//===-- DWARFDebugArangeSet.cpp -------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "DWARFDebugArangeSet.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cassert> using namespace llvm; void DWARFDebugArangeSet::clear() { Offset = -1U; std::memset(&Header, 0, sizeof(Header)); ArangeDescriptors.clear(); } void DWARFDebugArangeSet::compact() { if (ArangeDescriptors.empty()) return; // Iterate through all arange descriptors and combine any ranges that // overlap or have matching boundaries. The ArangeDescriptors are assumed // to be in ascending order. uint32_t i = 0; while (i + 1 < ArangeDescriptors.size()) { if (ArangeDescriptors[i].getEndAddress() >= ArangeDescriptors[i+1].Address){ // The current range ends at or exceeds the start of the next address // range. Compute the max end address between the two and use that to // make the new length. const uint64_t max_end_addr = std::max(ArangeDescriptors[i].getEndAddress(), ArangeDescriptors[i+1].getEndAddress()); ArangeDescriptors[i].Length = max_end_addr - ArangeDescriptors[i].Address; // Now remove the next entry as it was just combined with the previous one ArangeDescriptors.erase(ArangeDescriptors.begin()+i+1); } else { // Discontiguous address range, just proceed to the next one. ++i; } } } bool DWARFDebugArangeSet::extract(DataExtractor data, uint32_t *offset_ptr) { if (data.isValidOffset(*offset_ptr)) { ArangeDescriptors.clear(); Offset = *offset_ptr; // 7.20 Address Range Table // // Each set of entries in the table of address ranges contained in // the .debug_aranges section begins with a header consisting of: a // 4-byte length containing the length of the set of entries for this // compilation unit, not including the length field itself; a 2-byte // version identifier containing the value 2 for DWARF Version 2; a // 4-byte offset into the.debug_infosection; a 1-byte unsigned integer // containing the size in bytes of an address (or the offset portion of // an address for segmented addressing) on the target system; and a // 1-byte unsigned integer containing the size in bytes of a segment // descriptor on the target system. This header is followed by a series // of tuples. Each tuple consists of an address and a length, each in // the size appropriate for an address on the target architecture. Header.Length = data.getU32(offset_ptr); Header.Version = data.getU16(offset_ptr); Header.CuOffset = data.getU32(offset_ptr); Header.AddrSize = data.getU8(offset_ptr); Header.SegSize = data.getU8(offset_ptr); // Perform basic validation of the header fields. if (!data.isValidOffsetForDataOfSize(Offset, Header.Length) || (Header.AddrSize != 4 && Header.AddrSize != 8)) { clear(); return false; } // The first tuple following the header in each set begins at an offset // that is a multiple of the size of a single tuple (that is, twice the // size of an address). The header is padded, if necessary, to the // appropriate boundary. const uint32_t header_size = *offset_ptr - Offset; const uint32_t tuple_size = Header.AddrSize * 2; uint32_t first_tuple_offset = 0; while (first_tuple_offset < header_size) first_tuple_offset += tuple_size; *offset_ptr = Offset + first_tuple_offset; Descriptor arangeDescriptor; assert(sizeof(arangeDescriptor.Address) == sizeof(arangeDescriptor.Length)); assert(sizeof(arangeDescriptor.Address) >= Header.AddrSize); while (data.isValidOffset(*offset_ptr)) { arangeDescriptor.Address = data.getUnsigned(offset_ptr, Header.AddrSize); arangeDescriptor.Length = data.getUnsigned(offset_ptr, Header.AddrSize); // Each set of tuples is terminated by a 0 for the address and 0 // for the length. if (arangeDescriptor.Address || arangeDescriptor.Length) ArangeDescriptors.push_back(arangeDescriptor); else break; // We are done if we get a zero address and length } return !ArangeDescriptors.empty(); } return false; } void DWARFDebugArangeSet::dump(raw_ostream &OS) const { OS << format("Address Range Header: length = 0x%8.8x, version = 0x%4.4x, ", Header.Length, Header.Version) << format("cu_offset = 0x%8.8x, addr_size = 0x%2.2x, seg_size = 0x%2.2x\n", Header.CuOffset, Header.AddrSize, Header.SegSize); const uint32_t hex_width = Header.AddrSize * 2; for (DescriptorConstIter pos = ArangeDescriptors.begin(), end = ArangeDescriptors.end(); pos != end; ++pos) OS << format("[0x%*.*llx -", hex_width, hex_width, pos->Address) << format(" 0x%*.*llx)\n", hex_width, hex_width, pos->getEndAddress()); } namespace { class DescriptorContainsAddress { const uint64_t Address; public: DescriptorContainsAddress(uint64_t address) : Address(address) {} bool operator()(const DWARFDebugArangeSet::Descriptor &desc) const { return Address >= desc.Address && Address < (desc.Address + desc.Length); } }; } uint32_t DWARFDebugArangeSet::findAddress(uint64_t address) const { DescriptorConstIter end = ArangeDescriptors.end(); DescriptorConstIter pos = std::find_if(ArangeDescriptors.begin(), end, // Range DescriptorContainsAddress(address)); // Predicate if (pos != end) return Header.CuOffset; return -1U; }