//===- SPUInstrInfo.cpp - Cell SPU Instruction Information ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Cell SPU implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "SPUInstrInfo.h" #include "SPUInstrBuilder.h" #include "SPUTargetMachine.h" #include "SPUHazardRecognizers.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/MC/MCContext.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" #define GET_INSTRINFO_CTOR #include "SPUGenInstrInfo.inc" using namespace llvm; namespace { //! Predicate for an unconditional branch instruction inline bool isUncondBranch(const MachineInstr *I) { unsigned opc = I->getOpcode(); return (opc == SPU::BR || opc == SPU::BRA || opc == SPU::BI); } //! Predicate for a conditional branch instruction inline bool isCondBranch(const MachineInstr *I) { unsigned opc = I->getOpcode(); return (opc == SPU::BRNZr32 || opc == SPU::BRNZv4i32 || opc == SPU::BRZr32 || opc == SPU::BRZv4i32 || opc == SPU::BRHNZr16 || opc == SPU::BRHNZv8i16 || opc == SPU::BRHZr16 || opc == SPU::BRHZv8i16); } } SPUInstrInfo::SPUInstrInfo(SPUTargetMachine &tm) : SPUGenInstrInfo(SPU::ADJCALLSTACKDOWN, SPU::ADJCALLSTACKUP), TM(tm), RI(*TM.getSubtargetImpl(), *this) { /* NOP */ } /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for /// this target when scheduling the DAG. ScheduleHazardRecognizer *SPUInstrInfo::CreateTargetHazardRecognizer( const TargetMachine *TM, const ScheduleDAG *DAG) const { const TargetInstrInfo *TII = TM->getInstrInfo(); assert(TII && "No InstrInfo?"); return new SPUHazardRecognizer(*TII); } unsigned SPUInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case SPU::LQDv16i8: case SPU::LQDv8i16: case SPU::LQDv4i32: case SPU::LQDv4f32: case SPU::LQDv2f64: case SPU::LQDr128: case SPU::LQDr64: case SPU::LQDr32: case SPU::LQDr16: { const MachineOperand MOp1 = MI->getOperand(1); const MachineOperand MOp2 = MI->getOperand(2); if (MOp1.isImm() && MOp2.isFI()) { FrameIndex = MOp2.getIndex(); return MI->getOperand(0).getReg(); } break; } } return 0; } unsigned SPUInstrInfo::isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case SPU::STQDv16i8: case SPU::STQDv8i16: case SPU::STQDv4i32: case SPU::STQDv4f32: case SPU::STQDv2f64: case SPU::STQDr128: case SPU::STQDr64: case SPU::STQDr32: case SPU::STQDr16: case SPU::STQDr8: { const MachineOperand MOp1 = MI->getOperand(1); const MachineOperand MOp2 = MI->getOperand(2); if (MOp1.isImm() && MOp2.isFI()) { FrameIndex = MOp2.getIndex(); return MI->getOperand(0).getReg(); } break; } } return 0; } void SPUInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { // We support cross register class moves for our aliases, such as R3 in any // reg class to any other reg class containing R3. This is required because // we instruction select bitconvert i64 -> f64 as a noop for example, so our // types have no specific meaning. BuildMI(MBB, I, DL, get(SPU::LRr128), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); } void SPUInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { unsigned opc; bool isValidFrameIdx = (FrameIdx < SPUFrameLowering::maxFrameOffset()); if (RC == SPU::GPRCRegisterClass) { opc = (isValidFrameIdx ? SPU::STQDr128 : SPU::STQXr128); } else if (RC == SPU::R64CRegisterClass) { opc = (isValidFrameIdx ? SPU::STQDr64 : SPU::STQXr64); } else if (RC == SPU::R64FPRegisterClass) { opc = (isValidFrameIdx ? SPU::STQDr64 : SPU::STQXr64); } else if (RC == SPU::R32CRegisterClass) { opc = (isValidFrameIdx ? SPU::STQDr32 : SPU::STQXr32); } else if (RC == SPU::R32FPRegisterClass) { opc = (isValidFrameIdx ? SPU::STQDr32 : SPU::STQXr32); } else if (RC == SPU::R16CRegisterClass) { opc = (isValidFrameIdx ? SPU::STQDr16 : SPU::STQXr16); } else if (RC == SPU::R8CRegisterClass) { opc = (isValidFrameIdx ? SPU::STQDr8 : SPU::STQXr8); } else if (RC == SPU::VECREGRegisterClass) { opc = (isValidFrameIdx) ? SPU::STQDv16i8 : SPU::STQXv16i8; } else { llvm_unreachable("Unknown regclass!"); } DebugLoc DL; if (MI != MBB.end()) DL = MI->getDebugLoc(); addFrameReference(BuildMI(MBB, MI, DL, get(opc)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx); } void SPUInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { unsigned opc; bool isValidFrameIdx = (FrameIdx < SPUFrameLowering::maxFrameOffset()); if (RC == SPU::GPRCRegisterClass) { opc = (isValidFrameIdx ? SPU::LQDr128 : SPU::LQXr128); } else if (RC == SPU::R64CRegisterClass) { opc = (isValidFrameIdx ? SPU::LQDr64 : SPU::LQXr64); } else if (RC == SPU::R64FPRegisterClass) { opc = (isValidFrameIdx ? SPU::LQDr64 : SPU::LQXr64); } else if (RC == SPU::R32CRegisterClass) { opc = (isValidFrameIdx ? SPU::LQDr32 : SPU::LQXr32); } else if (RC == SPU::R32FPRegisterClass) { opc = (isValidFrameIdx ? SPU::LQDr32 : SPU::LQXr32); } else if (RC == SPU::R16CRegisterClass) { opc = (isValidFrameIdx ? SPU::LQDr16 : SPU::LQXr16); } else if (RC == SPU::R8CRegisterClass) { opc = (isValidFrameIdx ? SPU::LQDr8 : SPU::LQXr8); } else if (RC == SPU::VECREGRegisterClass) { opc = (isValidFrameIdx) ? SPU::LQDv16i8 : SPU::LQXv16i8; } else { llvm_unreachable("Unknown regclass in loadRegFromStackSlot!"); } DebugLoc DL; if (MI != MBB.end()) DL = MI->getDebugLoc(); addFrameReference(BuildMI(MBB, MI, DL, get(opc), DestReg), FrameIdx); } //! Branch analysis /*! \note This code was kiped from PPC. There may be more branch analysis for CellSPU than what's currently done here. */ bool SPUInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl<MachineOperand> &Cond, bool AllowModify) const { // If the block has no terminators, it just falls into the block after it. MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin()) return false; --I; while (I->isDebugValue()) { if (I == MBB.begin()) return false; --I; } if (!isUnpredicatedTerminator(I)) return false; // Get the last instruction in the block. MachineInstr *LastInst = I; // If there is only one terminator instruction, process it. if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { if (isUncondBranch(LastInst)) { // Check for jump tables if (!LastInst->getOperand(0).isMBB()) return true; TBB = LastInst->getOperand(0).getMBB(); return false; } else if (isCondBranch(LastInst)) { // Block ends with fall-through condbranch. TBB = LastInst->getOperand(1).getMBB(); DEBUG(errs() << "Pushing LastInst: "); DEBUG(LastInst->dump()); Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode())); Cond.push_back(LastInst->getOperand(0)); return false; } // Otherwise, don't know what this is. return true; } // Get the instruction before it if it's a terminator. MachineInstr *SecondLastInst = I; // If there are three terminators, we don't know what sort of block this is. if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I)) return true; // If the block ends with a conditional and unconditional branch, handle it. if (isCondBranch(SecondLastInst) && isUncondBranch(LastInst)) { TBB = SecondLastInst->getOperand(1).getMBB(); DEBUG(errs() << "Pushing SecondLastInst: "); DEBUG(SecondLastInst->dump()); Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode())); Cond.push_back(SecondLastInst->getOperand(0)); FBB = LastInst->getOperand(0).getMBB(); return false; } // If the block ends with two unconditional branches, handle it. The second // one is not executed, so remove it. if (isUncondBranch(SecondLastInst) && isUncondBranch(LastInst)) { TBB = SecondLastInst->getOperand(0).getMBB(); I = LastInst; if (AllowModify) I->eraseFromParent(); return false; } // Otherwise, can't handle this. return true; } // search MBB for branch hint labels and branch hit ops static void removeHBR( MachineBasicBlock &MBB) { for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I){ if (I->getOpcode() == SPU::HBRA || I->getOpcode() == SPU::HBR_LABEL){ I=MBB.erase(I); if (I == MBB.end()) break; } } } unsigned SPUInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator I = MBB.end(); removeHBR(MBB); if (I == MBB.begin()) return 0; --I; while (I->isDebugValue()) { if (I == MBB.begin()) return 0; --I; } if (!isCondBranch(I) && !isUncondBranch(I)) return 0; // Remove the first branch. DEBUG(errs() << "Removing branch: "); DEBUG(I->dump()); I->eraseFromParent(); I = MBB.end(); if (I == MBB.begin()) return 1; --I; if (!(isCondBranch(I) || isUncondBranch(I))) return 1; // Remove the second branch. DEBUG(errs() << "Removing second branch: "); DEBUG(I->dump()); I->eraseFromParent(); return 2; } /** Find the optimal position for a hint branch instruction in a basic block. * This should take into account: * -the branch hint delays * -congestion of the memory bus * -dual-issue scheduling (i.e. avoid insertion of nops) * Current implementation is rather simplistic. */ static MachineBasicBlock::iterator findHBRPosition(MachineBasicBlock &MBB) { MachineBasicBlock::iterator J = MBB.end(); for( int i=0; i<8; i++) { if( J == MBB.begin() ) return J; J--; } return J; } unsigned SPUInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const { // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 2 || Cond.size() == 0) && "SPU branch conditions have two components!"); MachineInstrBuilder MIB; //TODO: make a more accurate algorithm. bool haveHBR = MBB.size()>8; removeHBR(MBB); MCSymbol *branchLabel = MBB.getParent()->getContext().CreateTempSymbol(); // Add a label just before the branch if (haveHBR) MIB = BuildMI(&MBB, DL, get(SPU::HBR_LABEL)).addSym(branchLabel); // One-way branch. if (FBB == 0) { if (Cond.empty()) { // Unconditional branch MIB = BuildMI(&MBB, DL, get(SPU::BR)); MIB.addMBB(TBB); DEBUG(errs() << "Inserted one-way uncond branch: "); DEBUG((*MIB).dump()); // basic blocks have just one branch so it is safe to add the hint a its if (haveHBR) { MIB = BuildMI( MBB, findHBRPosition(MBB), DL, get(SPU::HBRA)); MIB.addSym(branchLabel); MIB.addMBB(TBB); } } else { // Conditional branch MIB = BuildMI(&MBB, DL, get(Cond[0].getImm())); MIB.addReg(Cond[1].getReg()).addMBB(TBB); if (haveHBR) { MIB = BuildMI(MBB, findHBRPosition(MBB), DL, get(SPU::HBRA)); MIB.addSym(branchLabel); MIB.addMBB(TBB); } DEBUG(errs() << "Inserted one-way cond branch: "); DEBUG((*MIB).dump()); } return 1; } else { MIB = BuildMI(&MBB, DL, get(Cond[0].getImm())); MachineInstrBuilder MIB2 = BuildMI(&MBB, DL, get(SPU::BR)); // Two-way Conditional Branch. MIB.addReg(Cond[1].getReg()).addMBB(TBB); MIB2.addMBB(FBB); if (haveHBR) { MIB = BuildMI( MBB, findHBRPosition(MBB), DL, get(SPU::HBRA)); MIB.addSym(branchLabel); MIB.addMBB(FBB); } DEBUG(errs() << "Inserted conditional branch: "); DEBUG((*MIB).dump()); DEBUG(errs() << "part 2: "); DEBUG((*MIB2).dump()); return 2; } } //! Reverses a branch's condition, returning false on success. bool SPUInstrInfo::ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { // Pretty brainless way of inverting the condition, but it works, considering // there are only two conditions... static struct { unsigned Opc; //! The incoming opcode unsigned RevCondOpc; //! The reversed condition opcode } revconds[] = { { SPU::BRNZr32, SPU::BRZr32 }, { SPU::BRNZv4i32, SPU::BRZv4i32 }, { SPU::BRZr32, SPU::BRNZr32 }, { SPU::BRZv4i32, SPU::BRNZv4i32 }, { SPU::BRHNZr16, SPU::BRHZr16 }, { SPU::BRHNZv8i16, SPU::BRHZv8i16 }, { SPU::BRHZr16, SPU::BRHNZr16 }, { SPU::BRHZv8i16, SPU::BRHNZv8i16 } }; unsigned Opc = unsigned(Cond[0].getImm()); // Pretty dull mapping between the two conditions that SPU can generate: for (int i = sizeof(revconds)/sizeof(revconds[0]) - 1; i >= 0; --i) { if (revconds[i].Opc == Opc) { Cond[0].setImm(revconds[i].RevCondOpc); return false; } } return true; }