // // There is no need to do this check if all the uses are PHI nodes. PHI // sources are only defined on the specific predecessor edges. if (!BreakPHIEdge) { for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), E = ToBB->pred_end(); PI != E; ++PI) { if (*PI == FromBB) continue; if (!DT->dominates(ToBB, *PI)) return 0; } } return FromBB->SplitCriticalEdge(ToBB, this); } static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) { return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence(); } /// collectDebgValues - Scan instructions following MI and collect any /// matching DBG_VALUEs. static void collectDebugValues(MachineInstr *MI, SmallVector<MachineInstr *, 2> & DbgValues) { DbgValues.clear(); if (!MI->getOperand(0).isReg()) return; MachineBasicBlock::iterator DI = MI; ++DI; for (MachineBasicBlock::iterator DE = MI->getParent()->end(); DI != DE; ++DI) { if (!DI->isDebugValue()) return; if (DI->getOperand(0).isReg() && DI->getOperand(0).getReg() == MI->getOperand(0).getReg()) DbgValues.push_back(DI); } } /// SinkInstruction - Determine whether it is safe to sink the specified machine /// instruction out of its current block into a successor. bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) { // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to // be close to the source to make it easier to coalesce. if (AvoidsSinking(MI, MRI)) return false; // Check if it's safe to move the instruction. if (!MI->isSafeToMove(TII, AA, SawStore)) return false; // FIXME: This should include support for sinking instructions within the // block they are currently in to shorten the live ranges. We often get // instructions sunk into the top of a large block, but it would be better to // also sink them down before their first use in the block. This xform has to // be careful not to *increase* register pressure though, e.g. sinking // "x = y + z" down if it kills y and z would increase the live ranges of y // and z and only shrink the live range of x. // Loop over all the operands of the specified instruction. If there is // anything we can't handle, bail out. MachineBasicBlock *ParentBlock = MI->getParent(); // SuccToSinkTo - This is the successor to sink this instruction to, once we // decide. MachineBasicBlock *SuccToSinkTo = 0; bool BreakPHIEdge = false; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; // Ignore non-register operands. unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (TargetRegisterInfo::isPhysicalRegister(Reg)) { if (MO.isUse()) { // If the physreg has no defs anywhere, it's just an ambient register // and we can freely move its uses. Alternatively, if it's allocatable, // it could get allocated to something with a def during allocation. if (!MRI->def_empty(Reg)) return false; if (AllocatableSet.test(Reg)) return false; // Check for a def among the register's aliases too. for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { unsigned AliasReg = *Alias; if (!MRI->def_empty(AliasReg)) return false; if (AllocatableSet.test(AliasReg)) return false; } } else if (!MO.isDead()) { // A def that isn't dead. We can't move it. return false; } } else { // Virtual register uses are always safe to sink. if (MO.isUse()) continue; // If it's not safe to move defs of the register class, then abort. if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) return false; // FIXME: This picks a successor to sink into based on having one // successor that dominates all the uses. However, there are cases where // sinking can happen but where the sink point isn't a successor. For // example: // // x = computation // if () {} else {} // use x // // the instruction could be sunk over the whole diamond for the // if/then/else (or loop, etc), allowing it to be sunk into other blocks // after that. // Virtual register defs can only be sunk if all their uses are in blocks // dominated by one of the successors. if (SuccToSinkTo) { // If a previous operand picked a block to sink to, then this operand // must be sinkable to the same block. bool LocalUse = false; if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, ParentBlock, BreakPHIEdge, LocalUse)) return false; continue; } // Otherwise, we should look at all the successors and decide which one // we should sink to. for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(), E = ParentBlock->succ_end(); SI != E; ++SI) { bool LocalUse = false; if (AllUsesDominatedByBlock(Reg, *SI, ParentBlock, BreakPHIEdge, LocalUse)) { SuccToSinkTo = *SI; break; } if (LocalUse) // Def is used locally, it's never safe to move this def. return false; } // If we couldn't find a block to sink to, ignore this instruction. if (SuccToSinkTo == 0) return false; } } // If there are no outputs, it must have side-effects. if (SuccToSinkTo == 0) return false; // It's not safe to sink instructions to EH landing pad. Control flow into // landing pad is implicitly defined. if (SuccToSinkTo->isLandingPad()) return false; // It is not possible to sink an instruction into its own block. This can // happen with loops. if (MI->getParent() == SuccToSinkTo) return false; // If the instruction to move defines a dead physical register which is live // when leaving the basic block, don't move it because it could turn into a // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { const MachineOperand &MO = MI->getOperand(I); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; if (SuccToSinkTo->isLiveIn(Reg)) return false; } DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo); // If the block has multiple predecessors, this would introduce computation on // a path that it doesn't already exist. We could split the critical edge, // but for now we just punt. if (SuccToSinkTo->pred_size() > 1) { // We cannot sink a load across a critical edge - there may be stores in // other code paths. bool TryBreak = false; bool store = true; if (!MI->isSafeToMove(TII, AA, store)) { DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); TryBreak = true; } // We don't want to sink across a critical edge if we don't dominate the // successor. We could be introducing calculations to new code paths. if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); TryBreak = true; } // Don't sink instructions into a loop. if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { DEBUG(dbgs() << " *** NOTE: Loop header found\n"); TryBreak = true; } // Otherwise we are OK with sinking along a critical edge. if (!TryBreak) DEBUG(dbgs() << "Sinking along critical edge.\n"); else { MachineBasicBlock *NewSucc = SplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); if (!NewSucc) { DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " "break critical edge\n"); return false; } else { DEBUG(dbgs() << " *** Splitting critical edge:" " BB#" << ParentBlock->getNumber() << " -- BB#" << NewSucc->getNumber() << " -- BB#" << SuccToSinkTo->getNumber() << '\n'); SuccToSinkTo = NewSucc; ++NumSplit; BreakPHIEdge = false; } } } if (BreakPHIEdge) { // BreakPHIEdge is true if all the uses are in the successor MBB being // sunken into and they are all PHI nodes. In this case, machine-sink must // break the critical edge first. MachineBasicBlock *NewSucc = SplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); if (!NewSucc) { DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " "break critical edge\n"); return false; } DEBUG(dbgs() << " *** Splitting critical edge:" " BB#" << ParentBlock->getNumber() << " -- BB#" << NewSucc->getNumber() << " -- BB#" << SuccToSinkTo->getNumber() << '\n'); SuccToSinkTo = NewSucc; ++NumSplit; } // Determine where to insert into. Skip phi nodes. MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) ++InsertPos; // collect matching debug values. SmallVector<MachineInstr *, 2> DbgValuesToSink; collectDebugValues(MI, DbgValuesToSink); // Move the instruction. SuccToSinkTo->splice(InsertPos, ParentBlock, MI, ++MachineBasicBlock::iterator(MI)); // Move debug values. for (SmallVector<MachineInstr *, 2>::iterator DBI = DbgValuesToSink.begin(), DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) { MachineInstr *DbgMI = *DBI; SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI, ++MachineBasicBlock::iterator(DbgMI)); } // Conservatively, clear any kill flags, since it's possible that they are no // longer correct. MI->clearKillInfo(); return true; }