//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements sparse conditional constant propagation and merging: // // Specifically, this: // * Assumes values are constant unless proven otherwise // * Assumes BasicBlocks are dead unless proven otherwise // * Proves values to be constant, and replaces them with constants // * Proves conditional branches to be unconditional // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sccp" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/IPO.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include <algorithm> #include <map> using namespace llvm; STATISTIC(NumInstRemoved, "Number of instructions removed"); STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); namespace { /// LatticeVal class - This class represents the different lattice values that /// an LLVM value may occupy. It is a simple class with value semantics. /// class LatticeVal { enum LatticeValueTy { /// undefined - This LLVM Value has no known value yet. undefined, /// constant - This LLVM Value has a specific constant value. constant, /// forcedconstant - This LLVM Value was thought to be undef until /// ResolvedUndefsIn. This is treated just like 'constant', but if merged /// with another (different) constant, it goes to overdefined, instead of /// asserting. forcedconstant, /// overdefined - This instruction is not known to be constant, and we know /// it has a value. overdefined }; /// Val: This stores the current lattice value along with the Constant* for /// the constant if this is a 'constant' or 'forcedconstant' value. PointerIntPair<Constant *, 2, LatticeValueTy> Val; LatticeValueTy getLatticeValue() const { return Val.getInt(); } public: LatticeVal() : Val(0, undefined) {} bool isUndefined() const { return getLatticeValue() == undefined; } bool isConstant() const { return getLatticeValue() == constant || getLatticeValue() == forcedconstant; } bool isOverdefined() const { return getLatticeValue() == overdefined; } Constant *getConstant() const { assert(isConstant() && "Cannot get the constant of a non-constant!"); return Val.getPointer(); } /// markOverdefined - Return true if this is a change in status. bool markOverdefined() { if (isOverdefined()) return false; Val.setInt(overdefined); return true; } /// markConstant - Return true if this is a change in status. bool markConstant(Constant *V) { if (getLatticeValue() == constant) { // Constant but not forcedconstant. assert(getConstant() == V && "Marking constant with different value"); return false; } if (isUndefined()) { Val.setInt(constant); assert(V && "Marking constant with NULL"); Val.setPointer(V); } else { assert(getLatticeValue() == forcedconstant && "Cannot move from overdefined to constant!"); // Stay at forcedconstant if the constant is the same. if (V == getConstant()) return false; // Otherwise, we go to overdefined. Assumptions made based on the // forced value are possibly wrong. Assuming this is another constant // could expose a contradiction. Val.setInt(overdefined); } return true; } /// getConstantInt - If this is a constant with a ConstantInt value, return it /// otherwise return null. ConstantInt *getConstantInt() const { if (isConstant()) return dyn_cast<ConstantInt>(getConstant()); return 0; } void markForcedConstant(Constant *V) { assert(isUndefined() && "Can't force a defined value!"); Val.setInt(forcedconstant); Val.setPointer(V); } }; } // end anonymous namespace. namespace { //===----------------------------------------------------------------------===// // /// SCCPSolver - This class is a general purpose solver for Sparse Conditional /// Constant Propagation. /// class SCCPSolver : public InstVisitor<SCCPSolver> { const TargetData *TD; SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable. DenseMap<Value*, LatticeVal> ValueState; // The state each value is in. /// StructValueState - This maintains ValueState for values that have /// StructType, for example for formal arguments, calls, insertelement, etc. /// DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState; /// GlobalValue - If we are tracking any values for the contents of a global /// variable, we keep a mapping from the constant accessor to the element of /// the global, to the currently known value. If the value becomes /// overdefined, it's entry is simply removed from this map. DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; /// TrackedRetVals - If we are tracking arguments into and the return /// value out of a function, it will have an entry in this map, indicating /// what the known return value for the function is. DenseMap<Function*, LatticeVal> TrackedRetVals; /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions /// that return multiple values. DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is /// represented here for efficient lookup. SmallPtrSet<Function*, 16> MRVFunctionsTracked; /// TrackingIncomingArguments - This is the set of functions for whose /// arguments we make optimistic assumptions about and try to prove as /// constants. SmallPtrSet<Function*, 16> TrackingIncomingArguments; /// The reason for two worklists is that overdefined is the lowest state /// on the lattice, and moving things to overdefined as fast as possible /// makes SCCP converge much faster. /// /// By having a separate worklist, we accomplish this because everything /// possibly overdefined will become overdefined at the soonest possible /// point. SmallVector<Value*, 64> OverdefinedInstWorkList; SmallVector<Value*, 64> InstWorkList; SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not /// overdefined, despite the fact that the PHI node is overdefined. std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; /// KnownFeasibleEdges - Entries in this set are edges which have already had /// PHI nodes retriggered. typedef std::pair<BasicBlock*, BasicBlock*> Edge; DenseSet<Edge> KnownFeasibleEdges; public: SCCPSolver(const TargetData *td) : TD(td) {} /// MarkBlockExecutable - This method can be used by clients to mark all of /// the blocks that are known to be intrinsically live in the processed unit. /// /// This returns true if the block was not considered live before. bool MarkBlockExecutable(BasicBlock *BB) { if (!BBExecutable.insert(BB)) return false; DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); BBWorkList.push_back(BB); // Add the block to the work list! return true; } /// TrackValueOfGlobalVariable - Clients can use this method to /// inform the SCCPSolver that it should track loads and stores to the /// specified global variable if it can. This is only legal to call if /// performing Interprocedural SCCP. void TrackValueOfGlobalVariable(GlobalVariable *GV) { // We only track the contents of scalar globals. if (GV->getType()->getElementType()->isSingleValueType()) { LatticeVal &IV = TrackedGlobals[GV]; if (!isa<UndefValue>(GV->getInitializer())) IV.markConstant(GV->getInitializer()); } } /// AddTrackedFunction - If the SCCP solver is supposed to track calls into /// and out of the specified function (which cannot have its address taken), /// this method must be called. void AddTrackedFunction(Function *F) { // Add an entry, F -> undef. if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { MRVFunctionsTracked.insert(F); for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), LatticeVal())); } else TrackedRetVals.insert(std::make_pair(F, LatticeVal())); } void AddArgumentTrackedFunction(Function *F) { TrackingIncomingArguments.insert(F); } /// Solve - Solve for constants and executable blocks. /// void Solve(); /// ResolvedUndefsIn - While solving the dataflow for a function, we assume /// that branches on undef values cannot reach any of their successors. /// However, this is not a safe assumption. After we solve dataflow, this /// method should be use to handle this. If this returns true, the solver /// should be rerun. bool ResolvedUndefsIn(Function &F); bool isBlockExecutable(BasicBlock *BB) const { return BBExecutable.count(BB); } LatticeVal getLatticeValueFor(Value *V) const { DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V); assert(I != ValueState.end() && "V is not in valuemap!"); return I->second; } /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const { DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I = StructValueState.find(std::make_pair(V, i)); assert(I != StructValueState.end() && "V is not in valuemap!"); return I->second; }*/ /// getTrackedRetVals - Get the inferred return value map. /// const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { return TrackedRetVals; } /// getTrackedGlobals - Get and return the set of inferred initializers for /// global variables. const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { return TrackedGlobals; } void markOverdefined(Value *V) { assert(!V->getType()->isStructTy() && "Should use other method"); markOverdefined(ValueState[V], V); } /// markAnythingOverdefined - Mark the specified value overdefined. This /// works with both scalars and structs. void markAnythingOverdefined(Value *V) { if (StructType *STy = dyn_cast<StructType>(V->getType())) for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) markOverdefined(getStructValueState(V, i), V); else markOverdefined(V); } private: // markConstant - Make a value be marked as "constant". If the value // is not already a constant, add it to the instruction work list so that // the users of the instruction are updated later. // void markConstant(LatticeVal &IV, Value *V, Constant *C) { if (!IV.markConstant(C)) return; DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); if (IV.isOverdefined()) OverdefinedInstWorkList.push_back(V); else InstWorkList.push_back(V); } void markConstant(Value *V, Constant *C) { assert(!V->getType()->isStructTy() && "Should use other method"); markConstant(ValueState[V], V, C); } void markForcedConstant(Value *V, Constant *C) { assert(!V->getType()->isStructTy() && "Should use other method"); LatticeVal &IV = ValueState[V]; IV.markForcedConstant(C); DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); if (IV.isOverdefined()) OverdefinedInstWorkList.push_back(V); else InstWorkList.push_back(V); } // markOverdefined - Make a value be marked as "overdefined". If the // value is not already overdefined, add it to the overdefined instruction // work list so that the users of the instruction are updated later. void markOverdefined(LatticeVal &IV, Value *V) { if (!IV.markOverdefined()) return; DEBUG(dbgs() << "markOverdefined: "; if (Function *F = dyn_cast<Function>(V)) dbgs() << "Function '" << F->getName() << "'\n"; else dbgs() << *V << '\n'); // Only instructions go on the work list OverdefinedInstWorkList.push_back(V); } void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { if (IV.isOverdefined() || MergeWithV.isUndefined()) return; // Noop. if (MergeWithV.isOverdefined()) markOverdefined(IV, V); else if (IV.isUndefined()) markConstant(IV, V, MergeWithV.getConstant()); else if (IV.getConstant() != MergeWithV.getConstant()) markOverdefined(IV, V); } void mergeInValue(Value *V, LatticeVal MergeWithV) { assert(!V->getType()->isStructTy() && "Should use other method"); mergeInValue(ValueState[V], V, MergeWithV); } /// getValueState - Return the LatticeVal object that corresponds to the /// value. This function handles the case when the value hasn't been seen yet /// by properly seeding constants etc. LatticeVal &getValueState(Value *V) { assert(!V->getType()->isStructTy() && "Should use getStructValueState"); std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = ValueState.insert(std::make_pair(V, LatticeVal())); LatticeVal &LV = I.first->second; if (!I.second) return LV; // Common case, already in the map. if (Constant *C = dyn_cast<Constant>(V)) { // Undef values remain undefined. if (!isa<UndefValue>(V)) LV.markConstant(C); // Constants are constant } // All others are underdefined by default. return LV; } /// getStructValueState - Return the LatticeVal object that corresponds to the /// value/field pair. This function handles the case when the value hasn't /// been seen yet by properly seeding constants etc. LatticeVal &getStructValueState(Value *V, unsigned i) { assert(V->getType()->isStructTy() && "Should use getValueState"); assert(i < cast<StructType>(V->getType())->getNumElements() && "Invalid element #"); std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, bool> I = StructValueState.insert( std::make_pair(std::make_pair(V, i), LatticeVal())); LatticeVal &LV = I.first->second; if (!I.second) return LV; // Common case, already in the map. if (Constant *C = dyn_cast<Constant>(V)) { if (isa<UndefValue>(C)) ; // Undef values remain undefined. else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) LV.markConstant(CS->getOperand(i)); // Constants are constant. else if (isa<ConstantAggregateZero>(C)) { Type *FieldTy = cast<StructType>(V->getType())->getElementType(i); LV.markConstant(Constant::getNullValue(FieldTy)); } else LV.markOverdefined(); // Unknown sort of constant. } // All others are underdefined by default. return LV; } /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB /// work list if it is not already executable. void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) return; // This edge is already known to be executable! if (!MarkBlockExecutable(Dest)) { // If the destination is already executable, we just made an *edge* // feasible that wasn't before. Revisit the PHI nodes in the block // because they have potentially new operands. DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() << " -> " << Dest->getName() << "\n"); PHINode *PN; for (BasicBlock::iterator I = Dest->begin(); (PN = dyn_cast<PHINode>(I)); ++I) visitPHINode(*PN); } } // getFeasibleSuccessors - Return a vector of booleans to indicate which // successors are reachable from a given terminator instruction. // void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); // isEdgeFeasible - Return true if the control flow edge from the 'From' basic // block to the 'To' basic block is currently feasible. // bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); // OperandChangedState - This method is invoked on all of the users of an // instruction that was just changed state somehow. Based on this // information, we need to update the specified user of this instruction. // void OperandChangedState(Instruction *I) { if (BBExecutable.count(I->getParent())) // Inst is executable? visit(*I); } /// RemoveFromOverdefinedPHIs - If I has any entries in the /// UsersOfOverdefinedPHIs map for PN, remove them now. void RemoveFromOverdefinedPHIs(Instruction *I, PHINode *PN) { if (UsersOfOverdefinedPHIs.empty()) return; typedef std::multimap<PHINode*, Instruction*>::iterator ItTy; std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(PN); for (ItTy It = Range.first, E = Range.second; It != E;) { if (It->second == I) UsersOfOverdefinedPHIs.erase(It++); else ++It; } } /// InsertInOverdefinedPHIs - Insert an entry in the UsersOfOverdefinedPHIS /// map for I and PN, but if one is there already, do not create another. /// (Duplicate entries do not break anything directly, but can lead to /// exponential growth of the table in rare cases.) void InsertInOverdefinedPHIs(Instruction *I, PHINode *PN) { typedef std::multimap<PHINode*, Instruction*>::iterator ItTy; std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(PN); for (ItTy J = Range.first, E = Range.second; J != E; ++J) if (J->second == I) return; UsersOfOverdefinedPHIs.insert(std::make_pair(PN, I)); } private: friend class InstVisitor<SCCPSolver>; // visit implementations - Something changed in this instruction. Either an // operand made a transition, or the instruction is newly executable. Change // the value type of I to reflect these changes if appropriate. void visitPHINode(PHINode &I); // Terminators void visitReturnInst(ReturnInst &I); void visitTerminatorInst(TerminatorInst &TI); void visitCastInst(CastInst &I); void visitSelectInst(SelectInst &I); void visitBinaryOperator(Instruction &I); void visitCmpInst(CmpInst &I); void visitExtractElementInst(ExtractElementInst &I); void visitInsertElementInst(InsertElementInst &I); void visitShuffleVectorInst(ShuffleVectorInst &I); void visitExtractValueInst(ExtractValueInst &EVI); void visitInsertValueInst(InsertValueInst &IVI); void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); } // Instructions that cannot be folded away. void visitStoreInst (StoreInst &I); void visitLoadInst (LoadInst &I); void visitGetElementPtrInst(GetElementPtrInst &I); void visitCallInst (CallInst &I) { visitCallSite(&I); } void visitInvokeInst (InvokeInst &II) { visitCallSite(&II); visitTerminatorInst(II); } void visitCallSite (CallSite CS); void visitResumeInst (TerminatorInst &I) { /*returns void*/ } void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } void visitFenceInst (FenceInst &I) { /*returns void*/ } void visitAtomicCmpXchgInst (AtomicCmpXchgInst &I) { markOverdefined(&I); } void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); } void visitAllocaInst (Instruction &I) { markOverdefined(&I); } void visitVAArgInst (Instruction &I) { markAnythingOverdefined(&I); } void visitInstruction(Instruction &I) { // If a new instruction is added to LLVM that we don't handle. dbgs() << "SCCP: Don't know how to handle: " << I; markAnythingOverdefined(&I); // Just in case } }; } // end anonymous namespace // getFeasibleSuccessors - Return a vector of booleans to indicate which // successors are reachable from a given terminator instruction. // void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs) { Succs.resize(TI.getNumSuccessors()); if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { if (BI->isUnconditional()) { Succs[0] = true; return; } LatticeVal BCValue = getValueState(BI->getCondition()); ConstantInt *CI = BCValue.getConstantInt(); if (CI == 0) { // Overdefined condition variables, and branches on unfoldable constant // conditions, mean the branch could go either way. if (!BCValue.isUndefined()) Succs[0] = Succs[1] = true; return; } // Constant condition variables mean the branch can only go a single way. Succs[CI->isZero()] = true; return; } if (isa<InvokeInst>(TI)) { // Invoke instructions successors are always executable. Succs[0] = Succs[1] = true; return; } if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { if (TI.getNumSuccessors() < 2) { Succs[0] = true; return; } LatticeVal SCValue = getValueState(SI->getCondition()); ConstantInt *CI = SCValue.getConstantInt(); if (CI == 0) { // Overdefined or undefined condition? // All destinations are executable! if (!SCValue.isUndefined()) Succs.assign(TI.getNumSuccessors(), true); return; } Succs[SI->findCaseValue(CI)] = true; return; } // TODO: This could be improved if the operand is a [cast of a] BlockAddress. if (isa<IndirectBrInst>(&TI)) { // Just mark all destinations executable! Succs.assign(TI.getNumSuccessors(), true); return; } #ifndef NDEBUG dbgs() << "Unknown terminator instruction: " << TI << '\n'; #endif llvm_unreachable("SCCP: Don't know how to handle this terminator!"); } // isEdgeFeasible - Return true if the control flow edge from the 'From' basic // block to the 'To' basic block is currently feasible. // bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { assert(BBExecutable.count(To) && "Dest should always be alive!"); // Make sure the source basic block is executable!! if (!BBExecutable.count(From)) return false; // Check to make sure this edge itself is actually feasible now. TerminatorInst *TI = From->getTerminator(); if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { if (BI->isUnconditional()) return true; LatticeVal BCValue = getValueState(BI->getCondition()); // Overdefined condition variables mean the branch could go either way, // undef conditions mean that neither edge is feasible yet. ConstantInt *CI = BCValue.getConstantInt(); if (CI == 0) return !BCValue.isUndefined(); // Constant condition variables mean the branch can only go a single way. return BI->getSuccessor(CI->isZero()) == To; } // Invoke instructions successors are always executable. if (isa<InvokeInst>(TI)) return true; if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { if (SI->getNumSuccessors() < 2) return true; LatticeVal SCValue = getValueState(SI->getCondition()); ConstantInt *CI = SCValue.getConstantInt(); if (CI == 0) return !SCValue.isUndefined(); // Make sure to skip the "default value" which isn't a value for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) if (SI->getSuccessorValue(i) == CI) // Found the taken branch. return SI->getSuccessor(i) == To; // If the constant value is not equal to any of the branches, we must // execute default branch. return SI->getDefaultDest() == To; } // Just mark all destinations executable! // TODO: This could be improved if the operand is a [cast of a] BlockAddress. if (isa<IndirectBrInst>(TI)) return true; #ifndef NDEBUG dbgs() << "Unknown terminator instruction: " << *TI << '\n'; #endif llvm_unreachable(0); } // visit Implementations - Something changed in this instruction, either an // operand made a transition, or the instruction is newly executable. Change // the value type of I to reflect these changes if appropriate. This method // makes sure to do the following actions: // // 1. If a phi node merges two constants in, and has conflicting value coming // from different branches, or if the PHI node merges in an overdefined // value, then the PHI node becomes overdefined. // 2. If a phi node merges only constants in, and they all agree on value, the // PHI node becomes a constant value equal to that. // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined // 6. If a conditional branch has a value that is constant, make the selected // destination executable // 7. If a conditional branch has a value that is overdefined, make all // successors executable. // void SCCPSolver::visitPHINode(PHINode &PN) { // If this PN returns a struct, just mark the result overdefined. // TODO: We could do a lot better than this if code actually uses this. if (PN.getType()->isStructTy()) return markAnythingOverdefined(&PN); if (getValueState(&PN).isOverdefined()) { // There may be instructions using this PHI node that are not overdefined // themselves. If so, make sure that they know that the PHI node operand // changed. typedef std::multimap<PHINode*, Instruction*>::iterator ItTy; std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(&PN); if (Range.first == Range.second) return; SmallVector<Instruction*, 16> Users; for (ItTy I = Range.first, E = Range.second; I != E; ++I) Users.push_back(I->second); while (!Users.empty()) visit(Users.pop_back_val()); return; // Quick exit } // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, // and slow us down a lot. Just mark them overdefined. if (PN.getNumIncomingValues() > 64) return markOverdefined(&PN); // Look at all of the executable operands of the PHI node. If any of them // are overdefined, the PHI becomes overdefined as well. If they are all // constant, and they agree with each other, the PHI becomes the identical // constant. If they are constant and don't agree, the PHI is overdefined. // If there are no executable operands, the PHI remains undefined. // Constant *OperandVal = 0; for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { LatticeVal IV = getValueState(PN.getIncomingValue(i)); if (IV.isUndefined()) continue; // Doesn't influence PHI node. if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) continue; if (IV.isOverdefined()) // PHI node becomes overdefined! return markOverdefined(&PN); if (OperandVal == 0) { // Grab the first value. OperandVal = IV.getConstant(); continue; } // There is already a reachable operand. If we conflict with it, // then the PHI node becomes overdefined. If we agree with it, we // can continue on. // Check to see if there are two different constants merging, if so, the PHI // node is overdefined. if (IV.getConstant() != OperandVal) return markOverdefined(&PN); } // If we exited the loop, this means that the PHI node only has constant // arguments that agree with each other(and OperandVal is the constant) or // OperandVal is null because there are no defined incoming arguments. If // this is the case, the PHI remains undefined. // if (OperandVal) markConstant(&PN, OperandVal); // Acquire operand value } void SCCPSolver::visitReturnInst(ReturnInst &I) { if (I.getNumOperands() == 0) return; // ret void Function *F = I.getParent()->getParent(); Value *ResultOp = I.getOperand(0); // If we are tracking the return value of this function, merge it in. if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); if (TFRVI != TrackedRetVals.end()) { mergeInValue(TFRVI->second, F, getValueState(ResultOp)); return; } } // Handle functions that return multiple values. if (!TrackedMultipleRetVals.empty()) { if (StructType *STy = dyn_cast<StructType>(ResultOp->getType())) if (MRVFunctionsTracked.count(F)) for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, getStructValueState(ResultOp, i)); } } void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { SmallVector<bool, 16> SuccFeasible; getFeasibleSuccessors(TI, SuccFeasible); BasicBlock *BB = TI.getParent(); // Mark all feasible successors executable. for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) if (SuccFeasible[i]) markEdgeExecutable(BB, TI.getSuccessor(i)); } void SCCPSolver::visitCastInst(CastInst &I) { LatticeVal OpSt = getValueState(I.getOperand(0)); if (OpSt.isOverdefined()) // Inherit overdefinedness of operand markOverdefined(&I); else if (OpSt.isConstant()) // Propagate constant value markConstant(&I, ConstantExpr::getCast(I.getOpcode(), OpSt.getConstant(), I.getType())); } void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { // If this returns a struct, mark all elements over defined, we don't track // structs in structs. if (EVI.getType()->isStructTy()) return markAnythingOverdefined(&EVI); // If this is extracting from more than one level of struct, we don't know. if (EVI.getNumIndices() != 1) return markOverdefined(&EVI); Value *AggVal = EVI.getAggregateOperand(); if (AggVal->getType()->isStructTy()) { unsigned i = *EVI.idx_begin(); LatticeVal EltVal = getStructValueState(AggVal, i); mergeInValue(getValueState(&EVI), &EVI, EltVal); } else { // Otherwise, must be extracting from an array. return markOverdefined(&EVI); } } void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { StructType *STy = dyn_cast<StructType>(IVI.getType()); if (STy == 0) return markOverdefined(&IVI); // If this has more than one index, we can't handle it, drive all results to // undef. if (IVI.getNumIndices() != 1) return markAnythingOverdefined(&IVI); Value *Aggr = IVI.getAggregateOperand(); unsigned Idx = *IVI.idx_begin(); // Compute the result based on what we're inserting. for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { // This passes through all values that aren't the inserted element. if (i != Idx) { LatticeVal EltVal = getStructValueState(Aggr, i); mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); continue; } Value *Val = IVI.getInsertedValueOperand(); if (Val->getType()->isStructTy()) // We don't track structs in structs. markOverdefined(getStructValueState(&IVI, i), &IVI); else { LatticeVal InVal = getValueState(Val); mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); } } } void SCCPSolver::visitSelectInst(SelectInst &I) { // If this select returns a struct, just mark the result overdefined. // TODO: We could do a lot better than this if code actually uses this. if (I.getType()->isStructTy()) return markAnythingOverdefined(&I); LatticeVal CondValue = getValueState(I.getCondition()); if (CondValue.isUndefined()) return; if (ConstantInt *CondCB = CondValue.getConstantInt()) { Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); mergeInValue(&I, getValueState(OpVal)); return; } // Otherwise, the condition is overdefined or a constant we can't evaluate. // See if we can produce something better than overdefined based on the T/F // value. LatticeVal TVal = getValueState(I.getTrueValue()); LatticeVal FVal = getValueState(I.getFalseValue()); // select ?, C, C -> C. if (TVal.isConstant() && FVal.isConstant() && TVal.getConstant() == FVal.getConstant()) return markConstant(&I, FVal.getConstant()); if (TVal.isUndefined()) // select ?, undef, X -> X. return mergeInValue(&I, FVal); if (FVal.isUndefined()) // select ?, X, undef -> X. return mergeInValue(&I, TVal); markOverdefined(&I); } // Handle Binary Operators. void SCCPSolver::visitBinaryOperator(Instruction &I) { LatticeVal V1State = getValueState(I.getOperand(0)); LatticeVal V2State = getValueState(I.getOperand(1)); LatticeVal &IV = ValueState[&I]; if (IV.isOverdefined()) return; if (V1State.isConstant() && V2State.isConstant()) return markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), V2State.getConstant())); // If something is undef, wait for it to resolve. if (!V1State.isOverdefined() && !V2State.isOverdefined()) return; // Otherwise, one of our operands is overdefined. Try to produce something // better than overdefined with some tricks. // If this is an AND or OR with 0 or -1, it doesn't matter that the other // operand is overdefined. if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { LatticeVal *NonOverdefVal = 0; if (!V1State.isOverdefined()) NonOverdefVal = &V1State; else if (!V2State.isOverdefined()) NonOverdefVal = &V2State; if (NonOverdefVal) { if (NonOverdefVal->isUndefined()) { // Could annihilate value. if (I.getOpcode() == Instruction::And) markConstant(IV, &I, Constant::getNullValue(I.getType())); else if (VectorType *PT = dyn_cast<VectorType>(I.getType())) markConstant(IV, &I, Constant::getAllOnesValue(PT)); else markConstant(IV, &I, Constant::getAllOnesValue(I.getType())); return; } if (I.getOpcode() == Instruction::And) { // X and 0 = 0 if (NonOverdefVal->getConstant()->isNullValue()) return markConstant(IV, &I, NonOverdefVal->getConstant()); } else { if (ConstantInt *CI = NonOverdefVal->getConstantInt()) if (CI->isAllOnesValue()) // X or -1 = -1 return markConstant(IV, &I, NonOverdefVal->getConstant()); } } } // If both operands are PHI nodes, it is possible that this instruction has // a constant value, despite the fact that the PHI node doesn't. Check for // this condition now. if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) if (PN1->getParent() == PN2->getParent()) { // Since the two PHI nodes are in the same basic block, they must have // entries for the same predecessors. Walk the predecessor list, and // if all of the incoming values are constants, and the result of // evaluating this expression with all incoming value pairs is the // same, then this expression is a constant even though the PHI node // is not a constant! LatticeVal Result; for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { LatticeVal In1 = getValueState(PN1->getIncomingValue(i)); BasicBlock *InBlock = PN1->getIncomingBlock(i); LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock)); if (In1.isOverdefined() || In2.isOverdefined()) { Result.markOverdefined(); break; // Cannot fold this operation over the PHI nodes! } if (In1.isConstant() && In2.isConstant()) { Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), In2.getConstant()); if (Result.isUndefined()) Result.markConstant(V); else if (Result.isConstant() && Result.getConstant() != V) { Result.markOverdefined(); break; } } } // If we found a constant value here, then we know the instruction is // constant despite the fact that the PHI nodes are overdefined. if (Result.isConstant()) { markConstant(IV, &I, Result.getConstant()); // Remember that this instruction is virtually using the PHI node // operands. InsertInOverdefinedPHIs(&I, PN1); InsertInOverdefinedPHIs(&I, PN2); return; } if (Result.isUndefined()) return; // Okay, this really is overdefined now. Since we might have // speculatively thought that this was not overdefined before, and // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, // make sure to clean out any entries that we put there, for // efficiency. RemoveFromOverdefinedPHIs(&I, PN1); RemoveFromOverdefinedPHIs(&I, PN2); } markOverdefined(&I); } // Handle ICmpInst instruction. void SCCPSolver::visitCmpInst(CmpInst &I) { LatticeVal V1State = getValueState(I.getOperand(0)); LatticeVal V2State = getValueState(I.getOperand(1)); LatticeVal &IV = ValueState[&I]; if (IV.isOverdefined()) return; if (V1State.isConstant() && V2State.isConstant()) return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), V1State.getConstant(), V2State.getConstant())); // If operands are still undefined, wait for it to resolve. if (!V1State.isOverdefined() && !V2State.isOverdefined()) return; // If something is overdefined, use some tricks to avoid ending up and over // defined if we can. // If both operands are PHI nodes, it is possible that this instruction has // a constant value, despite the fact that the PHI node doesn't. Check for // this condition now. if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) if (PN1->getParent() == PN2->getParent()) { // Since the two PHI nodes are in the same basic block, they must have // entries for the same predecessors. Walk the predecessor list, and // if all of the incoming values are constants, and the result of // evaluating this expression with all incoming value pairs is the // same, then this expression is a constant even though the PHI node // is not a constant! LatticeVal Result; for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { LatticeVal In1 = getValueState(PN1->getIncomingValue(i)); BasicBlock *InBlock = PN1->getIncomingBlock(i); LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock)); if (In1.isOverdefined() || In2.isOverdefined()) { Result.markOverdefined(); break; // Cannot fold this operation over the PHI nodes! } if (In1.isConstant() && In2.isConstant()) { Constant *V = ConstantExpr::getCompare(I.getPredicate(), In1.getConstant(), In2.getConstant()); if (Result.isUndefined()) Result.markConstant(V); else if (Result.isConstant() && Result.getConstant() != V) { Result.markOverdefined(); break; } } } // If we found a constant value here, then we know the instruction is // constant despite the fact that the PHI nodes are overdefined. if (Result.isConstant()) { markConstant(&I, Result.getConstant()); // Remember that this instruction is virtually using the PHI node // operands. InsertInOverdefinedPHIs(&I, PN1); InsertInOverdefinedPHIs(&I, PN2); return; } if (Result.isUndefined()) return; // Okay, this really is overdefined now. Since we might have // speculatively thought that this was not overdefined before, and // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, // make sure to clean out any entries that we put there, for // efficiency. RemoveFromOverdefinedPHIs(&I, PN1); RemoveFromOverdefinedPHIs(&I, PN2); } markOverdefined(&I); } void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { // TODO : SCCP does not handle vectors properly. return markOverdefined(&I); #if 0 LatticeVal &ValState = getValueState(I.getOperand(0)); LatticeVal &IdxState = getValueState(I.getOperand(1)); if (ValState.isOverdefined() || IdxState.isOverdefined()) markOverdefined(&I); else if(ValState.isConstant() && IdxState.isConstant()) markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), IdxState.getConstant())); #endif } void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { // TODO : SCCP does not handle vectors properly. return markOverdefined(&I); #if 0 LatticeVal &ValState = getValueState(I.getOperand(0)); LatticeVal &EltState = getValueState(I.getOperand(1)); LatticeVal &IdxState = getValueState(I.getOperand(2)); if (ValState.isOverdefined() || EltState.isOverdefined() || IdxState.isOverdefined()) markOverdefined(&I); else if(ValState.isConstant() && EltState.isConstant() && IdxState.isConstant()) markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), EltState.getConstant(), IdxState.getConstant())); else if (ValState.isUndefined() && EltState.isConstant() && IdxState.isConstant()) markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), EltState.getConstant(), IdxState.getConstant())); #endif } void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { // TODO : SCCP does not handle vectors properly. return markOverdefined(&I); #if 0 LatticeVal &V1State = getValueState(I.getOperand(0)); LatticeVal &V2State = getValueState(I.getOperand(1)); LatticeVal &MaskState = getValueState(I.getOperand(2)); if (MaskState.isUndefined() || (V1State.isUndefined() && V2State.isUndefined())) return; // Undefined output if mask or both inputs undefined. if (V1State.isOverdefined() || V2State.isOverdefined() || MaskState.isOverdefined()) { markOverdefined(&I); } else { // A mix of constant/undef inputs. Constant *V1 = V1State.isConstant() ? V1State.getConstant() : UndefValue::get(I.getType()); Constant *V2 = V2State.isConstant() ? V2State.getConstant() : UndefValue::get(I.getType()); Constant *Mask = MaskState.isConstant() ? MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); } #endif } // Handle getelementptr instructions. If all operands are constants then we // can turn this into a getelementptr ConstantExpr. // void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { if (ValueState[&I].isOverdefined()) return; SmallVector<Constant*, 8> Operands; Operands.reserve(I.getNumOperands()); for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { LatticeVal State = getValueState(I.getOperand(i)); if (State.isUndefined()) return; // Operands are not resolved yet. if (State.isOverdefined()) return markOverdefined(&I); assert(State.isConstant() && "Unknown state!"); Operands.push_back(State.getConstant()); } Constant *Ptr = Operands[0]; ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end()); markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices)); } void SCCPSolver::visitStoreInst(StoreInst &SI) { // If this store is of a struct, ignore it. if (SI.getOperand(0)->getType()->isStructTy()) return; if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) return; GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; // Get the value we are storing into the global, then merge it. mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); if (I->second.isOverdefined()) TrackedGlobals.erase(I); // No need to keep tracking this! } // Handle load instructions. If the operand is a constant pointer to a constant // global, we can replace the load with the loaded constant value! void SCCPSolver::visitLoadInst(LoadInst &I) { // If this load is of a struct, just mark the result overdefined. if (I.getType()->isStructTy()) return markAnythingOverdefined(&I); LatticeVal PtrVal = getValueState(I.getOperand(0)); if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! LatticeVal &IV = ValueState[&I]; if (IV.isOverdefined()) return; if (!PtrVal.isConstant() || I.isVolatile()) return markOverdefined(IV, &I); Constant *Ptr = PtrVal.getConstant(); // load null -> null if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) return markConstant(IV, &I, Constant::getNullValue(I.getType())); // Transform load (constant global) into the value loaded. if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { if (!TrackedGlobals.empty()) { // If we are tracking this global, merge in the known value for it. DenseMap<GlobalVariable*, LatticeVal>::iterator It = TrackedGlobals.find(GV); if (It != TrackedGlobals.end()) { mergeInValue(IV, &I, It->second); return; } } } // Transform load from a constant into a constant if possible. if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD)) return markConstant(IV, &I, C); // Otherwise we cannot say for certain what value this load will produce. // Bail out. markOverdefined(IV, &I); } void SCCPSolver::visitCallSite(CallSite CS) { Function *F = CS.getCalledFunction(); Instruction *I = CS.getInstruction(); // The common case is that we aren't tracking the callee, either because we // are not doing interprocedural analysis or the callee is indirect, or is // external. Handle these cases first. if (F == 0 || F->isDeclaration()) { CallOverdefined: // Void return and not tracking callee, just bail. if (I->getType()->isVoidTy()) return; // Otherwise, if we have a single return value case, and if the function is // a declaration, maybe we can constant fold it. if (F && F->isDeclaration() && !I->getType()->isStructTy() && canConstantFoldCallTo(F)) { SmallVector<Constant*, 8> Operands; for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); AI != E; ++AI) { LatticeVal State = getValueState(*AI); if (State.isUndefined()) return; // Operands are not resolved yet. if (State.isOverdefined()) return markOverdefined(I); assert(State.isConstant() && "Unknown state!"); Operands.push_back(State.getConstant()); } // If we can constant fold this, mark the result of the call as a // constant. if (Constant *C = ConstantFoldCall(F, Operands)) return markConstant(I, C); } // Otherwise, we don't know anything about this call, mark it overdefined. return markAnythingOverdefined(I); } // If this is a local function that doesn't have its address taken, mark its // entry block executable and merge in the actual arguments to the call into // the formal arguments of the function. if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ MarkBlockExecutable(F->begin()); // Propagate information from this call site into the callee. CallSite::arg_iterator CAI = CS.arg_begin(); for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI, ++CAI) { // If this argument is byval, and if the function is not readonly, there // will be an implicit copy formed of the input aggregate. if (AI->hasByValAttr() && !F->onlyReadsMemory()) { markOverdefined(AI); continue; } if (StructType *STy = dyn_cast<StructType>(AI->getType())) { for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { LatticeVal CallArg = getStructValueState(*CAI, i); mergeInValue(getStructValueState(AI, i), AI, CallArg); } } else { mergeInValue(AI, getValueState(*CAI)); } } } // If this is a single/zero retval case, see if we're tracking the function. if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { if (!MRVFunctionsTracked.count(F)) goto CallOverdefined; // Not tracking this callee. // If we are tracking this callee, propagate the result of the function // into this call site. for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) mergeInValue(getStructValueState(I, i), I, TrackedMultipleRetVals[std::make_pair(F, i)]); } else { DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); if (TFRVI == TrackedRetVals.end()) goto CallOverdefined; // Not tracking this callee. // If so, propagate the return value of the callee into this call result. mergeInValue(I, TFRVI->second); } } void SCCPSolver::Solve() { // Process the work lists until they are empty! while (!BBWorkList.empty() || !InstWorkList.empty() || !OverdefinedInstWorkList.empty()) { // Process the overdefined instruction's work list first, which drives other // things to overdefined more quickly. while (!OverdefinedInstWorkList.empty()) { Value *I = OverdefinedInstWorkList.pop_back_val(); DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); // "I" got into the work list because it either made the transition from // bottom to constant // // Anything on this worklist that is overdefined need not be visited // since all of its users will have already been marked as overdefined // Update all of the users of this instruction's value. // for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) if (Instruction *I = dyn_cast<Instruction>(*UI)) OperandChangedState(I); } // Process the instruction work list. while (!InstWorkList.empty()) { Value *I = InstWorkList.pop_back_val(); DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); // "I" got into the work list because it made the transition from undef to // constant. // // Anything on this worklist that is overdefined need not be visited // since all of its users will have already been marked as overdefined. // Update all of the users of this instruction's value. // if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) if (Instruction *I = dyn_cast<Instruction>(*UI)) OperandChangedState(I); } // Process the basic block work list. while (!BBWorkList.empty()) { BasicBlock *BB = BBWorkList.back(); BBWorkList.pop_back(); DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); // Notify all instructions in this basic block that they are newly // executable. visit(BB); } } } /// ResolvedUndefsIn - While solving the dataflow for a function, we assume /// that branches on undef values cannot reach any of their successors. /// However, this is not a safe assumption. After we solve dataflow, this /// method should be use to handle this. If this returns true, the solver /// should be rerun. /// /// This method handles this by finding an unresolved branch and marking it one /// of the edges from the block as being feasible, even though the condition /// doesn't say it would otherwise be. This allows SCCP to find the rest of the /// CFG and only slightly pessimizes the analysis results (by marking one, /// potentially infeasible, edge feasible). This cannot usefully modify the /// constraints on the condition of the branch, as that would impact other users /// of the value. /// /// This scan also checks for values that use undefs, whose results are actually /// defined. For example, 'zext i8 undef to i32' should produce all zeros /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, /// even if X isn't defined. bool SCCPSolver::ResolvedUndefsIn(Function &F) { for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { if (!BBExecutable.count(BB)) continue; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { // Look for instructions which produce undef values. if (I->getType()->isVoidTy()) continue; if (StructType *STy = dyn_cast<StructType>(I->getType())) { // Only a few things that can be structs matter for undef. // Tracked calls must never be marked overdefined in ResolvedUndefsIn. if (CallSite CS = CallSite(I)) if (Function *F = CS.getCalledFunction()) if (MRVFunctionsTracked.count(F)) continue; // extractvalue and insertvalue don't need to be marked; they are // tracked as precisely as their operands. if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) continue; // Send the results of everything else to overdefined. We could be // more precise than this but it isn't worth bothering. for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { LatticeVal &LV = getStructValueState(I, i); if (LV.isUndefined()) markOverdefined(LV, I); } continue; } LatticeVal &LV = getValueState(I); if (!LV.isUndefined()) continue; // extractvalue is safe; check here because the argument is a struct. if (isa<ExtractValueInst>(I)) continue; // Compute the operand LatticeVals, for convenience below. // Anything taking a struct is conservatively assumed to require // overdefined markings. if (I->getOperand(0)->getType()->isStructTy()) { markOverdefined(I); return true; } LatticeVal Op0LV = getValueState(I->getOperand(0)); LatticeVal Op1LV; if (I->getNumOperands() == 2) { if (I->getOperand(1)->getType()->isStructTy()) { markOverdefined(I); return true; } Op1LV = getValueState(I->getOperand(1)); } // If this is an instructions whose result is defined even if the input is // not fully defined, propagate the information. Type *ITy = I->getType(); switch (I->getOpcode()) { case Instruction::Add: case Instruction::Sub: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: break; // Any undef -> undef case Instruction::FSub: case Instruction::FAdd: case Instruction::FMul: case Instruction::FDiv: case Instruction::FRem: // Floating-point binary operation: be conservative. if (Op0LV.isUndefined() && Op1LV.isUndefined()) markForcedConstant(I, Constant::getNullValue(ITy)); else markOverdefined(I); return true; case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: // undef -> 0; some outputs are impossible markForcedConstant(I, Constant::getNullValue(ITy)); return true; case Instruction::Mul: case Instruction::And: // Both operands undef -> undef if (Op0LV.isUndefined() && Op1LV.isUndefined()) break; // undef * X -> 0. X could be zero. // undef & X -> 0. X could be zero. markForcedConstant(I, Constant::getNullValue(ITy)); return true; case Instruction::Or: // Both operands undef -> undef if (Op0LV.isUndefined() && Op1LV.isUndefined()) break; // undef | X -> -1. X could be -1. markForcedConstant(I, Constant::getAllOnesValue(ITy)); return true; case Instruction::Xor: // undef ^ undef -> 0; strictly speaking, this is not strictly // necessary, but we try to be nice to people who expect this // behavior in simple cases if (Op0LV.isUndefined() && Op1LV.isUndefined()) { markForcedConstant(I, Constant::getNullValue(ITy)); return true; } // undef ^ X -> undef break; case Instruction::SDiv: case Instruction::UDiv: case Instruction::SRem: case Instruction::URem: // X / undef -> undef. No change. // X % undef -> undef. No change. if (Op1LV.isUndefined()) break; // undef / X -> 0. X could be maxint. // undef % X -> 0. X could be 1. markForcedConstant(I, Constant::getNullValue(ITy)); return true; case Instruction::AShr: // X >>a undef -> undef. if (Op1LV.isUndefined()) break; // undef >>a X -> all ones markForcedConstant(I, Constant::getAllOnesValue(ITy)); return true; case Instruction::LShr: case Instruction::Shl: // X << undef -> undef. // X >> undef -> undef. if (Op1LV.isUndefined()) break; // undef << X -> 0 // undef >> X -> 0 markForcedConstant(I, Constant::getNullValue(ITy)); return true; case Instruction::Select: Op1LV = getValueState(I->getOperand(1)); // undef ? X : Y -> X or Y. There could be commonality between X/Y. if (Op0LV.isUndefined()) { if (!Op1LV.isConstant()) // Pick the constant one if there is any. Op1LV = getValueState(I->getOperand(2)); } else if (Op1LV.isUndefined()) { // c ? undef : undef -> undef. No change. Op1LV = getValueState(I->getOperand(2)); if (Op1LV.isUndefined()) break; // Otherwise, c ? undef : x -> x. } else { // Leave Op1LV as Operand(1)'s LatticeValue. } if (Op1LV.isConstant()) markForcedConstant(I, Op1LV.getConstant()); else markOverdefined(I); return true; case Instruction::Load: // A load here means one of two things: a load of undef from a global, // a load from an unknown pointer. Either way, having it return undef // is okay. break; case Instruction::ICmp: // X == undef -> undef. Other comparisons get more complicated. if (cast<ICmpInst>(I)->isEquality()) break; markOverdefined(I); return true; case Instruction::Call: case Instruction::Invoke: { // There are two reasons a call can have an undef result // 1. It could be tracked. // 2. It could be constant-foldable. // Because of the way we solve return values, tracked calls must // never be marked overdefined in ResolvedUndefsIn. if (Function *F = CallSite(I).getCalledFunction()) if (TrackedRetVals.count(F)) break; // If the call is constant-foldable, we mark it overdefined because // we do not know what return values are valid. markOverdefined(I); return true; } default: // If we don't know what should happen here, conservatively mark it // overdefined. markOverdefined(I); return true; } } // Check to see if we have a branch or switch on an undefined value. If so // we force the branch to go one way or the other to make the successor // values live. It doesn't really matter which way we force it. TerminatorInst *TI = BB->getTerminator(); if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { if (!BI->isConditional()) continue; if (!getValueState(BI->getCondition()).isUndefined()) continue; // If the input to SCCP is actually branch on undef, fix the undef to // false. if (isa<UndefValue>(BI->getCondition())) { BI->setCondition(ConstantInt::getFalse(BI->getContext())); markEdgeExecutable(BB, TI->getSuccessor(1)); return true; } // Otherwise, it is a branch on a symbolic value which is currently // considered to be undef. Handle this by forcing the input value to the // branch to false. markForcedConstant(BI->getCondition(), ConstantInt::getFalse(TI->getContext())); return true; } if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { if (SI->getNumSuccessors() < 2) // no cases continue; if (!getValueState(SI->getCondition()).isUndefined()) continue; // If the input to SCCP is actually switch on undef, fix the undef to // the first constant. if (isa<UndefValue>(SI->getCondition())) { SI->setCondition(SI->getCaseValue(1)); markEdgeExecutable(BB, TI->getSuccessor(1)); return true; } markForcedConstant(SI->getCondition(), SI->getCaseValue(1)); return true; } } return false; } namespace { //===--------------------------------------------------------------------===// // /// SCCP Class - This class uses the SCCPSolver to implement a per-function /// Sparse Conditional Constant Propagator. /// struct SCCP : public FunctionPass { static char ID; // Pass identification, replacement for typeid SCCP() : FunctionPass(ID) { initializeSCCPPass(*PassRegistry::getPassRegistry()); } // runOnFunction - Run the Sparse Conditional Constant Propagation // algorithm, and return true if the function was modified. // bool runOnFunction(Function &F); }; } // end anonymous namespace char SCCP::ID = 0; INITIALIZE_PASS(SCCP, "sccp", "Sparse Conditional Constant Propagation", false, false) // createSCCPPass - This is the public interface to this file. FunctionPass *llvm::createSCCPPass() { return new SCCP(); } static void DeleteInstructionInBlock(BasicBlock *BB) { DEBUG(dbgs() << " BasicBlock Dead:" << *BB); ++NumDeadBlocks; // Check to see if there are non-terminating instructions to delete. if (isa<TerminatorInst>(BB->begin())) return; // Delete the instructions backwards, as it has a reduced likelihood of having // to update as many def-use and use-def chains. Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. while (EndInst != BB->begin()) { // Delete the next to last instruction. BasicBlock::iterator I = EndInst; Instruction *Inst = --I; if (!Inst->use_empty()) Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); if (isa<LandingPadInst>(Inst)) { EndInst = Inst; continue; } BB->getInstList().erase(Inst); ++NumInstRemoved; } } // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, // and return true if the function was modified. // bool SCCP::runOnFunction(Function &F) { DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); SCCPSolver Solver(getAnalysisIfAvailable<TargetData>()); // Mark the first block of the function as being executable. Solver.MarkBlockExecutable(F.begin()); // Mark all arguments to the function as being overdefined. for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) Solver.markAnythingOverdefined(AI); // Solve for constants. bool ResolvedUndefs = true; while (ResolvedUndefs) { Solver.Solve(); DEBUG(dbgs() << "RESOLVING UNDEFs\n"); ResolvedUndefs = Solver.ResolvedUndefsIn(F); } bool MadeChanges = false; // If we decided that there are basic blocks that are dead in this function, // delete their contents now. Note that we cannot actually delete the blocks, // as we cannot modify the CFG of the function. for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { if (!Solver.isBlockExecutable(BB)) { DeleteInstructionInBlock(BB); MadeChanges = true; continue; } // Iterate over all of the instructions in a function, replacing them with // constants if we have found them to be of constant values. // for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { Instruction *Inst = BI++; if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) continue; // TODO: Reconstruct structs from their elements. if (Inst->getType()->isStructTy()) continue; LatticeVal IV = Solver.getLatticeValueFor(Inst); if (IV.isOverdefined()) continue; Constant *Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(Inst->getType()); DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst); // Replaces all of the uses of a variable with uses of the constant. Inst->replaceAllUsesWith(Const); // Delete the instruction. Inst->eraseFromParent(); // Hey, we just changed something! MadeChanges = true; ++NumInstRemoved; } } return MadeChanges; } namespace { //===--------------------------------------------------------------------===// // /// IPSCCP Class - This class implements interprocedural Sparse Conditional /// Constant Propagation. /// struct IPSCCP : public ModulePass { static char ID; IPSCCP() : ModulePass(ID) { initializeIPSCCPPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M); }; } // end anonymous namespace char IPSCCP::ID = 0; INITIALIZE_PASS(IPSCCP, "ipsccp", "Interprocedural Sparse Conditional Constant Propagation", false, false) // createIPSCCPPass - This is the public interface to this file. ModulePass *llvm::createIPSCCPPass() { return new IPSCCP(); } static bool AddressIsTaken(const GlobalValue *GV) { // Delete any dead constantexpr klingons. GV->removeDeadConstantUsers(); for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E; ++UI) { const User *U = *UI; if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { if (SI->getOperand(0) == GV || SI->isVolatile()) return true; // Storing addr of GV. } else if (isa<InvokeInst>(U) || isa<CallInst>(U)) { // Make sure we are calling the function, not passing the address. ImmutableCallSite CS(cast<Instruction>(U)); if (!CS.isCallee(UI)) return true; } else if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { if (LI->isVolatile()) return true; } else if (isa<BlockAddress>(U)) { // blockaddress doesn't take the address of the function, it takes addr // of label. } else { return true; } } return false; } bool IPSCCP::runOnModule(Module &M) { SCCPSolver Solver(getAnalysisIfAvailable<TargetData>()); // AddressTakenFunctions - This set keeps track of the address-taken functions // that are in the input. As IPSCCP runs through and simplifies code, // functions that were address taken can end up losing their // address-taken-ness. Because of this, we keep track of their addresses from // the first pass so we can use them for the later simplification pass. SmallPtrSet<Function*, 32> AddressTakenFunctions; // Loop over all functions, marking arguments to those with their addresses // taken or that are external as overdefined. // for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { if (F->isDeclaration()) continue; // If this is a strong or ODR definition of this function, then we can // propagate information about its result into callsites of it. if (!F->mayBeOverridden()) Solver.AddTrackedFunction(F); // If this function only has direct calls that we can see, we can track its // arguments and return value aggressively, and can assume it is not called // unless we see evidence to the contrary. if (F->hasLocalLinkage()) { if (AddressIsTaken(F)) AddressTakenFunctions.insert(F); else { Solver.AddArgumentTrackedFunction(F); continue; } } // Assume the function is called. Solver.MarkBlockExecutable(F->begin()); // Assume nothing about the incoming arguments. for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI) Solver.markAnythingOverdefined(AI); } // Loop over global variables. We inform the solver about any internal global // variables that do not have their 'addresses taken'. If they don't have // their addresses taken, we can propagate constants through them. for (Module::global_iterator G = M.global_begin(), E = M.global_end(); G != E; ++G) if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G)) Solver.TrackValueOfGlobalVariable(G); // Solve for constants. bool ResolvedUndefs = true; while (ResolvedUndefs) { Solver.Solve(); DEBUG(dbgs() << "RESOLVING UNDEFS\n"); ResolvedUndefs = false; for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); } bool MadeChanges = false; // Iterate over all of the instructions in the module, replacing them with // constants if we have found them to be of constant values. // SmallVector<BasicBlock*, 512> BlocksToErase; for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { if (Solver.isBlockExecutable(F->begin())) { for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI) { if (AI->use_empty() || AI->getType()->isStructTy()) continue; // TODO: Could use getStructLatticeValueFor to find out if the entire // result is a constant and replace it entirely if so. LatticeVal IV = Solver.getLatticeValueFor(AI); if (IV.isOverdefined()) continue; Constant *CST = IV.isConstant() ? IV.getConstant() : UndefValue::get(AI->getType()); DEBUG(dbgs() << "*** Arg " << *AI << " = " << *CST <<"\n"); // Replaces all of the uses of a variable with uses of the // constant. AI->replaceAllUsesWith(CST); ++IPNumArgsElimed; } } for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { if (!Solver.isBlockExecutable(BB)) { DeleteInstructionInBlock(BB); MadeChanges = true; TerminatorInst *TI = BB->getTerminator(); for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { BasicBlock *Succ = TI->getSuccessor(i); if (!Succ->empty() && isa<PHINode>(Succ->begin())) TI->getSuccessor(i)->removePredecessor(BB); } if (!TI->use_empty()) TI->replaceAllUsesWith(UndefValue::get(TI->getType())); TI->eraseFromParent(); if (&*BB != &F->front()) BlocksToErase.push_back(BB); else new UnreachableInst(M.getContext(), BB); continue; } for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { Instruction *Inst = BI++; if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy()) continue; // TODO: Could use getStructLatticeValueFor to find out if the entire // result is a constant and replace it entirely if so. LatticeVal IV = Solver.getLatticeValueFor(Inst); if (IV.isOverdefined()) continue; Constant *Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(Inst->getType()); DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst); // Replaces all of the uses of a variable with uses of the // constant. Inst->replaceAllUsesWith(Const); // Delete the instruction. if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) Inst->eraseFromParent(); // Hey, we just changed something! MadeChanges = true; ++IPNumInstRemoved; } } // Now that all instructions in the function are constant folded, erase dead // blocks, because we can now use ConstantFoldTerminator to get rid of // in-edges. for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { // If there are any PHI nodes in this successor, drop entries for BB now. BasicBlock *DeadBB = BlocksToErase[i]; for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end(); UI != UE; ) { // Grab the user and then increment the iterator early, as the user // will be deleted. Step past all adjacent uses from the same user. Instruction *I = dyn_cast<Instruction>(*UI); do { ++UI; } while (UI != UE && *UI == I); // Ignore blockaddress users; BasicBlock's dtor will handle them. if (!I) continue; bool Folded = ConstantFoldTerminator(I->getParent()); if (!Folded) { // The constant folder may not have been able to fold the terminator // if this is a branch or switch on undef. Fold it manually as a // branch to the first successor. #ifndef NDEBUG if (BranchInst *BI = dyn_cast<BranchInst>(I)) { assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && "Branch should be foldable!"); } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); } else { llvm_unreachable("Didn't fold away reference to block!"); } #endif // Make this an uncond branch to the first successor. TerminatorInst *TI = I->getParent()->getTerminator(); BranchInst::Create(TI->getSuccessor(0), TI); // Remove entries in successor phi nodes to remove edges. for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) TI->getSuccessor(i)->removePredecessor(TI->getParent()); // Remove the old terminator. TI->eraseFromParent(); } } // Finally, delete the basic block. F->getBasicBlockList().erase(DeadBB); } BlocksToErase.clear(); } // If we inferred constant or undef return values for a function, we replaced // all call uses with the inferred value. This means we don't need to bother // actually returning anything from the function. Replace all return // instructions with return undef. // // Do this in two stages: first identify the functions we should process, then // actually zap their returns. This is important because we can only do this // if the address of the function isn't taken. In cases where a return is the // last use of a function, the order of processing functions would affect // whether other functions are optimizable. SmallVector<ReturnInst*, 8> ReturnsToZap; // TODO: Process multiple value ret instructions also. const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), E = RV.end(); I != E; ++I) { Function *F = I->first; if (I->second.isOverdefined() || F->getReturnType()->isVoidTy()) continue; // We can only do this if we know that nothing else can call the function. if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F)) continue; for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) if (!isa<UndefValue>(RI->getOperand(0))) ReturnsToZap.push_back(RI); } // Zap all returns which we've identified as zap to change. for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { Function *F = ReturnsToZap[i]->getParent()->getParent(); ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); } // If we inferred constant or undef values for globals variables, we can delete // the global and any stores that remain to it. const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), E = TG.end(); I != E; ++I) { GlobalVariable *GV = I->first; assert(!I->second.isOverdefined() && "Overdefined values should have been taken out of the map!"); DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n"); while (!GV->use_empty()) { StoreInst *SI = cast<StoreInst>(GV->use_back()); SI->eraseFromParent(); } M.getGlobalList().erase(GV); ++IPNumGlobalConst; } return MadeChanges; }