//===- CrashDebugger.cpp - Debug compilation crashes ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the bugpoint internals that narrow down compilation crashes // //===----------------------------------------------------------------------===// #include "BugDriver.h" #include "ToolRunner.h" #include "ListReducer.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/PassManager.h" #include "llvm/ValueSymbolTable.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Support/CFG.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Support/FileUtilities.h" #include "llvm/Support/CommandLine.h" #include <set> using namespace llvm; namespace { cl::opt<bool> KeepMain("keep-main", cl::desc("Force function reduction to keep main"), cl::init(false)); cl::opt<bool> NoGlobalRM ("disable-global-remove", cl::desc("Do not remove global variables"), cl::init(false)); } namespace llvm { class ReducePassList : public ListReducer<std::string> { BugDriver &BD; public: ReducePassList(BugDriver &bd) : BD(bd) {} // doTest - Return true iff running the "removed" passes succeeds, and // running the "Kept" passes fail when run on the output of the "removed" // passes. If we return true, we update the current module of bugpoint. // virtual TestResult doTest(std::vector<std::string> &Removed, std::vector<std::string> &Kept, std::string &Error); }; } ReducePassList::TestResult ReducePassList::doTest(std::vector<std::string> &Prefix, std::vector<std::string> &Suffix, std::string &Error) { sys::Path PrefixOutput; Module *OrigProgram = 0; if (!Prefix.empty()) { outs() << "Checking to see if these passes crash: " << getPassesString(Prefix) << ": "; std::string PfxOutput; if (BD.runPasses(BD.getProgram(), Prefix, PfxOutput)) return KeepPrefix; PrefixOutput.set(PfxOutput); OrigProgram = BD.Program; BD.Program = ParseInputFile(PrefixOutput.str(), BD.getContext()); if (BD.Program == 0) { errs() << BD.getToolName() << ": Error reading bitcode file '" << PrefixOutput.str() << "'!\n"; exit(1); } PrefixOutput.eraseFromDisk(); } outs() << "Checking to see if these passes crash: " << getPassesString(Suffix) << ": "; if (BD.runPasses(BD.getProgram(), Suffix)) { delete OrigProgram; // The suffix crashes alone... return KeepSuffix; } // Nothing failed, restore state... if (OrigProgram) { delete BD.Program; BD.Program = OrigProgram; } return NoFailure; } namespace { /// ReduceCrashingGlobalVariables - This works by removing the global /// variable's initializer and seeing if the program still crashes. If it /// does, then we keep that program and try again. /// class ReduceCrashingGlobalVariables : public ListReducer<GlobalVariable*> { BugDriver &BD; bool (*TestFn)(const BugDriver &, Module *); public: ReduceCrashingGlobalVariables(BugDriver &bd, bool (*testFn)(const BugDriver &, Module *)) : BD(bd), TestFn(testFn) {} virtual TestResult doTest(std::vector<GlobalVariable*> &Prefix, std::vector<GlobalVariable*> &Kept, std::string &Error) { if (!Kept.empty() && TestGlobalVariables(Kept)) return KeepSuffix; if (!Prefix.empty() && TestGlobalVariables(Prefix)) return KeepPrefix; return NoFailure; } bool TestGlobalVariables(std::vector<GlobalVariable*> &GVs); }; } bool ReduceCrashingGlobalVariables::TestGlobalVariables( std::vector<GlobalVariable*> &GVs) { // Clone the program to try hacking it apart... ValueToValueMapTy VMap; Module *M = CloneModule(BD.getProgram(), VMap); // Convert list to set for fast lookup... std::set<GlobalVariable*> GVSet; for (unsigned i = 0, e = GVs.size(); i != e; ++i) { GlobalVariable* CMGV = cast<GlobalVariable>(VMap[GVs[i]]); assert(CMGV && "Global Variable not in module?!"); GVSet.insert(CMGV); } outs() << "Checking for crash with only these global variables: "; PrintGlobalVariableList(GVs); outs() << ": "; // Loop over and delete any global variables which we aren't supposed to be // playing with... for (Module::global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) if (I->hasInitializer() && !GVSet.count(I)) { I->setInitializer(0); I->setLinkage(GlobalValue::ExternalLinkage); } // Try running the hacked up program... if (TestFn(BD, M)) { BD.setNewProgram(M); // It crashed, keep the trimmed version... // Make sure to use global variable pointers that point into the now-current // module. GVs.assign(GVSet.begin(), GVSet.end()); return true; } delete M; return false; } namespace llvm { /// ReduceCrashingFunctions reducer - This works by removing functions and /// seeing if the program still crashes. If it does, then keep the newer, /// smaller program. /// class ReduceCrashingFunctions : public ListReducer<Function*> { BugDriver &BD; bool (*TestFn)(const BugDriver &, Module *); public: ReduceCrashingFunctions(BugDriver &bd, bool (*testFn)(const BugDriver &, Module *)) : BD(bd), TestFn(testFn) {} virtual TestResult doTest(std::vector<Function*> &Prefix, std::vector<Function*> &Kept, std::string &Error) { if (!Kept.empty() && TestFuncs(Kept)) return KeepSuffix; if (!Prefix.empty() && TestFuncs(Prefix)) return KeepPrefix; return NoFailure; } bool TestFuncs(std::vector<Function*> &Prefix); }; } bool ReduceCrashingFunctions::TestFuncs(std::vector<Function*> &Funcs) { //if main isn't present, claim there is no problem if (KeepMain && find(Funcs.begin(), Funcs.end(), BD.getProgram()->getFunction("main")) == Funcs.end()) return false; // Clone the program to try hacking it apart... ValueToValueMapTy VMap; Module *M = CloneModule(BD.getProgram(), VMap); // Convert list to set for fast lookup... std::set<Function*> Functions; for (unsigned i = 0, e = Funcs.size(); i != e; ++i) { Function *CMF = cast<Function>(VMap[Funcs[i]]); assert(CMF && "Function not in module?!"); assert(CMF->getFunctionType() == Funcs[i]->getFunctionType() && "wrong ty"); assert(CMF->getName() == Funcs[i]->getName() && "wrong name"); Functions.insert(CMF); } outs() << "Checking for crash with only these functions: "; PrintFunctionList(Funcs); outs() << ": "; // Loop over and delete any functions which we aren't supposed to be playing // with... for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) if (!I->isDeclaration() && !Functions.count(I)) DeleteFunctionBody(I); // Try running the hacked up program... if (TestFn(BD, M)) { BD.setNewProgram(M); // It crashed, keep the trimmed version... // Make sure to use function pointers that point into the now-current // module. Funcs.assign(Functions.begin(), Functions.end()); return true; } delete M; return false; } namespace { /// ReduceCrashingBlocks reducer - This works by setting the terminators of /// all terminators except the specified basic blocks to a 'ret' instruction, /// then running the simplify-cfg pass. This has the effect of chopping up /// the CFG really fast which can reduce large functions quickly. /// class ReduceCrashingBlocks : public ListReducer<const BasicBlock*> { BugDriver &BD; bool (*TestFn)(const BugDriver &, Module *); public: ReduceCrashingBlocks(BugDriver &bd, bool (*testFn)(const BugDriver &, Module *)) : BD(bd), TestFn(testFn) {} virtual TestResult doTest(std::vector<const BasicBlock*> &Prefix, std::vector<const BasicBlock*> &Kept, std::string &Error) { if (!Kept.empty() && TestBlocks(Kept)) return KeepSuffix; if (!Prefix.empty() && TestBlocks(Prefix)) return KeepPrefix; return NoFailure; } bool TestBlocks(std::vector<const BasicBlock*> &Prefix); }; } bool ReduceCrashingBlocks::TestBlocks(std::vector<const BasicBlock*> &BBs) { // Clone the program to try hacking it apart... ValueToValueMapTy VMap; Module *M = CloneModule(BD.getProgram(), VMap); // Convert list to set for fast lookup... SmallPtrSet<BasicBlock*, 8> Blocks; for (unsigned i = 0, e = BBs.size(); i != e; ++i) Blocks.insert(cast<BasicBlock>(VMap[BBs[i]])); outs() << "Checking for crash with only these blocks:"; unsigned NumPrint = Blocks.size(); if (NumPrint > 10) NumPrint = 10; for (unsigned i = 0, e = NumPrint; i != e; ++i) outs() << " " << BBs[i]->getName(); if (NumPrint < Blocks.size()) outs() << "... <" << Blocks.size() << " total>"; outs() << ": "; // Loop over and delete any hack up any blocks that are not listed... for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) for (Function::iterator BB = I->begin(), E = I->end(); BB != E; ++BB) if (!Blocks.count(BB) && BB->getTerminator()->getNumSuccessors()) { // Loop over all of the successors of this block, deleting any PHI nodes // that might include it. for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) (*SI)->removePredecessor(BB); TerminatorInst *BBTerm = BB->getTerminator(); if (!BB->getTerminator()->getType()->isVoidTy()) BBTerm->replaceAllUsesWith(Constant::getNullValue(BBTerm->getType())); // Replace the old terminator instruction. BB->getInstList().pop_back(); new UnreachableInst(BB->getContext(), BB); } // The CFG Simplifier pass may delete one of the basic blocks we are // interested in. If it does we need to take the block out of the list. Make // a "persistent mapping" by turning basic blocks into <function, name> pairs. // This won't work well if blocks are unnamed, but that is just the risk we // have to take. std::vector<std::pair<std::string, std::string> > BlockInfo; for (SmallPtrSet<BasicBlock*, 8>::iterator I = Blocks.begin(), E = Blocks.end(); I != E; ++I) BlockInfo.push_back(std::make_pair((*I)->getParent()->getName(), (*I)->getName())); // Now run the CFG simplify pass on the function... std::vector<std::string> Passes; Passes.push_back("simplifycfg"); Passes.push_back("verify"); Module *New = BD.runPassesOn(M, Passes); delete M; if (!New) { errs() << "simplifycfg failed!\n"; exit(1); } M = New; // Try running on the hacked up program... if (TestFn(BD, M)) { BD.setNewProgram(M); // It crashed, keep the trimmed version... // Make sure to use basic block pointers that point into the now-current // module, and that they don't include any deleted blocks. BBs.clear(); const ValueSymbolTable &GST = M->getValueSymbolTable(); for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) { Function *F = cast<Function>(GST.lookup(BlockInfo[i].first)); ValueSymbolTable &ST = F->getValueSymbolTable(); Value* V = ST.lookup(BlockInfo[i].second); if (V && V->getType() == Type::getLabelTy(V->getContext())) BBs.push_back(cast<BasicBlock>(V)); } return true; } delete M; // It didn't crash, try something else. return false; } namespace { /// ReduceCrashingInstructions reducer - This works by removing the specified /// non-terminator instructions and replacing them with undef. /// class ReduceCrashingInstructions : public ListReducer<const Instruction*> { BugDriver &BD; bool (*TestFn)(const BugDriver &, Module *); public: ReduceCrashingInstructions(BugDriver &bd, bool (*testFn)(const BugDriver &, Module *)) : BD(bd), TestFn(testFn) {} virtual TestResult doTest(std::vector<const Instruction*> &Prefix, std::vector<const Instruction*> &Kept, std::string &Error) { if (!Kept.empty() && TestInsts(Kept)) return KeepSuffix; if (!Prefix.empty() && TestInsts(Prefix)) return KeepPrefix; return NoFailure; } bool TestInsts(std::vector<const Instruction*> &Prefix); }; } bool ReduceCrashingInstructions::TestInsts(std::vector<const Instruction*> &Insts) { // Clone the program to try hacking it apart... ValueToValueMapTy VMap; Module *M = CloneModule(BD.getProgram(), VMap); // Convert list to set for fast lookup... SmallPtrSet<Instruction*, 64> Instructions; for (unsigned i = 0, e = Insts.size(); i != e; ++i) { assert(!isa<TerminatorInst>(Insts[i])); Instructions.insert(cast<Instruction>(VMap[Insts[i]])); } outs() << "Checking for crash with only " << Instructions.size(); if (Instructions.size() == 1) outs() << " instruction: "; else outs() << " instructions: "; for (Module::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI) for (Function::iterator FI = MI->begin(), FE = MI->end(); FI != FE; ++FI) for (BasicBlock::iterator I = FI->begin(), E = FI->end(); I != E;) { Instruction *Inst = I++; if (!Instructions.count(Inst) && !isa<TerminatorInst>(Inst)) { if (!Inst->getType()->isVoidTy()) Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); Inst->eraseFromParent(); } } // Verify that this is still valid. PassManager Passes; Passes.add(createVerifierPass()); Passes.run(*M); // Try running on the hacked up program... if (TestFn(BD, M)) { BD.setNewProgram(M); // It crashed, keep the trimmed version... // Make sure to use instruction pointers that point into the now-current // module, and that they don't include any deleted blocks. Insts.clear(); for (SmallPtrSet<Instruction*, 64>::const_iterator I = Instructions.begin(), E = Instructions.end(); I != E; ++I) Insts.push_back(*I); return true; } delete M; // It didn't crash, try something else. return false; } /// DebugACrash - Given a predicate that determines whether a component crashes /// on a program, try to destructively reduce the program while still keeping /// the predicate true. static bool DebugACrash(BugDriver &BD, bool (*TestFn)(const BugDriver &, Module *), std::string &Error) { // See if we can get away with nuking some of the global variable initializers // in the program... if (!NoGlobalRM && BD.getProgram()->global_begin() != BD.getProgram()->global_end()) { // Now try to reduce the number of global variable initializers in the // module to something small. Module *M = CloneModule(BD.getProgram()); bool DeletedInit = false; for (Module::global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) if (I->hasInitializer()) { I->setInitializer(0); I->setLinkage(GlobalValue::ExternalLinkage); DeletedInit = true; } if (!DeletedInit) { delete M; // No change made... } else { // See if the program still causes a crash... outs() << "\nChecking to see if we can delete global inits: "; if (TestFn(BD, M)) { // Still crashes? BD.setNewProgram(M); outs() << "\n*** Able to remove all global initializers!\n"; } else { // No longer crashes? outs() << " - Removing all global inits hides problem!\n"; delete M; std::vector<GlobalVariable*> GVs; for (Module::global_iterator I = BD.getProgram()->global_begin(), E = BD.getProgram()->global_end(); I != E; ++I) if (I->hasInitializer()) GVs.push_back(I); if (GVs.size() > 1 && !BugpointIsInterrupted) { outs() << "\n*** Attempting to reduce the number of global " << "variables in the testcase\n"; unsigned OldSize = GVs.size(); ReduceCrashingGlobalVariables(BD, TestFn).reduceList(GVs, Error); if (!Error.empty()) return true; if (GVs.size() < OldSize) BD.EmitProgressBitcode(BD.getProgram(), "reduced-global-variables"); } } } } // Now try to reduce the number of functions in the module to something small. std::vector<Function*> Functions; for (Module::iterator I = BD.getProgram()->begin(), E = BD.getProgram()->end(); I != E; ++I) if (!I->isDeclaration()) Functions.push_back(I); if (Functions.size() > 1 && !BugpointIsInterrupted) { outs() << "\n*** Attempting to reduce the number of functions " "in the testcase\n"; unsigned OldSize = Functions.size(); ReduceCrashingFunctions(BD, TestFn).reduceList(Functions, Error); if (Functions.size() < OldSize) BD.EmitProgressBitcode(BD.getProgram(), "reduced-function"); } // Attempt to delete entire basic blocks at a time to speed up // convergence... this actually works by setting the terminator of the blocks // to a return instruction then running simplifycfg, which can potentially // shrinks the code dramatically quickly // if (!DisableSimplifyCFG && !BugpointIsInterrupted) { std::vector<const BasicBlock*> Blocks; for (Module::const_iterator I = BD.getProgram()->begin(), E = BD.getProgram()->end(); I != E; ++I) for (Function::const_iterator FI = I->begin(), E = I->end(); FI !=E; ++FI) Blocks.push_back(FI); unsigned OldSize = Blocks.size(); ReduceCrashingBlocks(BD, TestFn).reduceList(Blocks, Error); if (Blocks.size() < OldSize) BD.EmitProgressBitcode(BD.getProgram(), "reduced-blocks"); } // Attempt to delete instructions using bisection. This should help out nasty // cases with large basic blocks where the problem is at one end. if (!BugpointIsInterrupted) { std::vector<const Instruction*> Insts; for (Module::const_iterator MI = BD.getProgram()->begin(), ME = BD.getProgram()->end(); MI != ME; ++MI) for (Function::const_iterator FI = MI->begin(), FE = MI->end(); FI != FE; ++FI) for (BasicBlock::const_iterator I = FI->begin(), E = FI->end(); I != E; ++I) if (!isa<TerminatorInst>(I)) Insts.push_back(I); ReduceCrashingInstructions(BD, TestFn).reduceList(Insts, Error); } // FIXME: This should use the list reducer to converge faster by deleting // larger chunks of instructions at a time! unsigned Simplification = 2; do { if (BugpointIsInterrupted) break; --Simplification; outs() << "\n*** Attempting to reduce testcase by deleting instruc" << "tions: Simplification Level #" << Simplification << '\n'; // Now that we have deleted the functions that are unnecessary for the // program, try to remove instructions that are not necessary to cause the // crash. To do this, we loop through all of the instructions in the // remaining functions, deleting them (replacing any values produced with // nulls), and then running ADCE and SimplifyCFG. If the transformed input // still triggers failure, keep deleting until we cannot trigger failure // anymore. // unsigned InstructionsToSkipBeforeDeleting = 0; TryAgain: // Loop over all of the (non-terminator) instructions remaining in the // function, attempting to delete them. unsigned CurInstructionNum = 0; for (Module::const_iterator FI = BD.getProgram()->begin(), E = BD.getProgram()->end(); FI != E; ++FI) if (!FI->isDeclaration()) for (Function::const_iterator BI = FI->begin(), E = FI->end(); BI != E; ++BI) for (BasicBlock::const_iterator I = BI->begin(), E = --BI->end(); I != E; ++I, ++CurInstructionNum) if (InstructionsToSkipBeforeDeleting) { --InstructionsToSkipBeforeDeleting; } else { if (BugpointIsInterrupted) goto ExitLoops; outs() << "Checking instruction: " << *I; Module *M = BD.deleteInstructionFromProgram(I, Simplification); // Find out if the pass still crashes on this pass... if (TestFn(BD, M)) { // Yup, it does, we delete the old module, and continue trying // to reduce the testcase... BD.setNewProgram(M); InstructionsToSkipBeforeDeleting = CurInstructionNum; goto TryAgain; // I wish I had a multi-level break here! } // This pass didn't crash without this instruction, try the next // one. delete M; } if (InstructionsToSkipBeforeDeleting) { InstructionsToSkipBeforeDeleting = 0; goto TryAgain; } } while (Simplification); ExitLoops: // Try to clean up the testcase by running funcresolve and globaldce... if (!BugpointIsInterrupted) { outs() << "\n*** Attempting to perform final cleanups: "; Module *M = CloneModule(BD.getProgram()); M = BD.performFinalCleanups(M, true); // Find out if the pass still crashes on the cleaned up program... if (TestFn(BD, M)) { BD.setNewProgram(M); // Yup, it does, keep the reduced version... } else { delete M; } } BD.EmitProgressBitcode(BD.getProgram(), "reduced-simplified"); return false; } static bool TestForOptimizerCrash(const BugDriver &BD, Module *M) { return BD.runPasses(M); } /// debugOptimizerCrash - This method is called when some pass crashes on input. /// It attempts to prune down the testcase to something reasonable, and figure /// out exactly which pass is crashing. /// bool BugDriver::debugOptimizerCrash(const std::string &ID) { outs() << "\n*** Debugging optimizer crash!\n"; std::string Error; // Reduce the list of passes which causes the optimizer to crash... if (!BugpointIsInterrupted) ReducePassList(*this).reduceList(PassesToRun, Error); assert(Error.empty()); outs() << "\n*** Found crashing pass" << (PassesToRun.size() == 1 ? ": " : "es: ") << getPassesString(PassesToRun) << '\n'; EmitProgressBitcode(Program, ID); bool Success = DebugACrash(*this, TestForOptimizerCrash, Error); assert(Error.empty()); return Success; } static bool TestForCodeGenCrash(const BugDriver &BD, Module *M) { std::string Error; BD.compileProgram(M, &Error); if (!Error.empty()) { errs() << "<crash>\n"; return true; // Tool is still crashing. } errs() << '\n'; return false; } /// debugCodeGeneratorCrash - This method is called when the code generator /// crashes on an input. It attempts to reduce the input as much as possible /// while still causing the code generator to crash. bool BugDriver::debugCodeGeneratorCrash(std::string &Error) { errs() << "*** Debugging code generator crash!\n"; return DebugACrash(*this, TestForCodeGenCrash, Error); }