//===-- RegAllocBasic.cpp - basic register allocator ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the RABasic function pass, which provides a minimal // implementation of the basic register allocator. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "RegAllocBase.h" #include "LiveDebugVariables.h" #include "LiveIntervalUnion.h" #include "LiveRangeEdit.h" #include "RenderMachineFunction.h" #include "Spiller.h" #include "VirtRegMap.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Function.h" #include "llvm/PassAnalysisSupport.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" #ifndef NDEBUG #include "llvm/ADT/SparseBitVector.h" #endif #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Timer.h" #include <cstdlib> #include <queue> using namespace llvm; STATISTIC(NumAssigned , "Number of registers assigned"); STATISTIC(NumUnassigned , "Number of registers unassigned"); STATISTIC(NumNewQueued , "Number of new live ranges queued"); static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator", createBasicRegisterAllocator); // Temporary verification option until we can put verification inside // MachineVerifier. static cl::opt<bool, true> VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled), cl::desc("Verify during register allocation")); const char *RegAllocBase::TimerGroupName = "Register Allocation"; bool RegAllocBase::VerifyEnabled = false; namespace { struct CompSpillWeight { bool operator()(LiveInterval *A, LiveInterval *B) const { return A->weight < B->weight; } }; } namespace { /// RABasic provides a minimal implementation of the basic register allocation /// algorithm. It prioritizes live virtual registers by spill weight and spills /// whenever a register is unavailable. This is not practical in production but /// provides a useful baseline both for measuring other allocators and comparing /// the speed of the basic algorithm against other styles of allocators. class RABasic : public MachineFunctionPass, public RegAllocBase { // context MachineFunction *MF; // analyses LiveStacks *LS; RenderMachineFunction *RMF; // state std::auto_ptr<Spiller> SpillerInstance; std::priority_queue<LiveInterval*, std::vector<LiveInterval*>, CompSpillWeight> Queue; public: RABasic(); /// Return the pass name. virtual const char* getPassName() const { return "Basic Register Allocator"; } /// RABasic analysis usage. virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual void releaseMemory(); virtual Spiller &spiller() { return *SpillerInstance; } virtual float getPriority(LiveInterval *LI) { return LI->weight; } virtual void enqueue(LiveInterval *LI) { Queue.push(LI); } virtual LiveInterval *dequeue() { if (Queue.empty()) return 0; LiveInterval *LI = Queue.top(); Queue.pop(); return LI; } virtual unsigned selectOrSplit(LiveInterval &VirtReg, SmallVectorImpl<LiveInterval*> &SplitVRegs); /// Perform register allocation. virtual bool runOnMachineFunction(MachineFunction &mf); static char ID; }; char RABasic::ID = 0; } // end anonymous namespace RABasic::RABasic(): MachineFunctionPass(ID) { initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); initializeLiveStacksPass(*PassRegistry::getPassRegistry()); initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry()); } void RABasic::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired<AliasAnalysis>(); AU.addPreserved<AliasAnalysis>(); AU.addRequired<LiveIntervals>(); AU.addPreserved<SlotIndexes>(); AU.addRequired<LiveDebugVariables>(); AU.addPreserved<LiveDebugVariables>(); if (StrongPHIElim) AU.addRequiredID(StrongPHIEliminationID); AU.addRequiredTransitiveID(RegisterCoalescerPassID); AU.addRequired<CalculateSpillWeights>(); AU.addRequired<LiveStacks>(); AU.addPreserved<LiveStacks>(); AU.addRequiredID(MachineDominatorsID); AU.addPreservedID(MachineDominatorsID); AU.addRequired<MachineLoopInfo>(); AU.addPreserved<MachineLoopInfo>(); AU.addRequired<VirtRegMap>(); AU.addPreserved<VirtRegMap>(); DEBUG(AU.addRequired<RenderMachineFunction>()); MachineFunctionPass::getAnalysisUsage(AU); } void RABasic::releaseMemory() { SpillerInstance.reset(0); RegAllocBase::releaseMemory(); } #ifndef NDEBUG // Verify each LiveIntervalUnion. void RegAllocBase::verify() { LiveVirtRegBitSet VisitedVRegs; OwningArrayPtr<LiveVirtRegBitSet> unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]); // Verify disjoint unions. for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) { DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI)); LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg]; PhysReg2LiveUnion[PhysReg].verify(VRegs); // Union + intersection test could be done efficiently in one pass, but // don't add a method to SparseBitVector unless we really need it. assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions"); VisitedVRegs |= VRegs; } // Verify vreg coverage. for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end(); liItr != liEnd; ++liItr) { unsigned reg = liItr->first; if (TargetRegisterInfo::isPhysicalRegister(reg)) continue; if (!VRM->hasPhys(reg)) continue; // spilled? unsigned PhysReg = VRM->getPhys(reg); if (!unionVRegs[PhysReg].test(reg)) { dbgs() << "LiveVirtReg " << reg << " not in union " << TRI->getName(PhysReg) << "\n"; llvm_unreachable("unallocated live vreg"); } } // FIXME: I'm not sure how to verify spilled intervals. } #endif //!NDEBUG //===----------------------------------------------------------------------===// // RegAllocBase Implementation //===----------------------------------------------------------------------===// // Instantiate a LiveIntervalUnion for each physical register. void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator, unsigned NRegs) { NumRegs = NRegs; Array = static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs)); for (unsigned r = 0; r != NRegs; ++r) new(Array + r) LiveIntervalUnion(r, allocator); } void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) { NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled); TRI = &vrm.getTargetRegInfo(); MRI = &vrm.getRegInfo(); VRM = &vrm; LIS = &lis; RegClassInfo.runOnMachineFunction(vrm.getMachineFunction()); const unsigned NumRegs = TRI->getNumRegs(); if (NumRegs != PhysReg2LiveUnion.numRegs()) { PhysReg2LiveUnion.init(UnionAllocator, NumRegs); // Cache an interferece query for each physical reg Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]); } } void RegAllocBase::LiveUnionArray::clear() { if (!Array) return; for (unsigned r = 0; r != NumRegs; ++r) Array[r].~LiveIntervalUnion(); free(Array); NumRegs = 0; Array = 0; } void RegAllocBase::releaseMemory() { for (unsigned r = 0, e = PhysReg2LiveUnion.numRegs(); r != e; ++r) PhysReg2LiveUnion[r].clear(); } // Visit all the live registers. If they are already assigned to a physical // register, unify them with the corresponding LiveIntervalUnion, otherwise push // them on the priority queue for later assignment. void RegAllocBase::seedLiveRegs() { NamedRegionTimer T("Seed Live Regs", TimerGroupName, TimePassesIsEnabled); for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) { unsigned RegNum = I->first; LiveInterval &VirtReg = *I->second; if (TargetRegisterInfo::isPhysicalRegister(RegNum)) PhysReg2LiveUnion[RegNum].unify(VirtReg); else enqueue(&VirtReg); } } void RegAllocBase::assign(LiveInterval &VirtReg, unsigned PhysReg) { DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI) << " to " << PrintReg(PhysReg, TRI) << '\n'); assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment"); VRM->assignVirt2Phys(VirtReg.reg, PhysReg); MRI->setPhysRegUsed(PhysReg); PhysReg2LiveUnion[PhysReg].unify(VirtReg); ++NumAssigned; } void RegAllocBase::unassign(LiveInterval &VirtReg, unsigned PhysReg) { DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI) << " from " << PrintReg(PhysReg, TRI) << '\n'); assert(VRM->getPhys(VirtReg.reg) == PhysReg && "Inconsistent unassign"); PhysReg2LiveUnion[PhysReg].extract(VirtReg); VRM->clearVirt(VirtReg.reg); ++NumUnassigned; } // Top-level driver to manage the queue of unassigned VirtRegs and call the // selectOrSplit implementation. void RegAllocBase::allocatePhysRegs() { seedLiveRegs(); // Continue assigning vregs one at a time to available physical registers. while (LiveInterval *VirtReg = dequeue()) { assert(!VRM->hasPhys(VirtReg->reg) && "Register already assigned"); // Unused registers can appear when the spiller coalesces snippets. if (MRI->reg_nodbg_empty(VirtReg->reg)) { DEBUG(dbgs() << "Dropping unused " << *VirtReg << '\n'); LIS->removeInterval(VirtReg->reg); continue; } // Invalidate all interference queries, live ranges could have changed. invalidateVirtRegs(); // selectOrSplit requests the allocator to return an available physical // register if possible and populate a list of new live intervals that // result from splitting. DEBUG(dbgs() << "\nselectOrSplit " << MRI->getRegClass(VirtReg->reg)->getName() << ':' << *VirtReg << '\n'); typedef SmallVector<LiveInterval*, 4> VirtRegVec; VirtRegVec SplitVRegs; unsigned AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs); if (AvailablePhysReg == ~0u) { // selectOrSplit failed to find a register! const char *Msg = "ran out of registers during register allocation"; // Probably caused by an inline asm. MachineInstr *MI; for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(VirtReg->reg); (MI = I.skipInstruction());) if (MI->isInlineAsm()) break; if (MI) MI->emitError(Msg); else report_fatal_error(Msg); // Keep going after reporting the error. VRM->assignVirt2Phys(VirtReg->reg, RegClassInfo.getOrder(MRI->getRegClass(VirtReg->reg)).front()); continue; } if (AvailablePhysReg) assign(*VirtReg, AvailablePhysReg); for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end(); I != E; ++I) { LiveInterval *SplitVirtReg = *I; assert(!VRM->hasPhys(SplitVirtReg->reg) && "Register already assigned"); if (MRI->reg_nodbg_empty(SplitVirtReg->reg)) { DEBUG(dbgs() << "not queueing unused " << *SplitVirtReg << '\n'); LIS->removeInterval(SplitVirtReg->reg); continue; } DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n"); assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) && "expect split value in virtual register"); enqueue(SplitVirtReg); ++NumNewQueued; } } } // Check if this live virtual register interferes with a physical register. If // not, then check for interference on each register that aliases with the // physical register. Return the interfering register. unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg, unsigned PhysReg) { for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) if (query(VirtReg, *AliasI).checkInterference()) return *AliasI; return 0; } // Helper for spillInteferences() that spills all interfering vregs currently // assigned to this physical register. void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg, SmallVectorImpl<LiveInterval*> &SplitVRegs) { LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg); assert(Q.seenAllInterferences() && "need collectInterferences()"); const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs(); for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(), E = PendingSpills.end(); I != E; ++I) { LiveInterval &SpilledVReg = **I; DEBUG(dbgs() << "extracting from " << TRI->getName(PhysReg) << " " << SpilledVReg << '\n'); // Deallocate the interfering vreg by removing it from the union. // A LiveInterval instance may not be in a union during modification! unassign(SpilledVReg, PhysReg); // Spill the extracted interval. LiveRangeEdit LRE(SpilledVReg, SplitVRegs, 0, &PendingSpills); spiller().spill(LRE); } // After extracting segments, the query's results are invalid. But keep the // contents valid until we're done accessing pendingSpills. Q.clear(); } // Spill or split all live virtual registers currently unified under PhysReg // that interfere with VirtReg. The newly spilled or split live intervals are // returned by appending them to SplitVRegs. bool RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg, SmallVectorImpl<LiveInterval*> &SplitVRegs) { // Record each interference and determine if all are spillable before mutating // either the union or live intervals. unsigned NumInterferences = 0; // Collect interferences assigned to any alias of the physical register. for (const unsigned *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) { LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI); NumInterferences += QAlias.collectInterferingVRegs(); if (QAlias.seenUnspillableVReg()) { return false; } } DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) << " interferences with " << VirtReg << "\n"); assert(NumInterferences > 0 && "expect interference"); // Spill each interfering vreg allocated to PhysReg or an alias. for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) spillReg(VirtReg, *AliasI, SplitVRegs); return true; } // Add newly allocated physical registers to the MBB live in sets. void RegAllocBase::addMBBLiveIns(MachineFunction *MF) { NamedRegionTimer T("MBB Live Ins", TimerGroupName, TimePassesIsEnabled); SlotIndexes *Indexes = LIS->getSlotIndexes(); if (MF->size() <= 1) return; LiveIntervalUnion::SegmentIter SI; for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) { LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg]; if (LiveUnion.empty()) continue; DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " live-in:"); MachineFunction::iterator MBB = llvm::next(MF->begin()); MachineFunction::iterator MFE = MF->end(); SlotIndex Start, Stop; tie(Start, Stop) = Indexes->getMBBRange(MBB); SI.setMap(LiveUnion.getMap()); SI.find(Start); while (SI.valid()) { if (SI.start() <= Start) { if (!MBB->isLiveIn(PhysReg)) MBB->addLiveIn(PhysReg); DEBUG(dbgs() << "\tBB#" << MBB->getNumber() << ':' << PrintReg(SI.value()->reg, TRI)); } else if (SI.start() > Stop) MBB = Indexes->getMBBFromIndex(SI.start().getPrevIndex()); if (++MBB == MFE) break; tie(Start, Stop) = Indexes->getMBBRange(MBB); SI.advanceTo(Start); } DEBUG(dbgs() << '\n'); } } //===----------------------------------------------------------------------===// // RABasic Implementation //===----------------------------------------------------------------------===// // Driver for the register assignment and splitting heuristics. // Manages iteration over the LiveIntervalUnions. // // This is a minimal implementation of register assignment and splitting that // spills whenever we run out of registers. // // selectOrSplit can only be called once per live virtual register. We then do a // single interference test for each register the correct class until we find an // available register. So, the number of interference tests in the worst case is // |vregs| * |machineregs|. And since the number of interference tests is // minimal, there is no value in caching them outside the scope of // selectOrSplit(). unsigned RABasic::selectOrSplit(LiveInterval &VirtReg, SmallVectorImpl<LiveInterval*> &SplitVRegs) { // Populate a list of physical register spill candidates. SmallVector<unsigned, 8> PhysRegSpillCands; // Check for an available register in this class. ArrayRef<unsigned> Order = RegClassInfo.getOrder(MRI->getRegClass(VirtReg.reg)); for (ArrayRef<unsigned>::iterator I = Order.begin(), E = Order.end(); I != E; ++I) { unsigned PhysReg = *I; // Check interference and as a side effect, intialize queries for this // VirtReg and its aliases. unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg); if (interfReg == 0) { // Found an available register. return PhysReg; } Queries[interfReg].collectInterferingVRegs(1); LiveInterval *interferingVirtReg = Queries[interfReg].interferingVRegs().front(); // The current VirtReg must either be spillable, or one of its interferences // must have less spill weight. if (interferingVirtReg->weight < VirtReg.weight ) { PhysRegSpillCands.push_back(PhysReg); } } // Try to spill another interfering reg with less spill weight. for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(), PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) { if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue; assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 && "Interference after spill."); // Tell the caller to allocate to this newly freed physical register. return *PhysRegI; } // No other spill candidates were found, so spill the current VirtReg. DEBUG(dbgs() << "spilling: " << VirtReg << '\n'); if (!VirtReg.isSpillable()) return ~0u; LiveRangeEdit LRE(VirtReg, SplitVRegs); spiller().spill(LRE); // The live virtual register requesting allocation was spilled, so tell // the caller not to allocate anything during this round. return 0; } bool RABasic::runOnMachineFunction(MachineFunction &mf) { DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n" << "********** Function: " << ((Value*)mf.getFunction())->getName() << '\n'); MF = &mf; DEBUG(RMF = &getAnalysis<RenderMachineFunction>()); RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>()); SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); allocatePhysRegs(); addMBBLiveIns(MF); // Diagnostic output before rewriting DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n"); // optional HTML output DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM)); // FIXME: Verification currently must run before VirtRegRewriter. We should // make the rewriter a separate pass and override verifyAnalysis instead. When // that happens, verification naturally falls under VerifyMachineCode. #ifndef NDEBUG if (VerifyEnabled) { // Verify accuracy of LiveIntervals. The standard machine code verifier // ensures that each LiveIntervals covers all uses of the virtual reg. // FIXME: MachineVerifier is badly broken when using the standard // spiller. Always use -spiller=inline with -verify-regalloc. Even with the // inline spiller, some tests fail to verify because the coalescer does not // always generate verifiable code. MF->verify(this, "In RABasic::verify"); // Verify that LiveIntervals are partitioned into unions and disjoint within // the unions. verify(); } #endif // !NDEBUG // Run rewriter VRM->rewrite(LIS->getSlotIndexes()); // Write out new DBG_VALUE instructions. getAnalysis<LiveDebugVariables>().emitDebugValues(VRM); // The pass output is in VirtRegMap. Release all the transient data. releaseMemory(); return true; } FunctionPass* llvm::createBasicRegisterAllocator() { return new RABasic(); }