//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass eliminates machine instruction PHI nodes by inserting copy // instructions. This destroys SSA information, but is the desired input for // some register allocators. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "phielim" #include "PHIEliminationUtils.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Function.h" #include "llvm/Target/TargetMachine.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include <algorithm> using namespace llvm; static cl::opt<bool> DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), cl::Hidden, cl::desc("Disable critical edge splitting " "during PHI elimination")); namespace { class PHIElimination : public MachineFunctionPass { MachineRegisterInfo *MRI; // Machine register information public: static char ID; // Pass identification, replacement for typeid PHIElimination() : MachineFunctionPass(ID) { initializePHIEliminationPass(*PassRegistry::getPassRegistry()); } virtual bool runOnMachineFunction(MachineFunction &Fn); virtual void getAnalysisUsage(AnalysisUsage &AU) const; private: /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions /// in predecessor basic blocks. /// bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); void LowerAtomicPHINode(MachineBasicBlock &MBB, MachineBasicBlock::iterator AfterPHIsIt); /// analyzePHINodes - Gather information about the PHI nodes in /// here. In particular, we want to map the number of uses of a virtual /// register which is used in a PHI node. We map that to the BB the /// vreg is coming from. This is used later to determine when the vreg /// is killed in the BB. /// void analyzePHINodes(const MachineFunction& Fn); /// Split critical edges where necessary for good coalescer performance. bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, LiveVariables &LV, MachineLoopInfo *MLI); typedef std::pair<unsigned, unsigned> BBVRegPair; typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse; VRegPHIUse VRegPHIUseCount; // Defs of PHI sources which are implicit_def. SmallPtrSet<MachineInstr*, 4> ImpDefs; // Map reusable lowered PHI node -> incoming join register. typedef DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait> LoweredPHIMap; LoweredPHIMap LoweredPHIs; }; } STATISTIC(NumAtomic, "Number of atomic phis lowered"); STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); STATISTIC(NumReused, "Number of reused lowered phis"); char PHIElimination::ID = 0; INITIALIZE_PASS(PHIElimination, "phi-node-elimination", "Eliminate PHI nodes for register allocation", false, false) char& llvm::PHIEliminationID = PHIElimination::ID; void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved<LiveVariables>(); AU.addPreserved<MachineDominatorTree>(); AU.addPreserved<MachineLoopInfo>(); MachineFunctionPass::getAnalysisUsage(AU); } bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { MRI = &MF.getRegInfo(); bool Changed = false; // This pass takes the function out of SSA form. MRI->leaveSSA(); // Split critical edges to help the coalescer if (!DisableEdgeSplitting) { if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) { MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) Changed |= SplitPHIEdges(MF, *I, *LV, MLI); } } // Populate VRegPHIUseCount analyzePHINodes(MF); // Eliminate PHI instructions by inserting copies into predecessor blocks. for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) Changed |= EliminatePHINodes(MF, *I); // Remove dead IMPLICIT_DEF instructions. for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(), E = ImpDefs.end(); I != E; ++I) { MachineInstr *DefMI = *I; unsigned DefReg = DefMI->getOperand(0).getReg(); if (MRI->use_nodbg_empty(DefReg)) DefMI->eraseFromParent(); } // Clean up the lowered PHI instructions. for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end(); I != E; ++I) MF.DeleteMachineInstr(I->first); LoweredPHIs.clear(); ImpDefs.clear(); VRegPHIUseCount.clear(); return Changed; } /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in /// predecessor basic blocks. /// bool PHIElimination::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) { if (MBB.empty() || !MBB.front().isPHI()) return false; // Quick exit for basic blocks without PHIs. // Get an iterator to the first instruction after the last PHI node (this may // also be the end of the basic block). MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin()); while (MBB.front().isPHI()) LowerAtomicPHINode(MBB, AfterPHIsIt); return true; } /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node /// are implicit_def's. static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, const MachineRegisterInfo *MRI) { for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { unsigned SrcReg = MPhi->getOperand(i).getReg(); const MachineInstr *DefMI = MRI->getVRegDef(SrcReg); if (!DefMI || !DefMI->isImplicitDef()) return false; } return true; } /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block, /// under the assuption that it needs to be lowered in a way that supports /// atomic execution of PHIs. This lowering method is always correct all of the /// time. /// void PHIElimination::LowerAtomicPHINode( MachineBasicBlock &MBB, MachineBasicBlock::iterator AfterPHIsIt) { ++NumAtomic; // Unlink the PHI node from the basic block, but don't delete the PHI yet. MachineInstr *MPhi = MBB.remove(MBB.begin()); unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; unsigned DestReg = MPhi->getOperand(0).getReg(); assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); bool isDead = MPhi->getOperand(0).isDead(); // Create a new register for the incoming PHI arguments. MachineFunction &MF = *MBB.getParent(); unsigned IncomingReg = 0; bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? // Insert a register to register copy at the top of the current block (but // after any remaining phi nodes) which copies the new incoming register // into the phi node destination. const TargetInstrInfo *TII = MF.getTarget().getInstrInfo(); if (isSourceDefinedByImplicitDef(MPhi, MRI)) // If all sources of a PHI node are implicit_def, just emit an // implicit_def instead of a copy. BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); else { // Can we reuse an earlier PHI node? This only happens for critical edges, // typically those created by tail duplication. unsigned &entry = LoweredPHIs[MPhi]; if (entry) { // An identical PHI node was already lowered. Reuse the incoming register. IncomingReg = entry; reusedIncoming = true; ++NumReused; DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi); } else { const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); } BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), TII->get(TargetOpcode::COPY), DestReg) .addReg(IncomingReg); } // Update live variable information if there is any. LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>(); if (LV) { MachineInstr *PHICopy = prior(AfterPHIsIt); if (IncomingReg) { LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); // Increment use count of the newly created virtual register. VI.NumUses++; LV->setPHIJoin(IncomingReg); // When we are reusing the incoming register, it may already have been // killed in this block. The old kill will also have been inserted at // AfterPHIsIt, so it appears before the current PHICopy. if (reusedIncoming) if (MachineInstr *OldKill = VI.findKill(&MBB)) { DEBUG(dbgs() << "Remove old kill from " << *OldKill); LV->removeVirtualRegisterKilled(IncomingReg, OldKill); DEBUG(MBB.dump()); } // Add information to LiveVariables to know that the incoming value is // killed. Note that because the value is defined in several places (once // each for each incoming block), the "def" block and instruction fields // for the VarInfo is not filled in. LV->addVirtualRegisterKilled(IncomingReg, PHICopy); } // Since we are going to be deleting the PHI node, if it is the last use of // any registers, or if the value itself is dead, we need to move this // information over to the new copy we just inserted. LV->removeVirtualRegistersKilled(MPhi); // If the result is dead, update LV. if (isDead) { LV->addVirtualRegisterDead(DestReg, PHICopy); LV->removeVirtualRegisterDead(DestReg, MPhi); } } // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), MPhi->getOperand(i).getReg())]; // Now loop over all of the incoming arguments, changing them to copy into the // IncomingReg register in the corresponding predecessor basic block. SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; for (int i = NumSrcs - 1; i >= 0; --i) { unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && "Machine PHI Operands must all be virtual registers!"); // Get the MachineBasicBlock equivalent of the BasicBlock that is the source // path the PHI. MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); // If source is defined by an implicit def, there is no need to insert a // copy. MachineInstr *DefMI = MRI->getVRegDef(SrcReg); if (DefMI->isImplicitDef()) { ImpDefs.insert(DefMI); continue; } // Check to make sure we haven't already emitted the copy for this block. // This can happen because PHI nodes may have multiple entries for the same // basic block. if (!MBBsInsertedInto.insert(&opBlock)) continue; // If the copy has already been emitted, we're done. // Find a safe location to insert the copy, this may be the first terminator // in the block (or end()). MachineBasicBlock::iterator InsertPos = findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); // Insert the copy. if (!reusedIncoming && IncomingReg) BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg); // Now update live variable information if we have it. Otherwise we're done if (!LV) continue; // We want to be able to insert a kill of the register if this PHI (aka, the // copy we just inserted) is the last use of the source value. Live // variable analysis conservatively handles this by saying that the value is // live until the end of the block the PHI entry lives in. If the value // really is dead at the PHI copy, there will be no successor blocks which // have the value live-in. // Also check to see if this register is in use by another PHI node which // has not yet been eliminated. If so, it will be killed at an appropriate // point later. // Is it used by any PHI instructions in this block? bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]; // Okay, if we now know that the value is not live out of the block, we can // add a kill marker in this block saying that it kills the incoming value! if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) { // In our final twist, we have to decide which instruction kills the // register. In most cases this is the copy, however, the first // terminator instruction at the end of the block may also use the value. // In this case, we should mark *it* as being the killing block, not the // copy. MachineBasicBlock::iterator KillInst; MachineBasicBlock::iterator Term = opBlock.getFirstTerminator(); if (Term != opBlock.end() && Term->readsRegister(SrcReg)) { KillInst = Term; // Check that no other terminators use values. #ifndef NDEBUG for (MachineBasicBlock::iterator TI = llvm::next(Term); TI != opBlock.end(); ++TI) { if (TI->isDebugValue()) continue; assert(!TI->readsRegister(SrcReg) && "Terminator instructions cannot use virtual registers unless" "they are the first terminator in a block!"); } #endif } else if (reusedIncoming || !IncomingReg) { // We may have to rewind a bit if we didn't insert a copy this time. KillInst = Term; while (KillInst != opBlock.begin()) { --KillInst; if (KillInst->isDebugValue()) continue; if (KillInst->readsRegister(SrcReg)) break; } } else { // We just inserted this copy. KillInst = prior(InsertPos); } assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); // Finally, mark it killed. LV->addVirtualRegisterKilled(SrcReg, KillInst); // This vreg no longer lives all of the way through opBlock. unsigned opBlockNum = opBlock.getNumber(); LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); } } // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. if (reusedIncoming || !IncomingReg) MF.DeleteMachineInstr(MPhi); } /// analyzePHINodes - Gather information about the PHI nodes in here. In /// particular, we want to map the number of uses of a virtual register which is /// used in a PHI node. We map that to the BB the vreg is coming from. This is /// used later to determine when the vreg is killed in the BB. /// void PHIElimination::analyzePHINodes(const MachineFunction& MF) { for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); BBI != BBE && BBI->isPHI(); ++BBI) for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(), BBI->getOperand(i).getReg())]; } bool PHIElimination::SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, LiveVariables &LV, MachineLoopInfo *MLI) { if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad()) return false; // Quick exit for basic blocks without PHIs. bool Changed = false; for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end(); BBI != BBE && BBI->isPHI(); ++BBI) { for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { unsigned Reg = BBI->getOperand(i).getReg(); MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); // We break edges when registers are live out from the predecessor block // (not considering PHI nodes). If the register is live in to this block // anyway, we would gain nothing from splitting. // Avoid splitting backedges of loops. It would introduce small // out-of-line blocks into the loop which is very bad for code placement. if (PreMBB != &MBB && !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) { if (!MLI || !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) && MLI->isLoopHeader(&MBB))) { if (PreMBB->SplitCriticalEdge(&MBB, this)) { Changed = true; ++NumCriticalEdgesSplit; } } } } } return Changed; }