//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a simple pass that applies a variety of small // optimizations for calls to specific well-known function calls (e.g. runtime // library functions). Any optimization that takes the very simple form // "replace call to library function with simpler code that provides the same // result" belongs in this file. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "simplify-libcalls" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BuildLibCalls.h" #include "llvm/Intrinsics.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Support/IRBuilder.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLibraryInfo.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Config/config.h" // FIXME: Shouldn't depend on host! using namespace llvm; STATISTIC(NumSimplified, "Number of library calls simplified"); STATISTIC(NumAnnotated, "Number of attributes added to library functions"); //===----------------------------------------------------------------------===// // Optimizer Base Class //===----------------------------------------------------------------------===// /// This class is the abstract base class for the set of optimizations that /// corresponds to one library call. namespace { class LibCallOptimization { protected: Function *Caller; const TargetData *TD; const TargetLibraryInfo *TLI; LLVMContext* Context; public: LibCallOptimization() { } virtual ~LibCallOptimization() {} /// CallOptimizer - This pure virtual method is implemented by base classes to /// do various optimizations. If this returns null then no transformation was /// performed. If it returns CI, then it transformed the call and CI is to be /// deleted. If it returns something else, replace CI with the new value and /// delete CI. virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) =0; Value *OptimizeCall(CallInst *CI, const TargetData *TD, const TargetLibraryInfo *TLI, IRBuilder<> &B) { Caller = CI->getParent()->getParent(); this->TD = TD; this->TLI = TLI; if (CI->getCalledFunction()) Context = &CI->getCalledFunction()->getContext(); // We never change the calling convention. if (CI->getCallingConv() != llvm::CallingConv::C) return NULL; return CallOptimizer(CI->getCalledFunction(), CI, B); } }; } // End anonymous namespace. //===----------------------------------------------------------------------===// // Helper Functions //===----------------------------------------------------------------------===// /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the /// value is equal or not-equal to zero. static bool IsOnlyUsedInZeroEqualityComparison(Value *V) { for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) { if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) if (IC->isEquality()) if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) if (C->isNullValue()) continue; // Unknown instruction. return false; } return true; } static bool CallHasFloatingPointArgument(const CallInst *CI) { for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end(); it != e; ++it) { if ((*it)->getType()->isFloatingPointTy()) return true; } return false; } /// IsOnlyUsedInEqualityComparison - Return true if it is only used in equality /// comparisons with With. static bool IsOnlyUsedInEqualityComparison(Value *V, Value *With) { for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) { if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) if (IC->isEquality() && IC->getOperand(1) == With) continue; // Unknown instruction. return false; } return true; } //===----------------------------------------------------------------------===// // String and Memory LibCall Optimizations //===----------------------------------------------------------------------===// //===---------------------------------------===// // 'strcat' Optimizations namespace { struct StrCatOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Verify the "strcat" function prototype. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || FT->getParamType(0) != FT->getReturnType() || FT->getParamType(1) != FT->getReturnType()) return 0; // Extract some information from the instruction Value *Dst = CI->getArgOperand(0); Value *Src = CI->getArgOperand(1); // See if we can get the length of the input string. uint64_t Len = GetStringLength(Src); if (Len == 0) return 0; --Len; // Unbias length. // Handle the simple, do-nothing case: strcat(x, "") -> x if (Len == 0) return Dst; // These optimizations require TargetData. if (!TD) return 0; EmitStrLenMemCpy(Src, Dst, Len, B); return Dst; } void EmitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, IRBuilder<> &B) { // We need to find the end of the destination string. That's where the // memory is to be moved to. We just generate a call to strlen. Value *DstLen = EmitStrLen(Dst, B, TD); // Now that we have the destination's length, we must index into the // destination's pointer to get the actual memcpy destination (end of // the string .. we're concatenating). Value *CpyDst = B.CreateGEP(Dst, DstLen, "endptr"); // We have enough information to now generate the memcpy call to do the // concatenation for us. Make a memcpy to copy the nul byte with align = 1. B.CreateMemCpy(CpyDst, Src, ConstantInt::get(TD->getIntPtrType(*Context), Len + 1), 1); } }; //===---------------------------------------===// // 'strncat' Optimizations struct StrNCatOpt : public StrCatOpt { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Verify the "strncat" function prototype. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() || FT->getParamType(0) != FT->getReturnType() || FT->getParamType(1) != FT->getReturnType() || !FT->getParamType(2)->isIntegerTy()) return 0; // Extract some information from the instruction Value *Dst = CI->getArgOperand(0); Value *Src = CI->getArgOperand(1); uint64_t Len; // We don't do anything if length is not constant if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) Len = LengthArg->getZExtValue(); else return 0; // See if we can get the length of the input string. uint64_t SrcLen = GetStringLength(Src); if (SrcLen == 0) return 0; --SrcLen; // Unbias length. // Handle the simple, do-nothing cases: // strncat(x, "", c) -> x // strncat(x, c, 0) -> x if (SrcLen == 0 || Len == 0) return Dst; // These optimizations require TargetData. if (!TD) return 0; // We don't optimize this case if (Len < SrcLen) return 0; // strncat(x, s, c) -> strcat(x, s) // s is constant so the strcat can be optimized further EmitStrLenMemCpy(Src, Dst, SrcLen, B); return Dst; } }; //===---------------------------------------===// // 'strchr' Optimizations struct StrChrOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Verify the "strchr" function prototype. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || FT->getParamType(0) != FT->getReturnType() || !FT->getParamType(1)->isIntegerTy(32)) return 0; Value *SrcStr = CI->getArgOperand(0); // If the second operand is non-constant, see if we can compute the length // of the input string and turn this into memchr. ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); if (CharC == 0) { // These optimizations require TargetData. if (!TD) return 0; uint64_t Len = GetStringLength(SrcStr); if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32))// memchr needs i32. return 0; return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul. ConstantInt::get(TD->getIntPtrType(*Context), Len), B, TD); } // Otherwise, the character is a constant, see if the first argument is // a string literal. If so, we can constant fold. std::string Str; if (!GetConstantStringInfo(SrcStr, Str)) return 0; // strchr can find the nul character. Str += '\0'; // Compute the offset. size_t I = Str.find(CharC->getSExtValue()); if (I == std::string::npos) // Didn't find the char. strchr returns null. return Constant::getNullValue(CI->getType()); // strchr(s+n,c) -> gep(s+n+i,c) return B.CreateGEP(SrcStr, B.getInt64(I), "strchr"); } }; //===---------------------------------------===// // 'strrchr' Optimizations struct StrRChrOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Verify the "strrchr" function prototype. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() || FT->getParamType(0) != FT->getReturnType() || !FT->getParamType(1)->isIntegerTy(32)) return 0; Value *SrcStr = CI->getArgOperand(0); ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); // Cannot fold anything if we're not looking for a constant. if (!CharC) return 0; std::string Str; if (!GetConstantStringInfo(SrcStr, Str)) { // strrchr(s, 0) -> strchr(s, 0) if (TD && CharC->isZero()) return EmitStrChr(SrcStr, '\0', B, TD); return 0; } // strrchr can find the nul character. Str += '\0'; // Compute the offset. size_t I = Str.rfind(CharC->getSExtValue()); if (I == std::string::npos) // Didn't find the char. Return null. return Constant::getNullValue(CI->getType()); // strrchr(s+n,c) -> gep(s+n+i,c) return B.CreateGEP(SrcStr, B.getInt64(I), "strrchr"); } }; //===---------------------------------------===// // 'strcmp' Optimizations struct StrCmpOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Verify the "strcmp" function prototype. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != B.getInt8PtrTy()) return 0; Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); if (Str1P == Str2P) // strcmp(x,x) -> 0 return ConstantInt::get(CI->getType(), 0); std::string Str1, Str2; bool HasStr1 = GetConstantStringInfo(Str1P, Str1); bool HasStr2 = GetConstantStringInfo(Str2P, Str2); // strcmp(x, y) -> cnst (if both x and y are constant strings) if (HasStr1 && HasStr2) return ConstantInt::get(CI->getType(), StringRef(Str1).compare(Str2)); if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); // strcmp(P, "x") -> memcmp(P, "x", 2) uint64_t Len1 = GetStringLength(Str1P); uint64_t Len2 = GetStringLength(Str2P); if (Len1 && Len2) { // These optimizations require TargetData. if (!TD) return 0; return EmitMemCmp(Str1P, Str2P, ConstantInt::get(TD->getIntPtrType(*Context), std::min(Len1, Len2)), B, TD); } return 0; } }; //===---------------------------------------===// // 'strncmp' Optimizations struct StrNCmpOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Verify the "strncmp" function prototype. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != B.getInt8PtrTy() || !FT->getParamType(2)->isIntegerTy()) return 0; Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); if (Str1P == Str2P) // strncmp(x,x,n) -> 0 return ConstantInt::get(CI->getType(), 0); // Get the length argument if it is constant. uint64_t Length; if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) Length = LengthArg->getZExtValue(); else return 0; if (Length == 0) // strncmp(x,y,0) -> 0 return ConstantInt::get(CI->getType(), 0); if (TD && Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, TD); std::string Str1, Str2; bool HasStr1 = GetConstantStringInfo(Str1P, Str1); bool HasStr2 = GetConstantStringInfo(Str2P, Str2); // strncmp(x, y) -> cnst (if both x and y are constant strings) if (HasStr1 && HasStr2) { StringRef SubStr1 = StringRef(Str1).substr(0, Length); StringRef SubStr2 = StringRef(Str2).substr(0, Length); return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); } if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x return B.CreateNeg(B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType())); if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType()); return 0; } }; //===---------------------------------------===// // 'strcpy' Optimizations struct StrCpyOpt : public LibCallOptimization { bool OptChkCall; // True if it's optimizing a __strcpy_chk libcall. StrCpyOpt(bool c) : OptChkCall(c) {} virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Verify the "strcpy" function prototype. unsigned NumParams = OptChkCall ? 3 : 2; FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != NumParams || FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != B.getInt8PtrTy()) return 0; Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); if (Dst == Src) // strcpy(x,x) -> x return Src; // These optimizations require TargetData. if (!TD) return 0; // See if we can get the length of the input string. uint64_t Len = GetStringLength(Src); if (Len == 0) return 0; // We have enough information to now generate the memcpy call to do the // concatenation for us. Make a memcpy to copy the nul byte with align = 1. if (OptChkCall) EmitMemCpyChk(Dst, Src, ConstantInt::get(TD->getIntPtrType(*Context), Len), CI->getArgOperand(2), B, TD); else B.CreateMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(*Context), Len), 1); return Dst; } }; //===---------------------------------------===// // 'strncpy' Optimizations struct StrNCpyOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != FT->getParamType(1) || FT->getParamType(0) != B.getInt8PtrTy() || !FT->getParamType(2)->isIntegerTy()) return 0; Value *Dst = CI->getArgOperand(0); Value *Src = CI->getArgOperand(1); Value *LenOp = CI->getArgOperand(2); // See if we can get the length of the input string. uint64_t SrcLen = GetStringLength(Src); if (SrcLen == 0) return 0; --SrcLen; if (SrcLen == 0) { // strncpy(x, "", y) -> memset(x, '\0', y, 1) B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); return Dst; } uint64_t Len; if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) Len = LengthArg->getZExtValue(); else return 0; if (Len == 0) return Dst; // strncpy(x, y, 0) -> x // These optimizations require TargetData. if (!TD) return 0; // Let strncpy handle the zero padding if (Len > SrcLen+1) return 0; // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant] B.CreateMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(*Context), Len), 1); return Dst; } }; //===---------------------------------------===// // 'strlen' Optimizations struct StrLenOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() || !FT->getReturnType()->isIntegerTy()) return 0; Value *Src = CI->getArgOperand(0); // Constant folding: strlen("xyz") -> 3 if (uint64_t Len = GetStringLength(Src)) return ConstantInt::get(CI->getType(), Len-1); // strlen(x) != 0 --> *x != 0 // strlen(x) == 0 --> *x == 0 if (IsOnlyUsedInZeroEqualityComparison(CI)) return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType()); return 0; } }; //===---------------------------------------===// // 'strpbrk' Optimizations struct StrPBrkOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || FT->getParamType(1) != FT->getParamType(0) || FT->getReturnType() != FT->getParamType(0)) return 0; std::string S1, S2; bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1); bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2); // strpbrk(s, "") -> NULL // strpbrk("", s) -> NULL if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) return Constant::getNullValue(CI->getType()); // Constant folding. if (HasS1 && HasS2) { size_t I = S1.find_first_of(S2); if (I == std::string::npos) // No match. return Constant::getNullValue(CI->getType()); return B.CreateGEP(CI->getArgOperand(0), B.getInt64(I), "strpbrk"); } // strpbrk(s, "a") -> strchr(s, 'a') if (TD && HasS2 && S2.size() == 1) return EmitStrChr(CI->getArgOperand(0), S2[0], B, TD); return 0; } }; //===---------------------------------------===// // 'strto*' Optimizations. This handles strtol, strtod, strtof, strtoul, etc. struct StrToOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy()) return 0; Value *EndPtr = CI->getArgOperand(1); if (isa<ConstantPointerNull>(EndPtr)) { // With a null EndPtr, this function won't capture the main argument. // It would be readonly too, except that it still may write to errno. CI->addAttribute(1, Attribute::NoCapture); } return 0; } }; //===---------------------------------------===// // 'strspn' Optimizations struct StrSpnOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || FT->getParamType(1) != FT->getParamType(0) || !FT->getReturnType()->isIntegerTy()) return 0; std::string S1, S2; bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1); bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2); // strspn(s, "") -> 0 // strspn("", s) -> 0 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) return Constant::getNullValue(CI->getType()); // Constant folding. if (HasS1 && HasS2) return ConstantInt::get(CI->getType(), strspn(S1.c_str(), S2.c_str())); return 0; } }; //===---------------------------------------===// // 'strcspn' Optimizations struct StrCSpnOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() || FT->getParamType(1) != FT->getParamType(0) || !FT->getReturnType()->isIntegerTy()) return 0; std::string S1, S2; bool HasS1 = GetConstantStringInfo(CI->getArgOperand(0), S1); bool HasS2 = GetConstantStringInfo(CI->getArgOperand(1), S2); // strcspn("", s) -> 0 if (HasS1 && S1.empty()) return Constant::getNullValue(CI->getType()); // Constant folding. if (HasS1 && HasS2) return ConstantInt::get(CI->getType(), strcspn(S1.c_str(), S2.c_str())); // strcspn(s, "") -> strlen(s) if (TD && HasS2 && S2.empty()) return EmitStrLen(CI->getArgOperand(0), B, TD); return 0; } }; //===---------------------------------------===// // 'strstr' Optimizations struct StrStrOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || !FT->getReturnType()->isPointerTy()) return 0; // fold strstr(x, x) -> x. if (CI->getArgOperand(0) == CI->getArgOperand(1)) return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 if (TD && IsOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, TD); Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), StrLen, B, TD); for (Value::use_iterator UI = CI->use_begin(), UE = CI->use_end(); UI != UE; ) { ICmpInst *Old = cast<ICmpInst>(*UI++); Value *Cmp = B.CreateICmp(Old->getPredicate(), StrNCmp, ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); Old->replaceAllUsesWith(Cmp); Old->eraseFromParent(); } return CI; } // See if either input string is a constant string. std::string SearchStr, ToFindStr; bool HasStr1 = GetConstantStringInfo(CI->getArgOperand(0), SearchStr); bool HasStr2 = GetConstantStringInfo(CI->getArgOperand(1), ToFindStr); // fold strstr(x, "") -> x. if (HasStr2 && ToFindStr.empty()) return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); // If both strings are known, constant fold it. if (HasStr1 && HasStr2) { std::string::size_type Offset = SearchStr.find(ToFindStr); if (Offset == std::string::npos) // strstr("foo", "bar") -> null return Constant::getNullValue(CI->getType()); // strstr("abcd", "bc") -> gep((char*)"abcd", 1) Value *Result = CastToCStr(CI->getArgOperand(0), B); Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr"); return B.CreateBitCast(Result, CI->getType()); } // fold strstr(x, "y") -> strchr(x, 'y'). if (HasStr2 && ToFindStr.size() == 1) return B.CreateBitCast(EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TD), CI->getType()); return 0; } }; //===---------------------------------------===// // 'memcmp' Optimizations struct MemCmpOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || !FT->getReturnType()->isIntegerTy(32)) return 0; Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); if (LHS == RHS) // memcmp(s,s,x) -> 0 return Constant::getNullValue(CI->getType()); // Make sure we have a constant length. ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); if (!LenC) return 0; uint64_t Len = LenC->getZExtValue(); if (Len == 0) // memcmp(s1,s2,0) -> 0 return Constant::getNullValue(CI->getType()); // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS if (Len == 1) { Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"), CI->getType(), "lhsv"); Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"), CI->getType(), "rhsv"); return B.CreateSub(LHSV, RHSV, "chardiff"); } // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant) std::string LHSStr, RHSStr; if (GetConstantStringInfo(LHS, LHSStr) && GetConstantStringInfo(RHS, RHSStr)) { // Make sure we're not reading out-of-bounds memory. if (Len > LHSStr.length() || Len > RHSStr.length()) return 0; uint64_t Ret = memcmp(LHSStr.data(), RHSStr.data(), Len); return ConstantInt::get(CI->getType(), Ret); } return 0; } }; //===---------------------------------------===// // 'memcpy' Optimizations struct MemCpyOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // These optimizations require TargetData. if (!TD) return 0; FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != TD->getIntPtrType(*Context)) return 0; // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1) B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), 1); return CI->getArgOperand(0); } }; //===---------------------------------------===// // 'memmove' Optimizations struct MemMoveOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // These optimizations require TargetData. if (!TD) return 0; FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != TD->getIntPtrType(*Context)) return 0; // memmove(x, y, n) -> llvm.memmove(x, y, n, 1) B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), 1); return CI->getArgOperand(0); } }; //===---------------------------------------===// // 'memset' Optimizations struct MemSetOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // These optimizations require TargetData. if (!TD) return 0; FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != TD->getIntPtrType(*Context)) return 0; // memset(p, v, n) -> llvm.memset(p, v, n, 1) Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); return CI->getArgOperand(0); } }; //===----------------------------------------------------------------------===// // Math Library Optimizations //===----------------------------------------------------------------------===// //===---------------------------------------===// // 'pow*' Optimizations struct PowOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); // Just make sure this has 2 arguments of the same FP type, which match the // result type. if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) || FT->getParamType(0) != FT->getParamType(1) || !FT->getParamType(0)->isFloatingPointTy()) return 0; Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1); if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0 return Op1C; if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x) return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes()); } ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2); if (Op2C == 0) return 0; if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0 return ConstantFP::get(CI->getType(), 1.0); if (Op2C->isExactlyValue(0.5)) { // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))). // This is faster than calling pow, and still handles negative zero // and negative infinite correctly. // TODO: In fast-math mode, this could be just sqrt(x). // TODO: In finite-only mode, this could be just fabs(sqrt(x)). Value *Inf = ConstantFP::getInfinity(CI->getType()); Value *NegInf = ConstantFP::getInfinity(CI->getType(), true); Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes()); Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes()); Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf); Value *Sel = B.CreateSelect(FCmp, Inf, FAbs); return Sel; } if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x return Op1; if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x return B.CreateFMul(Op1, Op1, "pow2"); if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip"); return 0; } }; //===---------------------------------------===// // 'exp2' Optimizations struct Exp2Opt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); // Just make sure this has 1 argument of FP type, which matches the // result type. if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isFloatingPointTy()) return 0; Value *Op = CI->getArgOperand(0); // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 Value *LdExpArg = 0; if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); } if (LdExpArg) { const char *Name; if (Op->getType()->isFloatTy()) Name = "ldexpf"; else if (Op->getType()->isDoubleTy()) Name = "ldexp"; else Name = "ldexpl"; Constant *One = ConstantFP::get(*Context, APFloat(1.0f)); if (!Op->getType()->isFloatTy()) One = ConstantExpr::getFPExtend(One, Op->getType()); Module *M = Caller->getParent(); Value *Callee = M->getOrInsertFunction(Name, Op->getType(), Op->getType(), B.getInt32Ty(), NULL); CallInst *CI = B.CreateCall2(Callee, One, LdExpArg); if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) CI->setCallingConv(F->getCallingConv()); return CI; } return 0; } }; //===---------------------------------------===// // Double -> Float Shrinking Optimizations for Unary Functions like 'floor' struct UnaryDoubleFPOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() || !FT->getParamType(0)->isDoubleTy()) return 0; // If this is something like 'floor((double)floatval)', convert to floorf. FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0)); if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy()) return 0; // floor((double)floatval) -> (double)floorf(floatval) Value *V = Cast->getOperand(0); V = EmitUnaryFloatFnCall(V, Callee->getName().data(), B, Callee->getAttributes()); return B.CreateFPExt(V, B.getDoubleTy()); } }; //===----------------------------------------------------------------------===// // Integer Optimizations //===----------------------------------------------------------------------===// //===---------------------------------------===// // 'ffs*' Optimizations struct FFSOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); // Just make sure this has 2 arguments of the same FP type, which match the // result type. if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32) || !FT->getParamType(0)->isIntegerTy()) return 0; Value *Op = CI->getArgOperand(0); // Constant fold. if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { if (CI->getValue() == 0) // ffs(0) -> 0. return Constant::getNullValue(CI->getType()); // ffs(c) -> cttz(c)+1 return B.getInt32(CI->getValue().countTrailingZeros() + 1); } // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 Type *ArgType = Op->getType(); Value *F = Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType); Value *V = B.CreateCall(F, Op, "cttz"); V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); V = B.CreateIntCast(V, B.getInt32Ty(), false); Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); return B.CreateSelect(Cond, V, B.getInt32(0)); } }; //===---------------------------------------===// // 'isdigit' Optimizations struct IsDigitOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); // We require integer(i32) if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || !FT->getParamType(0)->isIntegerTy(32)) return 0; // isdigit(c) -> (c-'0') <u 10 Value *Op = CI->getArgOperand(0); Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); return B.CreateZExt(Op, CI->getType()); } }; //===---------------------------------------===// // 'isascii' Optimizations struct IsAsciiOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); // We require integer(i32) if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || !FT->getParamType(0)->isIntegerTy(32)) return 0; // isascii(c) -> c <u 128 Value *Op = CI->getArgOperand(0); Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); return B.CreateZExt(Op, CI->getType()); } }; //===---------------------------------------===// // 'abs', 'labs', 'llabs' Optimizations struct AbsOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); // We require integer(integer) where the types agree. if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() || FT->getParamType(0) != FT->getReturnType()) return 0; // abs(x) -> x >s -1 ? x : -x Value *Op = CI->getArgOperand(0); Value *Pos = B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos"); Value *Neg = B.CreateNeg(Op, "neg"); return B.CreateSelect(Pos, Op, Neg); } }; //===---------------------------------------===// // 'toascii' Optimizations struct ToAsciiOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { FunctionType *FT = Callee->getFunctionType(); // We require i32(i32) if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) || !FT->getParamType(0)->isIntegerTy(32)) return 0; // isascii(c) -> c & 0x7f return B.CreateAnd(CI->getArgOperand(0), ConstantInt::get(CI->getType(),0x7F)); } }; //===----------------------------------------------------------------------===// // Formatting and IO Optimizations //===----------------------------------------------------------------------===// //===---------------------------------------===// // 'printf' Optimizations struct PrintFOpt : public LibCallOptimization { Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Check for a fixed format string. std::string FormatStr; if (!GetConstantStringInfo(CI->getArgOperand(0), FormatStr)) return 0; // Empty format string -> noop. if (FormatStr.empty()) // Tolerate printf's declared void. return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 0); // Do not do any of the following transformations if the printf return value // is used, in general the printf return value is not compatible with either // putchar() or puts(). if (!CI->use_empty()) return 0; // printf("x") -> putchar('x'), even for '%'. if (FormatStr.size() == 1) { Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TD); if (CI->use_empty()) return CI; return B.CreateIntCast(Res, CI->getType(), true); } // printf("foo\n") --> puts("foo") if (FormatStr[FormatStr.size()-1] == '\n' && FormatStr.find('%') == std::string::npos) { // no format characters. // Create a string literal with no \n on it. We expect the constant merge // pass to be run after this pass, to merge duplicate strings. FormatStr.erase(FormatStr.end()-1); Constant *C = ConstantArray::get(*Context, FormatStr, true); C = new GlobalVariable(*Callee->getParent(), C->getType(), true, GlobalVariable::InternalLinkage, C, "str"); EmitPutS(C, B, TD); return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), FormatStr.size()+1); } // Optimize specific format strings. // printf("%c", chr) --> putchar(chr) if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && CI->getArgOperand(1)->getType()->isIntegerTy()) { Value *Res = EmitPutChar(CI->getArgOperand(1), B, TD); if (CI->use_empty()) return CI; return B.CreateIntCast(Res, CI->getType(), true); } // printf("%s\n", str) --> puts(str) if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && CI->getArgOperand(1)->getType()->isPointerTy()) { EmitPutS(CI->getArgOperand(1), B, TD); return CI; } return 0; } virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Require one fixed pointer argument and an integer/void result. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) return 0; if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) { return V; } // printf(format, ...) -> iprintf(format, ...) if no floating point // arguments. if (TLI->has(LibFunc::iprintf) && !CallHasFloatingPointArgument(CI)) { Module *M = B.GetInsertBlock()->getParent()->getParent(); Constant *IPrintFFn = M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); CallInst *New = cast<CallInst>(CI->clone()); New->setCalledFunction(IPrintFFn); B.Insert(New); return New; } return 0; } }; //===---------------------------------------===// // 'sprintf' Optimizations struct SPrintFOpt : public LibCallOptimization { Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Check for a fixed format string. std::string FormatStr; if (!GetConstantStringInfo(CI->getArgOperand(1), FormatStr)) return 0; // If we just have a format string (nothing else crazy) transform it. if (CI->getNumArgOperands() == 2) { // Make sure there's no % in the constant array. We could try to handle // %% -> % in the future if we cared. for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) if (FormatStr[i] == '%') return 0; // we found a format specifier, bail out. // These optimizations require TargetData. if (!TD) return 0; // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1) B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1), ConstantInt::get(TD->getIntPtrType(*Context), // Copy the FormatStr.size() + 1), 1); // nul byte. return ConstantInt::get(CI->getType(), FormatStr.size()); } // The remaining optimizations require the format string to be "%s" or "%c" // and have an extra operand. if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumArgOperands() < 3) return 0; // Decode the second character of the format string. if (FormatStr[1] == 'c') { // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0; Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); Value *Ptr = CastToCStr(CI->getArgOperand(0), B); B.CreateStore(V, Ptr); Ptr = B.CreateGEP(Ptr, B.getInt32(1), "nul"); B.CreateStore(B.getInt8(0), Ptr); return ConstantInt::get(CI->getType(), 1); } if (FormatStr[1] == 's') { // These optimizations require TargetData. if (!TD) return 0; // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) if (!CI->getArgOperand(2)->getType()->isPointerTy()) return 0; Value *Len = EmitStrLen(CI->getArgOperand(2), B, TD); Value *IncLen = B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1); // The sprintf result is the unincremented number of bytes in the string. return B.CreateIntCast(Len, CI->getType(), false); } return 0; } virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Require two fixed pointer arguments and an integer result. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || !FT->getReturnType()->isIntegerTy()) return 0; if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) { return V; } // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating // point arguments. if (TLI->has(LibFunc::siprintf) && !CallHasFloatingPointArgument(CI)) { Module *M = B.GetInsertBlock()->getParent()->getParent(); Constant *SIPrintFFn = M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); CallInst *New = cast<CallInst>(CI->clone()); New->setCalledFunction(SIPrintFFn); B.Insert(New); return New; } return 0; } }; //===---------------------------------------===// // 'fwrite' Optimizations struct FWriteOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Require a pointer, an integer, an integer, a pointer, returning integer. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isIntegerTy() || !FT->getParamType(2)->isIntegerTy() || !FT->getParamType(3)->isPointerTy() || !FT->getReturnType()->isIntegerTy()) return 0; // Get the element size and count. ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); if (!SizeC || !CountC) return 0; uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue(); // If this is writing zero records, remove the call (it's a noop). if (Bytes == 0) return ConstantInt::get(CI->getType(), 0); // If this is writing one byte, turn it into fputc. if (Bytes == 1) { // fwrite(S,1,1,F) -> fputc(S[0],F) Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char"); EmitFPutC(Char, CI->getArgOperand(3), B, TD); return ConstantInt::get(CI->getType(), 1); } return 0; } }; //===---------------------------------------===// // 'fputs' Optimizations struct FPutsOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // These optimizations require TargetData. if (!TD) return 0; // Require two pointers. Also, we can't optimize if return value is used. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || !CI->use_empty()) return 0; // fputs(s,F) --> fwrite(s,1,strlen(s),F) uint64_t Len = GetStringLength(CI->getArgOperand(0)); if (!Len) return 0; EmitFWrite(CI->getArgOperand(0), ConstantInt::get(TD->getIntPtrType(*Context), Len-1), CI->getArgOperand(1), B, TD); return CI; // Known to have no uses (see above). } }; //===---------------------------------------===// // 'fprintf' Optimizations struct FPrintFOpt : public LibCallOptimization { Value *OptimizeFixedFormatString(Function *Callee, CallInst *CI, IRBuilder<> &B) { // All the optimizations depend on the format string. std::string FormatStr; if (!GetConstantStringInfo(CI->getArgOperand(1), FormatStr)) return 0; // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) if (CI->getNumArgOperands() == 2) { for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) if (FormatStr[i] == '%') // Could handle %% -> % if we cared. return 0; // We found a format specifier. // These optimizations require TargetData. if (!TD) return 0; EmitFWrite(CI->getArgOperand(1), ConstantInt::get(TD->getIntPtrType(*Context), FormatStr.size()), CI->getArgOperand(0), B, TD); return ConstantInt::get(CI->getType(), FormatStr.size()); } // The remaining optimizations require the format string to be "%s" or "%c" // and have an extra operand. if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumArgOperands() < 3) return 0; // Decode the second character of the format string. if (FormatStr[1] == 'c') { // fprintf(F, "%c", chr) --> fputc(chr, F) if (!CI->getArgOperand(2)->getType()->isIntegerTy()) return 0; EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TD); return ConstantInt::get(CI->getType(), 1); } if (FormatStr[1] == 's') { // fprintf(F, "%s", str) --> fputs(str, F) if (!CI->getArgOperand(2)->getType()->isPointerTy() || !CI->use_empty()) return 0; EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TD); return CI; } return 0; } virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Require two fixed paramters as pointers and integer result. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() || !FT->getParamType(1)->isPointerTy() || !FT->getReturnType()->isIntegerTy()) return 0; if (Value *V = OptimizeFixedFormatString(Callee, CI, B)) { return V; } // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no // floating point arguments. if (TLI->has(LibFunc::fiprintf) && !CallHasFloatingPointArgument(CI)) { Module *M = B.GetInsertBlock()->getParent()->getParent(); Constant *FIPrintFFn = M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); CallInst *New = cast<CallInst>(CI->clone()); New->setCalledFunction(FIPrintFFn); B.Insert(New); return New; } return 0; } }; //===---------------------------------------===// // 'puts' Optimizations struct PutsOpt : public LibCallOptimization { virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) { // Require one fixed pointer argument and an integer/void result. FunctionType *FT = Callee->getFunctionType(); if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() || !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy())) return 0; // Check for a constant string. std::string Str; if (!GetConstantStringInfo(CI->getArgOperand(0), Str)) return 0; if (Str.empty() && CI->use_empty()) { // puts("") -> putchar('\n') Value *Res = EmitPutChar(B.getInt32('\n'), B, TD); if (CI->use_empty()) return CI; return B.CreateIntCast(Res, CI->getType(), true); } return 0; } }; } // end anonymous namespace. //===----------------------------------------------------------------------===// // SimplifyLibCalls Pass Implementation //===----------------------------------------------------------------------===// namespace { /// This pass optimizes well known library functions from libc and libm. /// class SimplifyLibCalls : public FunctionPass { TargetLibraryInfo *TLI; StringMap<LibCallOptimization*> Optimizations; // String and Memory LibCall Optimizations StrCatOpt StrCat; StrNCatOpt StrNCat; StrChrOpt StrChr; StrRChrOpt StrRChr; StrCmpOpt StrCmp; StrNCmpOpt StrNCmp; StrCpyOpt StrCpy; StrCpyOpt StrCpyChk; StrNCpyOpt StrNCpy; StrLenOpt StrLen; StrPBrkOpt StrPBrk; StrToOpt StrTo; StrSpnOpt StrSpn; StrCSpnOpt StrCSpn; StrStrOpt StrStr; MemCmpOpt MemCmp; MemCpyOpt MemCpy; MemMoveOpt MemMove; MemSetOpt MemSet; // Math Library Optimizations PowOpt Pow; Exp2Opt Exp2; UnaryDoubleFPOpt UnaryDoubleFP; // Integer Optimizations FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii; ToAsciiOpt ToAscii; // Formatting and IO Optimizations SPrintFOpt SPrintF; PrintFOpt PrintF; FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF; PutsOpt Puts; bool Modified; // This is only used by doInitialization. public: static char ID; // Pass identification SimplifyLibCalls() : FunctionPass(ID), StrCpy(false), StrCpyChk(true) { initializeSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); } void InitOptimizations(); bool runOnFunction(Function &F); void setDoesNotAccessMemory(Function &F); void setOnlyReadsMemory(Function &F); void setDoesNotThrow(Function &F); void setDoesNotCapture(Function &F, unsigned n); void setDoesNotAlias(Function &F, unsigned n); bool doInitialization(Module &M); void inferPrototypeAttributes(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired<TargetLibraryInfo>(); } }; } // end anonymous namespace. char SimplifyLibCalls::ID = 0; INITIALIZE_PASS_BEGIN(SimplifyLibCalls, "simplify-libcalls", "Simplify well-known library calls", false, false) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) INITIALIZE_PASS_END(SimplifyLibCalls, "simplify-libcalls", "Simplify well-known library calls", false, false) // Public interface to the Simplify LibCalls pass. FunctionPass *llvm::createSimplifyLibCallsPass() { return new SimplifyLibCalls(); } /// Optimizations - Populate the Optimizations map with all the optimizations /// we know. void SimplifyLibCalls::InitOptimizations() { // String and Memory LibCall Optimizations Optimizations["strcat"] = &StrCat; Optimizations["strncat"] = &StrNCat; Optimizations["strchr"] = &StrChr; Optimizations["strrchr"] = &StrRChr; Optimizations["strcmp"] = &StrCmp; Optimizations["strncmp"] = &StrNCmp; Optimizations["strcpy"] = &StrCpy; Optimizations["strncpy"] = &StrNCpy; Optimizations["strlen"] = &StrLen; Optimizations["strpbrk"] = &StrPBrk; Optimizations["strtol"] = &StrTo; Optimizations["strtod"] = &StrTo; Optimizations["strtof"] = &StrTo; Optimizations["strtoul"] = &StrTo; Optimizations["strtoll"] = &StrTo; Optimizations["strtold"] = &StrTo; Optimizations["strtoull"] = &StrTo; Optimizations["strspn"] = &StrSpn; Optimizations["strcspn"] = &StrCSpn; Optimizations["strstr"] = &StrStr; Optimizations["memcmp"] = &MemCmp; if (TLI->has(LibFunc::memcpy)) Optimizations["memcpy"] = &MemCpy; Optimizations["memmove"] = &MemMove; if (TLI->has(LibFunc::memset)) Optimizations["memset"] = &MemSet; // _chk variants of String and Memory LibCall Optimizations. Optimizations["__strcpy_chk"] = &StrCpyChk; // Math Library Optimizations Optimizations["powf"] = &Pow; Optimizations["pow"] = &Pow; Optimizations["powl"] = &Pow; Optimizations["llvm.pow.f32"] = &Pow; Optimizations["llvm.pow.f64"] = &Pow; Optimizations["llvm.pow.f80"] = &Pow; Optimizations["llvm.pow.f128"] = &Pow; Optimizations["llvm.pow.ppcf128"] = &Pow; Optimizations["exp2l"] = &Exp2; Optimizations["exp2"] = &Exp2; Optimizations["exp2f"] = &Exp2; Optimizations["llvm.exp2.ppcf128"] = &Exp2; Optimizations["llvm.exp2.f128"] = &Exp2; Optimizations["llvm.exp2.f80"] = &Exp2; Optimizations["llvm.exp2.f64"] = &Exp2; Optimizations["llvm.exp2.f32"] = &Exp2; #ifdef HAVE_FLOORF Optimizations["floor"] = &UnaryDoubleFP; #endif #ifdef HAVE_CEILF Optimizations["ceil"] = &UnaryDoubleFP; #endif #ifdef HAVE_ROUNDF Optimizations["round"] = &UnaryDoubleFP; #endif #ifdef HAVE_RINTF Optimizations["rint"] = &UnaryDoubleFP; #endif #ifdef HAVE_NEARBYINTF Optimizations["nearbyint"] = &UnaryDoubleFP; #endif // Integer Optimizations Optimizations["ffs"] = &FFS; Optimizations["ffsl"] = &FFS; Optimizations["ffsll"] = &FFS; Optimizations["abs"] = &Abs; Optimizations["labs"] = &Abs; Optimizations["llabs"] = &Abs; Optimizations["isdigit"] = &IsDigit; Optimizations["isascii"] = &IsAscii; Optimizations["toascii"] = &ToAscii; // Formatting and IO Optimizations Optimizations["sprintf"] = &SPrintF; Optimizations["printf"] = &PrintF; Optimizations["fwrite"] = &FWrite; Optimizations["fputs"] = &FPuts; Optimizations["fprintf"] = &FPrintF; Optimizations["puts"] = &Puts; } /// runOnFunction - Top level algorithm. /// bool SimplifyLibCalls::runOnFunction(Function &F) { TLI = &getAnalysis<TargetLibraryInfo>(); if (Optimizations.empty()) InitOptimizations(); const TargetData *TD = getAnalysisIfAvailable<TargetData>(); IRBuilder<> Builder(F.getContext()); bool Changed = false; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { // Ignore non-calls. CallInst *CI = dyn_cast<CallInst>(I++); if (!CI) continue; // Ignore indirect calls and calls to non-external functions. Function *Callee = CI->getCalledFunction(); if (Callee == 0 || !Callee->isDeclaration() || !(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage())) continue; // Ignore unknown calls. LibCallOptimization *LCO = Optimizations.lookup(Callee->getName()); if (!LCO) continue; // Set the builder to the instruction after the call. Builder.SetInsertPoint(BB, I); // Use debug location of CI for all new instructions. Builder.SetCurrentDebugLocation(CI->getDebugLoc()); // Try to optimize this call. Value *Result = LCO->OptimizeCall(CI, TD, TLI, Builder); if (Result == 0) continue; DEBUG(dbgs() << "SimplifyLibCalls simplified: " << *CI; dbgs() << " into: " << *Result << "\n"); // Something changed! Changed = true; ++NumSimplified; // Inspect the instruction after the call (which was potentially just // added) next. I = CI; ++I; if (CI != Result && !CI->use_empty()) { CI->replaceAllUsesWith(Result); if (!Result->hasName()) Result->takeName(CI); } CI->eraseFromParent(); } } return Changed; } // Utility methods for doInitialization. void SimplifyLibCalls::setDoesNotAccessMemory(Function &F) { if (!F.doesNotAccessMemory()) { F.setDoesNotAccessMemory(); ++NumAnnotated; Modified = true; } } void SimplifyLibCalls::setOnlyReadsMemory(Function &F) { if (!F.onlyReadsMemory()) { F.setOnlyReadsMemory(); ++NumAnnotated; Modified = true; } } void SimplifyLibCalls::setDoesNotThrow(Function &F) { if (!F.doesNotThrow()) { F.setDoesNotThrow(); ++NumAnnotated; Modified = true; } } void SimplifyLibCalls::setDoesNotCapture(Function &F, unsigned n) { if (!F.doesNotCapture(n)) { F.setDoesNotCapture(n); ++NumAnnotated; Modified = true; } } void SimplifyLibCalls::setDoesNotAlias(Function &F, unsigned n) { if (!F.doesNotAlias(n)) { F.setDoesNotAlias(n); ++NumAnnotated; Modified = true; } } void SimplifyLibCalls::inferPrototypeAttributes(Function &F) { FunctionType *FTy = F.getFunctionType(); StringRef Name = F.getName(); switch (Name[0]) { case 's': if (Name == "strlen") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setOnlyReadsMemory(F); setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "strchr" || Name == "strrchr") { if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isIntegerTy()) return; setOnlyReadsMemory(F); setDoesNotThrow(F); } else if (Name == "strcpy" || Name == "stpcpy" || Name == "strcat" || Name == "strtol" || Name == "strtod" || Name == "strtof" || Name == "strtoul" || Name == "strtoll" || Name == "strtold" || Name == "strncat" || Name == "strncpy" || Name == "strtoull") { if (FTy->getNumParams() < 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "strxfrm") { if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "strcmp" || Name == "strspn" || Name == "strncmp" || Name == "strcspn" || Name == "strcoll" || Name == "strcasecmp" || Name == "strncasecmp") { if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setOnlyReadsMemory(F); setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "strstr" || Name == "strpbrk") { if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) return; setOnlyReadsMemory(F); setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "strtok" || Name == "strtok_r") { if (FTy->getNumParams() < 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "scanf" || Name == "setbuf" || Name == "setvbuf") { if (FTy->getNumParams() < 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "strdup" || Name == "strndup") { if (FTy->getNumParams() < 1 || !FTy->getReturnType()->isPointerTy() || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); } else if (Name == "stat" || Name == "sscanf" || Name == "sprintf" || Name == "statvfs") { if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "snprintf") { if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(2)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 3); } else if (Name == "setitimer") { if (FTy->getNumParams() != 3 || !FTy->getParamType(1)->isPointerTy() || !FTy->getParamType(2)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); setDoesNotCapture(F, 3); } else if (Name == "system") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; // May throw; "system" is a valid pthread cancellation point. setDoesNotCapture(F, 1); } break; case 'm': if (Name == "malloc") { if (FTy->getNumParams() != 1 || !FTy->getReturnType()->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); } else if (Name == "memcmp") { if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setOnlyReadsMemory(F); setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "memchr" || Name == "memrchr") { if (FTy->getNumParams() != 3) return; setOnlyReadsMemory(F); setDoesNotThrow(F); } else if (Name == "modf" || Name == "modff" || Name == "modfl" || Name == "memcpy" || Name == "memccpy" || Name == "memmove") { if (FTy->getNumParams() < 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "memalign") { if (!FTy->getReturnType()->isPointerTy()) return; setDoesNotAlias(F, 0); } else if (Name == "mkdir" || Name == "mktime") { if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'r': if (Name == "realloc") { if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy() || !FTy->getReturnType()->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); } else if (Name == "read") { if (FTy->getNumParams() != 3 || !FTy->getParamType(1)->isPointerTy()) return; // May throw; "read" is a valid pthread cancellation point. setDoesNotCapture(F, 2); } else if (Name == "rmdir" || Name == "rewind" || Name == "remove" || Name == "realpath") { if (FTy->getNumParams() < 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "rename" || Name == "readlink") { if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } break; case 'w': if (Name == "write") { if (FTy->getNumParams() != 3 || !FTy->getParamType(1)->isPointerTy()) return; // May throw; "write" is a valid pthread cancellation point. setDoesNotCapture(F, 2); } break; case 'b': if (Name == "bcopy") { if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "bcmp") { if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setOnlyReadsMemory(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "bzero") { if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'c': if (Name == "calloc") { if (FTy->getNumParams() != 2 || !FTy->getReturnType()->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); } else if (Name == "chmod" || Name == "chown" || Name == "ctermid" || Name == "clearerr" || Name == "closedir") { if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'a': if (Name == "atoi" || Name == "atol" || Name == "atof" || Name == "atoll") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setOnlyReadsMemory(F); setDoesNotCapture(F, 1); } else if (Name == "access") { if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'f': if (Name == "fopen") { if (FTy->getNumParams() != 2 || !FTy->getReturnType()->isPointerTy() || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "fdopen") { if (FTy->getNumParams() != 2 || !FTy->getReturnType()->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 2); } else if (Name == "feof" || Name == "free" || Name == "fseek" || Name == "ftell" || Name == "fgetc" || Name == "fseeko" || Name == "ftello" || Name == "fileno" || Name == "fflush" || Name == "fclose" || Name == "fsetpos" || Name == "flockfile" || Name == "funlockfile" || Name == "ftrylockfile") { if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "ferror") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setOnlyReadsMemory(F); } else if (Name == "fputc" || Name == "fstat" || Name == "frexp" || Name == "frexpf" || Name == "frexpl" || Name == "fstatvfs") { if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "fgets") { if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(2)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 3); } else if (Name == "fread" || Name == "fwrite") { if (FTy->getNumParams() != 4 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(3)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 4); } else if (Name == "fputs" || Name == "fscanf" || Name == "fprintf" || Name == "fgetpos") { if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } break; case 'g': if (Name == "getc" || Name == "getlogin_r" || Name == "getc_unlocked") { if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "getenv") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setOnlyReadsMemory(F); setDoesNotCapture(F, 1); } else if (Name == "gets" || Name == "getchar") { setDoesNotThrow(F); } else if (Name == "getitimer") { if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "getpwnam") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'u': if (Name == "ungetc") { if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "uname" || Name == "unlink" || Name == "unsetenv") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "utime" || Name == "utimes") { if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } break; case 'p': if (Name == "putc") { if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "puts" || Name == "printf" || Name == "perror") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "pread" || Name == "pwrite") { if (FTy->getNumParams() != 4 || !FTy->getParamType(1)->isPointerTy()) return; // May throw; these are valid pthread cancellation points. setDoesNotCapture(F, 2); } else if (Name == "putchar") { setDoesNotThrow(F); } else if (Name == "popen") { if (FTy->getNumParams() != 2 || !FTy->getReturnType()->isPointerTy() || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "pclose") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'v': if (Name == "vscanf") { if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "vsscanf" || Name == "vfscanf") { if (FTy->getNumParams() != 3 || !FTy->getParamType(1)->isPointerTy() || !FTy->getParamType(2)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "valloc") { if (!FTy->getReturnType()->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); } else if (Name == "vprintf") { if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "vfprintf" || Name == "vsprintf") { if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "vsnprintf") { if (FTy->getNumParams() != 4 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(2)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 3); } break; case 'o': if (Name == "open") { if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy()) return; // May throw; "open" is a valid pthread cancellation point. setDoesNotCapture(F, 1); } else if (Name == "opendir") { if (FTy->getNumParams() != 1 || !FTy->getReturnType()->isPointerTy() || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); } break; case 't': if (Name == "tmpfile") { if (!FTy->getReturnType()->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); } else if (Name == "times") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'h': if (Name == "htonl" || Name == "htons") { setDoesNotThrow(F); setDoesNotAccessMemory(F); } break; case 'n': if (Name == "ntohl" || Name == "ntohs") { setDoesNotThrow(F); setDoesNotAccessMemory(F); } break; case 'l': if (Name == "lstat") { if (FTy->getNumParams() != 2 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "lchown") { if (FTy->getNumParams() != 3 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } break; case 'q': if (Name == "qsort") { if (FTy->getNumParams() != 4 || !FTy->getParamType(3)->isPointerTy()) return; // May throw; places call through function pointer. setDoesNotCapture(F, 4); } break; case '_': if (Name == "__strdup" || Name == "__strndup") { if (FTy->getNumParams() < 1 || !FTy->getReturnType()->isPointerTy() || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); } else if (Name == "__strtok_r") { if (FTy->getNumParams() != 3 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "_IO_getc") { if (FTy->getNumParams() != 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "_IO_putc") { if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } break; case 1: if (Name == "\1__isoc99_scanf") { if (FTy->getNumParams() < 1 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "\1stat64" || Name == "\1lstat64" || Name == "\1statvfs64" || Name == "\1__isoc99_sscanf") { if (FTy->getNumParams() < 1 || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "\1fopen64") { if (FTy->getNumParams() != 2 || !FTy->getReturnType()->isPointerTy() || !FTy->getParamType(0)->isPointerTy() || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); setDoesNotCapture(F, 1); setDoesNotCapture(F, 2); } else if (Name == "\1fseeko64" || Name == "\1ftello64") { if (FTy->getNumParams() == 0 || !FTy->getParamType(0)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 1); } else if (Name == "\1tmpfile64") { if (!FTy->getReturnType()->isPointerTy()) return; setDoesNotThrow(F); setDoesNotAlias(F, 0); } else if (Name == "\1fstat64" || Name == "\1fstatvfs64") { if (FTy->getNumParams() != 2 || !FTy->getParamType(1)->isPointerTy()) return; setDoesNotThrow(F); setDoesNotCapture(F, 2); } else if (Name == "\1open64") { if (FTy->getNumParams() < 2 || !FTy->getParamType(0)->isPointerTy()) return; // May throw; "open" is a valid pthread cancellation point. setDoesNotCapture(F, 1); } break; } } /// doInitialization - Add attributes to well-known functions. /// bool SimplifyLibCalls::doInitialization(Module &M) { Modified = false; for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { Function &F = *I; if (F.isDeclaration() && F.hasName()) inferPrototypeAttributes(F); } return Modified; } // TODO: // Additional cases that we need to add to this file: // // cbrt: // * cbrt(expN(X)) -> expN(x/3) // * cbrt(sqrt(x)) -> pow(x,1/6) // * cbrt(sqrt(x)) -> pow(x,1/9) // // cos, cosf, cosl: // * cos(-x) -> cos(x) // // exp, expf, expl: // * exp(log(x)) -> x // // log, logf, logl: // * log(exp(x)) -> x // * log(x**y) -> y*log(x) // * log(exp(y)) -> y*log(e) // * log(exp2(y)) -> y*log(2) // * log(exp10(y)) -> y*log(10) // * log(sqrt(x)) -> 0.5*log(x) // * log(pow(x,y)) -> y*log(x) // // lround, lroundf, lroundl: // * lround(cnst) -> cnst' // // pow, powf, powl: // * pow(exp(x),y) -> exp(x*y) // * pow(sqrt(x),y) -> pow(x,y*0.5) // * pow(pow(x,y),z)-> pow(x,y*z) // // round, roundf, roundl: // * round(cnst) -> cnst' // // signbit: // * signbit(cnst) -> cnst' // * signbit(nncst) -> 0 (if pstv is a non-negative constant) // // sqrt, sqrtf, sqrtl: // * sqrt(expN(x)) -> expN(x*0.5) // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) // // stpcpy: // * stpcpy(str, "literal") -> // llvm.memcpy(str,"literal",strlen("literal")+1,1) // // tan, tanf, tanl: // * tan(atan(x)) -> x // // trunc, truncf, truncl: // * trunc(cnst) -> cnst' // //