//===-- llvm-bcanalyzer.cpp - Bitcode Analyzer --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tool may be invoked in the following manner: // llvm-bcanalyzer [options] - Read LLVM bitcode from stdin // llvm-bcanalyzer [options] x.bc - Read LLVM bitcode from the x.bc file // // Options: // --help - Output information about command line switches // --dump - Dump low-level bitcode structure in readable format // // This tool provides analytical information about a bitcode file. It is // intended as an aid to developers of bitcode reading and writing software. It // produces on std::out a summary of the bitcode file that shows various // statistics about the contents of the file. By default this information is // detailed and contains information about individual bitcode blocks and the // functions in the module. // The tool is also able to print a bitcode file in a straight forward text // format that shows the containment and relationships of the information in // the bitcode file (-dump option). // //===----------------------------------------------------------------------===// #include "llvm/ADT/OwningPtr.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Bitcode/BitstreamReader.h" #include "llvm/Bitcode/LLVMBitCodes.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Format.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Signals.h" #include "llvm/Support/system_error.h" #include <cstdio> #include <map> #include <algorithm> using namespace llvm; static cl::opt<std::string> InputFilename(cl::Positional, cl::desc("<input bitcode>"), cl::init("-")); static cl::opt<bool> Dump("dump", cl::desc("Dump low level bitcode trace")); //===----------------------------------------------------------------------===// // Bitcode specific analysis. //===----------------------------------------------------------------------===// static cl::opt<bool> NoHistogram("disable-histogram", cl::desc("Do not print per-code histogram")); static cl::opt<bool> NonSymbolic("non-symbolic", cl::desc("Emit numeric info in dump even if" " symbolic info is available")); namespace { /// CurStreamTypeType - A type for CurStreamType enum CurStreamTypeType { UnknownBitstream, LLVMIRBitstream }; } /// CurStreamType - If we can sniff the flavor of this stream, we can produce /// better dump info. static CurStreamTypeType CurStreamType; /// GetBlockName - Return a symbolic block name if known, otherwise return /// null. static const char *GetBlockName(unsigned BlockID, const BitstreamReader &StreamFile) { // Standard blocks for all bitcode files. if (BlockID < bitc::FIRST_APPLICATION_BLOCKID) { if (BlockID == bitc::BLOCKINFO_BLOCK_ID) return "BLOCKINFO_BLOCK"; return 0; } // Check to see if we have a blockinfo record for this block, with a name. if (const BitstreamReader::BlockInfo *Info = StreamFile.getBlockInfo(BlockID)) { if (!Info->Name.empty()) return Info->Name.c_str(); } if (CurStreamType != LLVMIRBitstream) return 0; switch (BlockID) { default: return 0; case bitc::MODULE_BLOCK_ID: return "MODULE_BLOCK"; case bitc::PARAMATTR_BLOCK_ID: return "PARAMATTR_BLOCK"; case bitc::TYPE_BLOCK_ID_OLD: return "TYPE_BLOCK_ID_OLD"; case bitc::TYPE_BLOCK_ID_NEW: return "TYPE_BLOCK_ID"; case bitc::CONSTANTS_BLOCK_ID: return "CONSTANTS_BLOCK"; case bitc::FUNCTION_BLOCK_ID: return "FUNCTION_BLOCK"; case bitc::TYPE_SYMTAB_BLOCK_ID_OLD: return "TYPE_SYMTAB_OLD"; case bitc::VALUE_SYMTAB_BLOCK_ID: return "VALUE_SYMTAB"; case bitc::METADATA_BLOCK_ID: return "METADATA_BLOCK"; case bitc::METADATA_ATTACHMENT_ID: return "METADATA_ATTACHMENT_BLOCK"; } } /// GetCodeName - Return a symbolic code name if known, otherwise return /// null. static const char *GetCodeName(unsigned CodeID, unsigned BlockID, const BitstreamReader &StreamFile) { // Standard blocks for all bitcode files. if (BlockID < bitc::FIRST_APPLICATION_BLOCKID) { if (BlockID == bitc::BLOCKINFO_BLOCK_ID) { switch (CodeID) { default: return 0; case bitc::BLOCKINFO_CODE_SETBID: return "SETBID"; case bitc::BLOCKINFO_CODE_BLOCKNAME: return "BLOCKNAME"; case bitc::BLOCKINFO_CODE_SETRECORDNAME: return "SETRECORDNAME"; } } return 0; } // Check to see if we have a blockinfo record for this record, with a name. if (const BitstreamReader::BlockInfo *Info = StreamFile.getBlockInfo(BlockID)) { for (unsigned i = 0, e = Info->RecordNames.size(); i != e; ++i) if (Info->RecordNames[i].first == CodeID) return Info->RecordNames[i].second.c_str(); } if (CurStreamType != LLVMIRBitstream) return 0; switch (BlockID) { default: return 0; case bitc::MODULE_BLOCK_ID: switch (CodeID) { default: return 0; case bitc::MODULE_CODE_VERSION: return "VERSION"; case bitc::MODULE_CODE_TRIPLE: return "TRIPLE"; case bitc::MODULE_CODE_DATALAYOUT: return "DATALAYOUT"; case bitc::MODULE_CODE_ASM: return "ASM"; case bitc::MODULE_CODE_SECTIONNAME: return "SECTIONNAME"; case bitc::MODULE_CODE_DEPLIB: return "DEPLIB"; case bitc::MODULE_CODE_GLOBALVAR: return "GLOBALVAR"; case bitc::MODULE_CODE_FUNCTION: return "FUNCTION"; case bitc::MODULE_CODE_ALIAS: return "ALIAS"; case bitc::MODULE_CODE_PURGEVALS: return "PURGEVALS"; case bitc::MODULE_CODE_GCNAME: return "GCNAME"; } case bitc::PARAMATTR_BLOCK_ID: switch (CodeID) { default: return 0; case bitc::PARAMATTR_CODE_ENTRY: return "ENTRY"; } case bitc::TYPE_BLOCK_ID_OLD: case bitc::TYPE_BLOCK_ID_NEW: switch (CodeID) { default: return 0; case bitc::TYPE_CODE_NUMENTRY: return "NUMENTRY"; case bitc::TYPE_CODE_VOID: return "VOID"; case bitc::TYPE_CODE_FLOAT: return "FLOAT"; case bitc::TYPE_CODE_DOUBLE: return "DOUBLE"; case bitc::TYPE_CODE_LABEL: return "LABEL"; case bitc::TYPE_CODE_OPAQUE: return "OPAQUE"; case bitc::TYPE_CODE_INTEGER: return "INTEGER"; case bitc::TYPE_CODE_POINTER: return "POINTER"; case bitc::TYPE_CODE_FUNCTION: return "FUNCTION"; case bitc::TYPE_CODE_STRUCT_OLD: return "STRUCT_OLD"; case bitc::TYPE_CODE_ARRAY: return "ARRAY"; case bitc::TYPE_CODE_VECTOR: return "VECTOR"; case bitc::TYPE_CODE_X86_FP80: return "X86_FP80"; case bitc::TYPE_CODE_FP128: return "FP128"; case bitc::TYPE_CODE_PPC_FP128: return "PPC_FP128"; case bitc::TYPE_CODE_METADATA: return "METADATA"; case bitc::TYPE_CODE_STRUCT_ANON: return "STRUCT_ANON"; case bitc::TYPE_CODE_STRUCT_NAME: return "STRUCT_NAME"; case bitc::TYPE_CODE_STRUCT_NAMED: return "STRUCT_NAMED"; } case bitc::CONSTANTS_BLOCK_ID: switch (CodeID) { default: return 0; case bitc::CST_CODE_SETTYPE: return "SETTYPE"; case bitc::CST_CODE_NULL: return "NULL"; case bitc::CST_CODE_UNDEF: return "UNDEF"; case bitc::CST_CODE_INTEGER: return "INTEGER"; case bitc::CST_CODE_WIDE_INTEGER: return "WIDE_INTEGER"; case bitc::CST_CODE_FLOAT: return "FLOAT"; case bitc::CST_CODE_AGGREGATE: return "AGGREGATE"; case bitc::CST_CODE_STRING: return "STRING"; case bitc::CST_CODE_CSTRING: return "CSTRING"; case bitc::CST_CODE_CE_BINOP: return "CE_BINOP"; case bitc::CST_CODE_CE_CAST: return "CE_CAST"; case bitc::CST_CODE_CE_GEP: return "CE_GEP"; case bitc::CST_CODE_CE_INBOUNDS_GEP: return "CE_INBOUNDS_GEP"; case bitc::CST_CODE_CE_SELECT: return "CE_SELECT"; case bitc::CST_CODE_CE_EXTRACTELT: return "CE_EXTRACTELT"; case bitc::CST_CODE_CE_INSERTELT: return "CE_INSERTELT"; case bitc::CST_CODE_CE_SHUFFLEVEC: return "CE_SHUFFLEVEC"; case bitc::CST_CODE_CE_CMP: return "CE_CMP"; case bitc::CST_CODE_INLINEASM: return "INLINEASM"; case bitc::CST_CODE_CE_SHUFVEC_EX: return "CE_SHUFVEC_EX"; } case bitc::FUNCTION_BLOCK_ID: switch (CodeID) { default: return 0; case bitc::FUNC_CODE_DECLAREBLOCKS: return "DECLAREBLOCKS"; case bitc::FUNC_CODE_INST_BINOP: return "INST_BINOP"; case bitc::FUNC_CODE_INST_CAST: return "INST_CAST"; case bitc::FUNC_CODE_INST_GEP: return "INST_GEP"; case bitc::FUNC_CODE_INST_INBOUNDS_GEP: return "INST_INBOUNDS_GEP"; case bitc::FUNC_CODE_INST_SELECT: return "INST_SELECT"; case bitc::FUNC_CODE_INST_EXTRACTELT: return "INST_EXTRACTELT"; case bitc::FUNC_CODE_INST_INSERTELT: return "INST_INSERTELT"; case bitc::FUNC_CODE_INST_SHUFFLEVEC: return "INST_SHUFFLEVEC"; case bitc::FUNC_CODE_INST_CMP: return "INST_CMP"; case bitc::FUNC_CODE_INST_RET: return "INST_RET"; case bitc::FUNC_CODE_INST_BR: return "INST_BR"; case bitc::FUNC_CODE_INST_SWITCH: return "INST_SWITCH"; case bitc::FUNC_CODE_INST_INVOKE: return "INST_INVOKE"; case bitc::FUNC_CODE_INST_UNWIND: return "INST_UNWIND"; case bitc::FUNC_CODE_INST_UNREACHABLE: return "INST_UNREACHABLE"; case bitc::FUNC_CODE_INST_PHI: return "INST_PHI"; case bitc::FUNC_CODE_INST_ALLOCA: return "INST_ALLOCA"; case bitc::FUNC_CODE_INST_LOAD: return "INST_LOAD"; case bitc::FUNC_CODE_INST_VAARG: return "INST_VAARG"; case bitc::FUNC_CODE_INST_STORE: return "INST_STORE"; case bitc::FUNC_CODE_INST_EXTRACTVAL: return "INST_EXTRACTVAL"; case bitc::FUNC_CODE_INST_INSERTVAL: return "INST_INSERTVAL"; case bitc::FUNC_CODE_INST_CMP2: return "INST_CMP2"; case bitc::FUNC_CODE_INST_VSELECT: return "INST_VSELECT"; case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: return "DEBUG_LOC_AGAIN"; case bitc::FUNC_CODE_INST_CALL: return "INST_CALL"; case bitc::FUNC_CODE_DEBUG_LOC: return "DEBUG_LOC"; } case bitc::TYPE_SYMTAB_BLOCK_ID_OLD: switch (CodeID) { default: return 0; case bitc::TST_CODE_ENTRY: return "ENTRY"; } case bitc::VALUE_SYMTAB_BLOCK_ID: switch (CodeID) { default: return 0; case bitc::VST_CODE_ENTRY: return "ENTRY"; case bitc::VST_CODE_BBENTRY: return "BBENTRY"; } case bitc::METADATA_ATTACHMENT_ID: switch(CodeID) { default:return 0; case bitc::METADATA_ATTACHMENT: return "METADATA_ATTACHMENT"; } case bitc::METADATA_BLOCK_ID: switch(CodeID) { default:return 0; case bitc::METADATA_STRING: return "METADATA_STRING"; case bitc::METADATA_NAME: return "METADATA_NAME"; case bitc::METADATA_KIND: return "METADATA_KIND"; case bitc::METADATA_NODE: return "METADATA_NODE"; case bitc::METADATA_FN_NODE: return "METADATA_FN_NODE"; case bitc::METADATA_NAMED_NODE: return "METADATA_NAMED_NODE"; } } } struct PerRecordStats { unsigned NumInstances; unsigned NumAbbrev; uint64_t TotalBits; PerRecordStats() : NumInstances(0), NumAbbrev(0), TotalBits(0) {} }; struct PerBlockIDStats { /// NumInstances - This the number of times this block ID has been seen. unsigned NumInstances; /// NumBits - The total size in bits of all of these blocks. uint64_t NumBits; /// NumSubBlocks - The total number of blocks these blocks contain. unsigned NumSubBlocks; /// NumAbbrevs - The total number of abbreviations. unsigned NumAbbrevs; /// NumRecords - The total number of records these blocks contain, and the /// number that are abbreviated. unsigned NumRecords, NumAbbreviatedRecords; /// CodeFreq - Keep track of the number of times we see each code. std::vector<PerRecordStats> CodeFreq; PerBlockIDStats() : NumInstances(0), NumBits(0), NumSubBlocks(0), NumAbbrevs(0), NumRecords(0), NumAbbreviatedRecords(0) {} }; static std::map<unsigned, PerBlockIDStats> BlockIDStats; /// Error - All bitcode analysis errors go through this function, making this a /// good place to breakpoint if debugging. static bool Error(const std::string &Err) { errs() << Err << "\n"; return true; } /// ParseBlock - Read a block, updating statistics, etc. static bool ParseBlock(BitstreamCursor &Stream, unsigned IndentLevel) { std::string Indent(IndentLevel*2, ' '); uint64_t BlockBitStart = Stream.GetCurrentBitNo(); unsigned BlockID = Stream.ReadSubBlockID(); // Get the statistics for this BlockID. PerBlockIDStats &BlockStats = BlockIDStats[BlockID]; BlockStats.NumInstances++; // BLOCKINFO is a special part of the stream. if (BlockID == bitc::BLOCKINFO_BLOCK_ID) { if (Dump) errs() << Indent << "<BLOCKINFO_BLOCK/>\n"; if (Stream.ReadBlockInfoBlock()) return Error("Malformed BlockInfoBlock"); uint64_t BlockBitEnd = Stream.GetCurrentBitNo(); BlockStats.NumBits += BlockBitEnd-BlockBitStart; return false; } unsigned NumWords = 0; if (Stream.EnterSubBlock(BlockID, &NumWords)) return Error("Malformed block record"); const char *BlockName = 0; if (Dump) { errs() << Indent << "<"; if ((BlockName = GetBlockName(BlockID, *Stream.getBitStreamReader()))) errs() << BlockName; else errs() << "UnknownBlock" << BlockID; if (NonSymbolic && BlockName) errs() << " BlockID=" << BlockID; errs() << " NumWords=" << NumWords << " BlockCodeSize=" << Stream.GetAbbrevIDWidth() << ">\n"; } SmallVector<uint64_t, 64> Record; // Read all the records for this block. while (1) { if (Stream.AtEndOfStream()) return Error("Premature end of bitstream"); uint64_t RecordStartBit = Stream.GetCurrentBitNo(); // Read the code for this record. unsigned AbbrevID = Stream.ReadCode(); switch (AbbrevID) { case bitc::END_BLOCK: { if (Stream.ReadBlockEnd()) return Error("Error at end of block"); uint64_t BlockBitEnd = Stream.GetCurrentBitNo(); BlockStats.NumBits += BlockBitEnd-BlockBitStart; if (Dump) { errs() << Indent << "</"; if (BlockName) errs() << BlockName << ">\n"; else errs() << "UnknownBlock" << BlockID << ">\n"; } return false; } case bitc::ENTER_SUBBLOCK: { uint64_t SubBlockBitStart = Stream.GetCurrentBitNo(); if (ParseBlock(Stream, IndentLevel+1)) return true; ++BlockStats.NumSubBlocks; uint64_t SubBlockBitEnd = Stream.GetCurrentBitNo(); // Don't include subblock sizes in the size of this block. BlockBitStart += SubBlockBitEnd-SubBlockBitStart; break; } case bitc::DEFINE_ABBREV: Stream.ReadAbbrevRecord(); ++BlockStats.NumAbbrevs; break; default: Record.clear(); ++BlockStats.NumRecords; if (AbbrevID != bitc::UNABBREV_RECORD) ++BlockStats.NumAbbreviatedRecords; const char *BlobStart = 0; unsigned BlobLen = 0; unsigned Code = Stream.ReadRecord(AbbrevID, Record, BlobStart, BlobLen); // Increment the # occurrences of this code. if (BlockStats.CodeFreq.size() <= Code) BlockStats.CodeFreq.resize(Code+1); BlockStats.CodeFreq[Code].NumInstances++; BlockStats.CodeFreq[Code].TotalBits += Stream.GetCurrentBitNo()-RecordStartBit; if (AbbrevID != bitc::UNABBREV_RECORD) BlockStats.CodeFreq[Code].NumAbbrev++; if (Dump) { errs() << Indent << " <"; if (const char *CodeName = GetCodeName(Code, BlockID, *Stream.getBitStreamReader())) errs() << CodeName; else errs() << "UnknownCode" << Code; if (NonSymbolic && GetCodeName(Code, BlockID, *Stream.getBitStreamReader())) errs() << " codeid=" << Code; if (AbbrevID != bitc::UNABBREV_RECORD) errs() << " abbrevid=" << AbbrevID; for (unsigned i = 0, e = Record.size(); i != e; ++i) errs() << " op" << i << "=" << (int64_t)Record[i]; errs() << "/>"; if (BlobStart) { errs() << " blob data = "; bool BlobIsPrintable = true; for (unsigned i = 0; i != BlobLen; ++i) if (!isprint(BlobStart[i])) { BlobIsPrintable = false; break; } if (BlobIsPrintable) errs() << "'" << std::string(BlobStart, BlobStart+BlobLen) <<"'"; else errs() << "unprintable, " << BlobLen << " bytes."; } errs() << "\n"; } break; } } } static void PrintSize(double Bits) { fprintf(stderr, "%.2f/%.2fB/%luW", Bits, Bits/8,(unsigned long)(Bits/32)); } static void PrintSize(uint64_t Bits) { fprintf(stderr, "%lub/%.2fB/%luW", (unsigned long)Bits, (double)Bits/8, (unsigned long)(Bits/32)); } /// AnalyzeBitcode - Analyze the bitcode file specified by InputFilename. static int AnalyzeBitcode() { // Read the input file. OwningPtr<MemoryBuffer> MemBuf; if (error_code ec = MemoryBuffer::getFileOrSTDIN(InputFilename.c_str(), MemBuf)) return Error("Error reading '" + InputFilename + "': " + ec.message()); if (MemBuf->getBufferSize() & 3) return Error("Bitcode stream should be a multiple of 4 bytes in length"); unsigned char *BufPtr = (unsigned char *)MemBuf->getBufferStart(); unsigned char *EndBufPtr = BufPtr+MemBuf->getBufferSize(); // If we have a wrapper header, parse it and ignore the non-bc file contents. // The magic number is 0x0B17C0DE stored in little endian. if (isBitcodeWrapper(BufPtr, EndBufPtr)) if (SkipBitcodeWrapperHeader(BufPtr, EndBufPtr)) return Error("Invalid bitcode wrapper header"); BitstreamReader StreamFile(BufPtr, EndBufPtr); BitstreamCursor Stream(StreamFile); StreamFile.CollectBlockInfoNames(); // Read the stream signature. char Signature[6]; Signature[0] = Stream.Read(8); Signature[1] = Stream.Read(8); Signature[2] = Stream.Read(4); Signature[3] = Stream.Read(4); Signature[4] = Stream.Read(4); Signature[5] = Stream.Read(4); // Autodetect the file contents, if it is one we know. CurStreamType = UnknownBitstream; if (Signature[0] == 'B' && Signature[1] == 'C' && Signature[2] == 0x0 && Signature[3] == 0xC && Signature[4] == 0xE && Signature[5] == 0xD) CurStreamType = LLVMIRBitstream; unsigned NumTopBlocks = 0; // Parse the top-level structure. We only allow blocks at the top-level. while (!Stream.AtEndOfStream()) { unsigned Code = Stream.ReadCode(); if (Code != bitc::ENTER_SUBBLOCK) return Error("Invalid record at top-level"); if (ParseBlock(Stream, 0)) return true; ++NumTopBlocks; } if (Dump) errs() << "\n\n"; uint64_t BufferSizeBits = (EndBufPtr-BufPtr)*CHAR_BIT; // Print a summary of the read file. errs() << "Summary of " << InputFilename << ":\n"; errs() << " Total size: "; PrintSize(BufferSizeBits); errs() << "\n"; errs() << " Stream type: "; switch (CurStreamType) { default: assert(0 && "Unknown bitstream type"); case UnknownBitstream: errs() << "unknown\n"; break; case LLVMIRBitstream: errs() << "LLVM IR\n"; break; } errs() << " # Toplevel Blocks: " << NumTopBlocks << "\n"; errs() << "\n"; // Emit per-block stats. errs() << "Per-block Summary:\n"; for (std::map<unsigned, PerBlockIDStats>::iterator I = BlockIDStats.begin(), E = BlockIDStats.end(); I != E; ++I) { errs() << " Block ID #" << I->first; if (const char *BlockName = GetBlockName(I->first, StreamFile)) errs() << " (" << BlockName << ")"; errs() << ":\n"; const PerBlockIDStats &Stats = I->second; errs() << " Num Instances: " << Stats.NumInstances << "\n"; errs() << " Total Size: "; PrintSize(Stats.NumBits); errs() << "\n"; double pct = (Stats.NumBits * 100.0) / BufferSizeBits; errs() << " Percent of file: " << format("%2.4f%%", pct) << "\n"; if (Stats.NumInstances > 1) { errs() << " Average Size: "; PrintSize(Stats.NumBits/(double)Stats.NumInstances); errs() << "\n"; errs() << " Tot/Avg SubBlocks: " << Stats.NumSubBlocks << "/" << Stats.NumSubBlocks/(double)Stats.NumInstances << "\n"; errs() << " Tot/Avg Abbrevs: " << Stats.NumAbbrevs << "/" << Stats.NumAbbrevs/(double)Stats.NumInstances << "\n"; errs() << " Tot/Avg Records: " << Stats.NumRecords << "/" << Stats.NumRecords/(double)Stats.NumInstances << "\n"; } else { errs() << " Num SubBlocks: " << Stats.NumSubBlocks << "\n"; errs() << " Num Abbrevs: " << Stats.NumAbbrevs << "\n"; errs() << " Num Records: " << Stats.NumRecords << "\n"; } if (Stats.NumRecords) { double pct = (Stats.NumAbbreviatedRecords * 100.0) / Stats.NumRecords; errs() << " Percent Abbrevs: " << format("%2.4f%%", pct) << "\n"; } errs() << "\n"; // Print a histogram of the codes we see. if (!NoHistogram && !Stats.CodeFreq.empty()) { std::vector<std::pair<unsigned, unsigned> > FreqPairs; // <freq,code> for (unsigned i = 0, e = Stats.CodeFreq.size(); i != e; ++i) if (unsigned Freq = Stats.CodeFreq[i].NumInstances) FreqPairs.push_back(std::make_pair(Freq, i)); std::stable_sort(FreqPairs.begin(), FreqPairs.end()); std::reverse(FreqPairs.begin(), FreqPairs.end()); errs() << "\tRecord Histogram:\n"; fprintf(stderr, "\t\t Count # Bits %% Abv Record Kind\n"); for (unsigned i = 0, e = FreqPairs.size(); i != e; ++i) { const PerRecordStats &RecStats = Stats.CodeFreq[FreqPairs[i].second]; fprintf(stderr, "\t\t%7d %9lu ", RecStats.NumInstances, (unsigned long)RecStats.TotalBits); if (RecStats.NumAbbrev) fprintf(stderr, "%7.2f ", (double)RecStats.NumAbbrev/RecStats.NumInstances*100); else fprintf(stderr, " "); if (const char *CodeName = GetCodeName(FreqPairs[i].second, I->first, StreamFile)) fprintf(stderr, "%s\n", CodeName); else fprintf(stderr, "UnknownCode%d\n", FreqPairs[i].second); } errs() << "\n"; } } return 0; } int main(int argc, char **argv) { // Print a stack trace if we signal out. sys::PrintStackTraceOnErrorSignal(); PrettyStackTraceProgram X(argc, argv); llvm_shutdown_obj Y; // Call llvm_shutdown() on exit. cl::ParseCommandLineOptions(argc, argv, "llvm-bcanalyzer file analyzer\n"); return AnalyzeBitcode(); }