//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The LowerSwitch transformation rewrites switch instructions with a sequence // of branches, which allows targets to get away with not implementing the // switch instruction until it is convenient. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/LLVMContext.h" #include "llvm/Pass.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> using namespace llvm; namespace { /// LowerSwitch Pass - Replace all SwitchInst instructions with chained branch /// instructions. class LowerSwitch : public FunctionPass { public: static char ID; // Pass identification, replacement for typeid LowerSwitch() : FunctionPass(ID) { initializeLowerSwitchPass(*PassRegistry::getPassRegistry()); } virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { // This is a cluster of orthogonal Transforms AU.addPreserved<UnifyFunctionExitNodes>(); AU.addPreserved("mem2reg"); AU.addPreservedID(LowerInvokePassID); } struct CaseRange { Constant* Low; Constant* High; BasicBlock* BB; CaseRange(Constant *low = 0, Constant *high = 0, BasicBlock *bb = 0) : Low(low), High(high), BB(bb) { } }; typedef std::vector<CaseRange> CaseVector; typedef std::vector<CaseRange>::iterator CaseItr; private: void processSwitchInst(SwitchInst *SI); BasicBlock* switchConvert(CaseItr Begin, CaseItr End, Value* Val, BasicBlock* OrigBlock, BasicBlock* Default); BasicBlock* newLeafBlock(CaseRange& Leaf, Value* Val, BasicBlock* OrigBlock, BasicBlock* Default); unsigned Clusterify(CaseVector& Cases, SwitchInst *SI); }; /// The comparison function for sorting the switch case values in the vector. /// WARNING: Case ranges should be disjoint! struct CaseCmp { bool operator () (const LowerSwitch::CaseRange& C1, const LowerSwitch::CaseRange& C2) { const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low); const ConstantInt* CI2 = cast<const ConstantInt>(C2.High); return CI1->getValue().slt(CI2->getValue()); } }; } char LowerSwitch::ID = 0; INITIALIZE_PASS(LowerSwitch, "lowerswitch", "Lower SwitchInst's to branches", false, false) // Publicly exposed interface to pass... char &llvm::LowerSwitchID = LowerSwitch::ID; // createLowerSwitchPass - Interface to this file... FunctionPass *llvm::createLowerSwitchPass() { return new LowerSwitch(); } bool LowerSwitch::runOnFunction(Function &F) { bool Changed = false; for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { BasicBlock *Cur = I++; // Advance over block so we don't traverse new blocks if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) { Changed = true; processSwitchInst(SI); } } return Changed; } // operator<< - Used for debugging purposes. // static raw_ostream& operator<<(raw_ostream &O, const LowerSwitch::CaseVector &C) LLVM_ATTRIBUTE_USED; static raw_ostream& operator<<(raw_ostream &O, const LowerSwitch::CaseVector &C) { O << "["; for (LowerSwitch::CaseVector::const_iterator B = C.begin(), E = C.end(); B != E; ) { O << *B->Low << " -" << *B->High; if (++B != E) O << ", "; } return O << "]"; } // switchConvert - Convert the switch statement into a binary lookup of // the case values. The function recursively builds this tree. // BasicBlock* LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, Value* Val, BasicBlock* OrigBlock, BasicBlock* Default) { unsigned Size = End - Begin; if (Size == 1) return newLeafBlock(*Begin, Val, OrigBlock, Default); unsigned Mid = Size / 2; std::vector<CaseRange> LHS(Begin, Begin + Mid); DEBUG(dbgs() << "LHS: " << LHS << "\n"); std::vector<CaseRange> RHS(Begin + Mid, End); DEBUG(dbgs() << "RHS: " << RHS << "\n"); CaseRange& Pivot = *(Begin + Mid); DEBUG(dbgs() << "Pivot ==> " << cast<ConstantInt>(Pivot.Low)->getValue() << " -" << cast<ConstantInt>(Pivot.High)->getValue() << "\n"); BasicBlock* LBranch = switchConvert(LHS.begin(), LHS.end(), Val, OrigBlock, Default); BasicBlock* RBranch = switchConvert(RHS.begin(), RHS.end(), Val, OrigBlock, Default); // Create a new node that checks if the value is < pivot. Go to the // left branch if it is and right branch if not. Function* F = OrigBlock->getParent(); BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock"); Function::iterator FI = OrigBlock; F->getBasicBlockList().insert(++FI, NewNode); ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT, Val, Pivot.Low, "Pivot"); NewNode->getInstList().push_back(Comp); BranchInst::Create(LBranch, RBranch, Comp, NewNode); return NewNode; } // newLeafBlock - Create a new leaf block for the binary lookup tree. It // checks if the switch's value == the case's value. If not, then it // jumps to the default branch. At this point in the tree, the value // can't be another valid case value, so the jump to the "default" branch // is warranted. // BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val, BasicBlock* OrigBlock, BasicBlock* Default) { Function* F = OrigBlock->getParent(); BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock"); Function::iterator FI = OrigBlock; F->getBasicBlockList().insert(++FI, NewLeaf); // Emit comparison ICmpInst* Comp = NULL; if (Leaf.Low == Leaf.High) { // Make the seteq instruction... Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf"); } else { // Make range comparison if (cast<ConstantInt>(Leaf.Low)->isMinValue(true /*isSigned*/)) { // Val >= Min && Val <= Hi --> Val <= Hi Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, "SwitchLeaf"); } else if (cast<ConstantInt>(Leaf.Low)->isZero()) { // Val >= 0 && Val <= Hi --> Val <=u Hi Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, "SwitchLeaf"); } else { // Emit V-Lo <=u Hi-Lo Constant* NegLo = ConstantExpr::getNeg(Leaf.Low); Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo, Val->getName()+".off", NewLeaf); Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High); Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, "SwitchLeaf"); } } // Make the conditional branch... BasicBlock* Succ = Leaf.BB; BranchInst::Create(Succ, Default, Comp, NewLeaf); // If there were any PHI nodes in this successor, rewrite one entry // from OrigBlock to come from NewLeaf. for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { PHINode* PN = cast<PHINode>(I); // Remove all but one incoming entries from the cluster uint64_t Range = cast<ConstantInt>(Leaf.High)->getSExtValue() - cast<ConstantInt>(Leaf.Low)->getSExtValue(); for (uint64_t j = 0; j < Range; ++j) { PN->removeIncomingValue(OrigBlock); } int BlockIdx = PN->getBasicBlockIndex(OrigBlock); assert(BlockIdx != -1 && "Switch didn't go to this successor??"); PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); } return NewLeaf; } // Clusterify - Transform simple list of Cases into list of CaseRange's unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) { unsigned numCmps = 0; // Start with "simple" cases for (unsigned i = 1; i < SI->getNumSuccessors(); ++i) Cases.push_back(CaseRange(SI->getSuccessorValue(i), SI->getSuccessorValue(i), SI->getSuccessor(i))); std::sort(Cases.begin(), Cases.end(), CaseCmp()); // Merge case into clusters if (Cases.size()>=2) for (CaseItr I=Cases.begin(), J=llvm::next(Cases.begin()); J!=Cases.end(); ) { int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue(); int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue(); BasicBlock* nextBB = J->BB; BasicBlock* currentBB = I->BB; // If the two neighboring cases go to the same destination, merge them // into a single case. if ((nextValue-currentValue==1) && (currentBB == nextBB)) { I->High = J->High; J = Cases.erase(J); } else { I = J++; } } for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { if (I->Low != I->High) // A range counts double, since it requires two compares. ++numCmps; } return numCmps; } // processSwitchInst - Replace the specified switch instruction with a sequence // of chained if-then insts in a balanced binary search. // void LowerSwitch::processSwitchInst(SwitchInst *SI) { BasicBlock *CurBlock = SI->getParent(); BasicBlock *OrigBlock = CurBlock; Function *F = CurBlock->getParent(); Value *Val = SI->getCondition(); // The value we are switching on... BasicBlock* Default = SI->getDefaultDest(); // If there is only the default destination, don't bother with the code below. if (SI->getNumCases() == 1) { BranchInst::Create(SI->getDefaultDest(), CurBlock); CurBlock->getInstList().erase(SI); return; } // Create a new, empty default block so that the new hierarchy of // if-then statements go to this and the PHI nodes are happy. BasicBlock* NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault"); F->getBasicBlockList().insert(Default, NewDefault); BranchInst::Create(Default, NewDefault); // If there is an entry in any PHI nodes for the default edge, make sure // to update them as well. for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) { PHINode *PN = cast<PHINode>(I); int BlockIdx = PN->getBasicBlockIndex(OrigBlock); assert(BlockIdx != -1 && "Switch didn't go to this successor??"); PN->setIncomingBlock((unsigned)BlockIdx, NewDefault); } // Prepare cases vector. CaseVector Cases; unsigned numCmps = Clusterify(Cases, SI); DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() << ". Total compares: " << numCmps << "\n"); DEBUG(dbgs() << "Cases: " << Cases << "\n"); (void)numCmps; BasicBlock* SwitchBlock = switchConvert(Cases.begin(), Cases.end(), Val, OrigBlock, NewDefault); // Branch to our shiny new if-then stuff... BranchInst::Create(SwitchBlock, OrigBlock); // We are now done with the switch instruction, delete it. CurBlock->getInstList().erase(SI); }