//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the CodeGenDAGPatterns class, which is used to read and // represent the patterns present in a .td file for instructions. // //===----------------------------------------------------------------------===// #include "CodeGenDAGPatterns.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Debug.h" #include <set> #include <algorithm> using namespace llvm; //===----------------------------------------------------------------------===// // EEVT::TypeSet Implementation //===----------------------------------------------------------------------===// static inline bool isInteger(MVT::SimpleValueType VT) { return EVT(VT).isInteger(); } static inline bool isFloatingPoint(MVT::SimpleValueType VT) { return EVT(VT).isFloatingPoint(); } static inline bool isVector(MVT::SimpleValueType VT) { return EVT(VT).isVector(); } static inline bool isScalar(MVT::SimpleValueType VT) { return !EVT(VT).isVector(); } EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { if (VT == MVT::iAny) EnforceInteger(TP); else if (VT == MVT::fAny) EnforceFloatingPoint(TP); else if (VT == MVT::vAny) EnforceVector(TP); else { assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || VT == MVT::iPTRAny) && "Not a concrete type!"); TypeVec.push_back(VT); } } EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) { assert(!VTList.empty() && "empty list?"); TypeVec.append(VTList.begin(), VTList.end()); if (!VTList.empty()) assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && VTList[0] != MVT::fAny); // Verify no duplicates. array_pod_sort(TypeVec.begin(), TypeVec.end()); assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); } /// FillWithPossibleTypes - Set to all legal types and return true, only valid /// on completely unknown type sets. bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, bool (*Pred)(MVT::SimpleValueType), const char *PredicateName) { assert(isCompletelyUnknown()); const std::vector<MVT::SimpleValueType> &LegalTypes = TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) if (Pred == 0 || Pred(LegalTypes[i])) TypeVec.push_back(LegalTypes[i]); // If we have nothing that matches the predicate, bail out. if (TypeVec.empty()) TP.error("Type inference contradiction found, no " + std::string(PredicateName) + " types found"); // No need to sort with one element. if (TypeVec.size() == 1) return true; // Remove duplicates. array_pod_sort(TypeVec.begin(), TypeVec.end()); TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); return true; } /// hasIntegerTypes - Return true if this TypeSet contains iAny or an /// integer value type. bool EEVT::TypeSet::hasIntegerTypes() const { for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) if (isInteger(TypeVec[i])) return true; return false; } /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or /// a floating point value type. bool EEVT::TypeSet::hasFloatingPointTypes() const { for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) if (isFloatingPoint(TypeVec[i])) return true; return false; } /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector /// value type. bool EEVT::TypeSet::hasVectorTypes() const { for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) if (isVector(TypeVec[i])) return true; return false; } std::string EEVT::TypeSet::getName() const { if (TypeVec.empty()) return "<empty>"; std::string Result; for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { std::string VTName = llvm::getEnumName(TypeVec[i]); // Strip off MVT:: prefix if present. if (VTName.substr(0,5) == "MVT::") VTName = VTName.substr(5); if (i) Result += ':'; Result += VTName; } if (TypeVec.size() == 1) return Result; return "{" + Result + "}"; } /// MergeInTypeInfo - This merges in type information from the specified /// argument. If 'this' changes, it returns true. If the two types are /// contradictory (e.g. merge f32 into i32) then this throws an exception. bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ if (InVT.isCompletelyUnknown() || *this == InVT) return false; if (isCompletelyUnknown()) { *this = InVT; return true; } assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); // Handle the abstract cases, seeing if we can resolve them better. switch (TypeVec[0]) { default: break; case MVT::iPTR: case MVT::iPTRAny: if (InVT.hasIntegerTypes()) { EEVT::TypeSet InCopy(InVT); InCopy.EnforceInteger(TP); InCopy.EnforceScalar(TP); if (InCopy.isConcrete()) { // If the RHS has one integer type, upgrade iPTR to i32. TypeVec[0] = InVT.TypeVec[0]; return true; } // If the input has multiple scalar integers, this doesn't add any info. if (!InCopy.isCompletelyUnknown()) return false; } break; } // If the input constraint is iAny/iPTR and this is an integer type list, // remove non-integer types from the list. if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && hasIntegerTypes()) { bool MadeChange = EnforceInteger(TP); // If we're merging in iPTR/iPTRAny and the node currently has a list of // multiple different integer types, replace them with a single iPTR. if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && TypeVec.size() != 1) { TypeVec.resize(1); TypeVec[0] = InVT.TypeVec[0]; MadeChange = true; } return MadeChange; } // If this is a type list and the RHS is a typelist as well, eliminate entries // from this list that aren't in the other one. bool MadeChange = false; TypeSet InputSet(*this); for (unsigned i = 0; i != TypeVec.size(); ++i) { bool InInVT = false; for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j) if (TypeVec[i] == InVT.TypeVec[j]) { InInVT = true; break; } if (InInVT) continue; TypeVec.erase(TypeVec.begin()+i--); MadeChange = true; } // If we removed all of our types, we have a type contradiction. if (!TypeVec.empty()) return MadeChange; // FIXME: Really want an SMLoc here! TP.error("Type inference contradiction found, merging '" + InVT.getName() + "' into '" + InputSet.getName() + "'"); return true; // unreachable } /// EnforceInteger - Remove all non-integer types from this set. bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { // If we know nothing, then get the full set. if (TypeVec.empty()) return FillWithPossibleTypes(TP, isInteger, "integer"); if (!hasFloatingPointTypes()) return false; TypeSet InputSet(*this); // Filter out all the fp types. for (unsigned i = 0; i != TypeVec.size(); ++i) if (!isInteger(TypeVec[i])) TypeVec.erase(TypeVec.begin()+i--); if (TypeVec.empty()) TP.error("Type inference contradiction found, '" + InputSet.getName() + "' needs to be integer"); return true; } /// EnforceFloatingPoint - Remove all integer types from this set. bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { // If we know nothing, then get the full set. if (TypeVec.empty()) return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); if (!hasIntegerTypes()) return false; TypeSet InputSet(*this); // Filter out all the fp types. for (unsigned i = 0; i != TypeVec.size(); ++i) if (!isFloatingPoint(TypeVec[i])) TypeVec.erase(TypeVec.begin()+i--); if (TypeVec.empty()) TP.error("Type inference contradiction found, '" + InputSet.getName() + "' needs to be floating point"); return true; } /// EnforceScalar - Remove all vector types from this. bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { // If we know nothing, then get the full set. if (TypeVec.empty()) return FillWithPossibleTypes(TP, isScalar, "scalar"); if (!hasVectorTypes()) return false; TypeSet InputSet(*this); // Filter out all the vector types. for (unsigned i = 0; i != TypeVec.size(); ++i) if (!isScalar(TypeVec[i])) TypeVec.erase(TypeVec.begin()+i--); if (TypeVec.empty()) TP.error("Type inference contradiction found, '" + InputSet.getName() + "' needs to be scalar"); return true; } /// EnforceVector - Remove all vector types from this. bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { // If we know nothing, then get the full set. if (TypeVec.empty()) return FillWithPossibleTypes(TP, isVector, "vector"); TypeSet InputSet(*this); bool MadeChange = false; // Filter out all the scalar types. for (unsigned i = 0; i != TypeVec.size(); ++i) if (!isVector(TypeVec[i])) { TypeVec.erase(TypeVec.begin()+i--); MadeChange = true; } if (TypeVec.empty()) TP.error("Type inference contradiction found, '" + InputSet.getName() + "' needs to be a vector"); return MadeChange; } /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update /// this an other based on this information. bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { // Both operands must be integer or FP, but we don't care which. bool MadeChange = false; if (isCompletelyUnknown()) MadeChange = FillWithPossibleTypes(TP); if (Other.isCompletelyUnknown()) MadeChange = Other.FillWithPossibleTypes(TP); // If one side is known to be integer or known to be FP but the other side has // no information, get at least the type integrality info in there. if (!hasFloatingPointTypes()) MadeChange |= Other.EnforceInteger(TP); else if (!hasIntegerTypes()) MadeChange |= Other.EnforceFloatingPoint(TP); if (!Other.hasFloatingPointTypes()) MadeChange |= EnforceInteger(TP); else if (!Other.hasIntegerTypes()) MadeChange |= EnforceFloatingPoint(TP); assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && "Should have a type list now"); // If one contains vectors but the other doesn't pull vectors out. if (!hasVectorTypes()) MadeChange |= Other.EnforceScalar(TP); if (!hasVectorTypes()) MadeChange |= EnforceScalar(TP); if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) { // If we are down to concrete types, this code does not currently // handle nodes which have multiple types, where some types are // integer, and some are fp. Assert that this is not the case. assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); // Otherwise, if these are both vector types, either this vector // must have a larger bitsize than the other, or this element type // must be larger than the other. EVT Type(TypeVec[0]); EVT OtherType(Other.TypeVec[0]); if (hasVectorTypes() && Other.hasVectorTypes()) { if (Type.getSizeInBits() >= OtherType.getSizeInBits()) if (Type.getVectorElementType().getSizeInBits() >= OtherType.getVectorElementType().getSizeInBits()) TP.error("Type inference contradiction found, '" + getName() + "' element type not smaller than '" + Other.getName() +"'!"); } else // For scalar types, the bitsize of this type must be larger // than that of the other. if (Type.getSizeInBits() >= OtherType.getSizeInBits()) TP.error("Type inference contradiction found, '" + getName() + "' is not smaller than '" + Other.getName() +"'!"); } // Handle int and fp as disjoint sets. This won't work for patterns // that have mixed fp/int types but those are likely rare and would // not have been accepted by this code previously. // Okay, find the smallest type from the current set and remove it from the // largest set. MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE; for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) if (isInteger(TypeVec[i])) { SmallestInt = TypeVec[i]; break; } for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt) SmallestInt = TypeVec[i]; MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE; for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) if (isFloatingPoint(TypeVec[i])) { SmallestFP = TypeVec[i]; break; } for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP) SmallestFP = TypeVec[i]; int OtherIntSize = 0; int OtherFPSize = 0; for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = Other.TypeVec.begin(); TVI != Other.TypeVec.end(); /* NULL */) { if (isInteger(*TVI)) { ++OtherIntSize; if (*TVI == SmallestInt) { TVI = Other.TypeVec.erase(TVI); --OtherIntSize; MadeChange = true; continue; } } else if (isFloatingPoint(*TVI)) { ++OtherFPSize; if (*TVI == SmallestFP) { TVI = Other.TypeVec.erase(TVI); --OtherFPSize; MadeChange = true; continue; } } ++TVI; } // If this is the only type in the large set, the constraint can never be // satisfied. if ((Other.hasIntegerTypes() && OtherIntSize == 0) || (Other.hasFloatingPointTypes() && OtherFPSize == 0)) TP.error("Type inference contradiction found, '" + Other.getName() + "' has nothing larger than '" + getName() +"'!"); // Okay, find the largest type in the Other set and remove it from the // current set. MVT::SimpleValueType LargestInt = MVT::Other; for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) if (isInteger(Other.TypeVec[i])) { LargestInt = Other.TypeVec[i]; break; } for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt) LargestInt = Other.TypeVec[i]; MVT::SimpleValueType LargestFP = MVT::Other; for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) if (isFloatingPoint(Other.TypeVec[i])) { LargestFP = Other.TypeVec[i]; break; } for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP) LargestFP = Other.TypeVec[i]; int IntSize = 0; int FPSize = 0; for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = TypeVec.begin(); TVI != TypeVec.end(); /* NULL */) { if (isInteger(*TVI)) { ++IntSize; if (*TVI == LargestInt) { TVI = TypeVec.erase(TVI); --IntSize; MadeChange = true; continue; } } else if (isFloatingPoint(*TVI)) { ++FPSize; if (*TVI == LargestFP) { TVI = TypeVec.erase(TVI); --FPSize; MadeChange = true; continue; } } ++TVI; } // If this is the only type in the small set, the constraint can never be // satisfied. if ((hasIntegerTypes() && IntSize == 0) || (hasFloatingPointTypes() && FPSize == 0)) TP.error("Type inference contradiction found, '" + getName() + "' has nothing smaller than '" + Other.getName()+"'!"); return MadeChange; } /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type /// whose element is specified by VTOperand. bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, TreePattern &TP) { // "This" must be a vector and "VTOperand" must be a scalar. bool MadeChange = false; MadeChange |= EnforceVector(TP); MadeChange |= VTOperand.EnforceScalar(TP); // If we know the vector type, it forces the scalar to agree. if (isConcrete()) { EVT IVT = getConcrete(); IVT = IVT.getVectorElementType(); return MadeChange | VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP); } // If the scalar type is known, filter out vector types whose element types // disagree. if (!VTOperand.isConcrete()) return MadeChange; MVT::SimpleValueType VT = VTOperand.getConcrete(); TypeSet InputSet(*this); // Filter out all the types which don't have the right element type. for (unsigned i = 0; i != TypeVec.size(); ++i) { assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) { TypeVec.erase(TypeVec.begin()+i--); MadeChange = true; } } if (TypeVec.empty()) // FIXME: Really want an SMLoc here! TP.error("Type inference contradiction found, forcing '" + InputSet.getName() + "' to have a vector element"); return MadeChange; } /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a /// vector type specified by VTOperand. bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, TreePattern &TP) { // "This" must be a vector and "VTOperand" must be a vector. bool MadeChange = false; MadeChange |= EnforceVector(TP); MadeChange |= VTOperand.EnforceVector(TP); // "This" must be larger than "VTOperand." MadeChange |= VTOperand.EnforceSmallerThan(*this, TP); // If we know the vector type, it forces the scalar types to agree. if (isConcrete()) { EVT IVT = getConcrete(); IVT = IVT.getVectorElementType(); EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); } else if (VTOperand.isConcrete()) { EVT IVT = VTOperand.getConcrete(); IVT = IVT.getVectorElementType(); EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); } return MadeChange; } //===----------------------------------------------------------------------===// // Helpers for working with extended types. bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const { return LHS->getID() < RHS->getID(); } /// Dependent variable map for CodeGenDAGPattern variant generation typedef std::map<std::string, int> DepVarMap; /// Const iterator shorthand for DepVarMap typedef DepVarMap::const_iterator DepVarMap_citer; static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { if (N->isLeaf()) { if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) DepMap[N->getName()]++; } else { for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) FindDepVarsOf(N->getChild(i), DepMap); } } /// Find dependent variables within child patterns static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { DepVarMap depcounts; FindDepVarsOf(N, depcounts); for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { if (i->second > 1) // std::pair<std::string, int> DepVars.insert(i->first); } } #ifndef NDEBUG /// Dump the dependent variable set: static void DumpDepVars(MultipleUseVarSet &DepVars) { if (DepVars.empty()) { DEBUG(errs() << "<empty set>"); } else { DEBUG(errs() << "[ "); for (MultipleUseVarSet::const_iterator i = DepVars.begin(), e = DepVars.end(); i != e; ++i) { DEBUG(errs() << (*i) << " "); } DEBUG(errs() << "]"); } } #endif //===----------------------------------------------------------------------===// // TreePredicateFn Implementation //===----------------------------------------------------------------------===// /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { assert((getPredCode().empty() || getImmCode().empty()) && ".td file corrupt: can't have a node predicate *and* an imm predicate"); } std::string TreePredicateFn::getPredCode() const { return PatFragRec->getRecord()->getValueAsCode("PredicateCode"); } std::string TreePredicateFn::getImmCode() const { return PatFragRec->getRecord()->getValueAsCode("ImmediateCode"); } /// isAlwaysTrue - Return true if this is a noop predicate. bool TreePredicateFn::isAlwaysTrue() const { return getPredCode().empty() && getImmCode().empty(); } /// Return the name to use in the generated code to reference this, this is /// "Predicate_foo" if from a pattern fragment "foo". std::string TreePredicateFn::getFnName() const { return "Predicate_" + PatFragRec->getRecord()->getName(); } /// getCodeToRunOnSDNode - Return the code for the function body that /// evaluates this predicate. The argument is expected to be in "Node", /// not N. This handles casting and conversion to a concrete node type as /// appropriate. std::string TreePredicateFn::getCodeToRunOnSDNode() const { // Handle immediate predicates first. std::string ImmCode = getImmCode(); if (!ImmCode.empty()) { std::string Result = " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; return Result + ImmCode; } // Handle arbitrary node predicates. assert(!getPredCode().empty() && "Don't have any predicate code!"); std::string ClassName; if (PatFragRec->getOnlyTree()->isLeaf()) ClassName = "SDNode"; else { Record *Op = PatFragRec->getOnlyTree()->getOperator(); ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); } std::string Result; if (ClassName == "SDNode") Result = " SDNode *N = Node;\n"; else Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n"; return Result + getPredCode(); } //===----------------------------------------------------------------------===// // PatternToMatch implementation // /// getPatternSize - Return the 'size' of this pattern. We want to match large /// patterns before small ones. This is used to determine the size of a /// pattern. static unsigned getPatternSize(const TreePatternNode *P, const CodeGenDAGPatterns &CGP) { unsigned Size = 3; // The node itself. // If the root node is a ConstantSDNode, increases its size. // e.g. (set R32:$dst, 0). if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) Size += 2; // FIXME: This is a hack to statically increase the priority of patterns // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. // Later we can allow complexity / cost for each pattern to be (optionally) // specified. To get best possible pattern match we'll need to dynamically // calculate the complexity of all patterns a dag can potentially map to. const ComplexPattern *AM = P->getComplexPatternInfo(CGP); if (AM) Size += AM->getNumOperands() * 3; // If this node has some predicate function that must match, it adds to the // complexity of this node. if (!P->getPredicateFns().empty()) ++Size; // Count children in the count if they are also nodes. for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { TreePatternNode *Child = P->getChild(i); if (!Child->isLeaf() && Child->getNumTypes() && Child->getType(0) != MVT::Other) Size += getPatternSize(Child, CGP); else if (Child->isLeaf()) { if (dynamic_cast<IntInit*>(Child->getLeafValue())) Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). else if (Child->getComplexPatternInfo(CGP)) Size += getPatternSize(Child, CGP); else if (!Child->getPredicateFns().empty()) ++Size; } } return Size; } /// Compute the complexity metric for the input pattern. This roughly /// corresponds to the number of nodes that are covered. unsigned PatternToMatch:: getPatternComplexity(const CodeGenDAGPatterns &CGP) const { return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); } /// getPredicateCheck - Return a single string containing all of this /// pattern's predicates concatenated with "&&" operators. /// std::string PatternToMatch::getPredicateCheck() const { std::string PredicateCheck; for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { Record *Def = Pred->getDef(); if (!Def->isSubClassOf("Predicate")) { #ifndef NDEBUG Def->dump(); #endif assert(0 && "Unknown predicate type!"); } if (!PredicateCheck.empty()) PredicateCheck += " && "; PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; } } return PredicateCheck; } //===----------------------------------------------------------------------===// // SDTypeConstraint implementation // SDTypeConstraint::SDTypeConstraint(Record *R) { OperandNo = R->getValueAsInt("OperandNum"); if (R->isSubClassOf("SDTCisVT")) { ConstraintType = SDTCisVT; x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); if (x.SDTCisVT_Info.VT == MVT::isVoid) throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); } else if (R->isSubClassOf("SDTCisPtrTy")) { ConstraintType = SDTCisPtrTy; } else if (R->isSubClassOf("SDTCisInt")) { ConstraintType = SDTCisInt; } else if (R->isSubClassOf("SDTCisFP")) { ConstraintType = SDTCisFP; } else if (R->isSubClassOf("SDTCisVec")) { ConstraintType = SDTCisVec; } else if (R->isSubClassOf("SDTCisSameAs")) { ConstraintType = SDTCisSameAs; x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { ConstraintType = SDTCisVTSmallerThanOp; x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { ConstraintType = SDTCisOpSmallerThanOp; x.SDTCisOpSmallerThanOp_Info.BigOperandNum = R->getValueAsInt("BigOperandNum"); } else if (R->isSubClassOf("SDTCisEltOfVec")) { ConstraintType = SDTCisEltOfVec; x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { ConstraintType = SDTCisSubVecOfVec; x.SDTCisSubVecOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); } else { errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; exit(1); } } /// getOperandNum - Return the node corresponding to operand #OpNo in tree /// N, and the result number in ResNo. static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, const SDNodeInfo &NodeInfo, unsigned &ResNo) { unsigned NumResults = NodeInfo.getNumResults(); if (OpNo < NumResults) { ResNo = OpNo; return N; } OpNo -= NumResults; if (OpNo >= N->getNumChildren()) { errs() << "Invalid operand number in type constraint " << (OpNo+NumResults) << " "; N->dump(); errs() << '\n'; exit(1); } return N->getChild(OpNo); } /// ApplyTypeConstraint - Given a node in a pattern, apply this type /// constraint to the nodes operands. This returns true if it makes a /// change, false otherwise. If a type contradiction is found, throw an /// exception. bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, TreePattern &TP) const { unsigned ResNo = 0; // The result number being referenced. TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); switch (ConstraintType) { default: assert(0 && "Unknown constraint type!"); case SDTCisVT: // Operand must be a particular type. return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); case SDTCisPtrTy: // Operand must be same as target pointer type. return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); case SDTCisInt: // Require it to be one of the legal integer VTs. return NodeToApply->getExtType(ResNo).EnforceInteger(TP); case SDTCisFP: // Require it to be one of the legal fp VTs. return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); case SDTCisVec: // Require it to be one of the legal vector VTs. return NodeToApply->getExtType(ResNo).EnforceVector(TP); case SDTCisSameAs: { unsigned OResNo = 0; TreePatternNode *OtherNode = getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)| OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP); } case SDTCisVTSmallerThanOp: { // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must // have an integer type that is smaller than the VT. if (!NodeToApply->isLeaf() || !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() ->isSubClassOf("ValueType")) TP.error(N->getOperator()->getName() + " expects a VT operand!"); MVT::SimpleValueType VT = getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); EEVT::TypeSet TypeListTmp(VT, TP); unsigned OResNo = 0; TreePatternNode *OtherNode = getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, OResNo); return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); } case SDTCisOpSmallerThanOp: { unsigned BResNo = 0; TreePatternNode *BigOperand = getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, BResNo); return NodeToApply->getExtType(ResNo). EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); } case SDTCisEltOfVec: { unsigned VResNo = 0; TreePatternNode *VecOperand = getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo); // Filter vector types out of VecOperand that don't have the right element // type. return VecOperand->getExtType(VResNo). EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); } case SDTCisSubVecOfVec: { unsigned VResNo = 0; TreePatternNode *BigVecOperand = getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, VResNo); // Filter vector types out of BigVecOperand that don't have the // right subvector type. return BigVecOperand->getExtType(VResNo). EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); } } return false; } //===----------------------------------------------------------------------===// // SDNodeInfo implementation // SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { EnumName = R->getValueAsString("Opcode"); SDClassName = R->getValueAsString("SDClass"); Record *TypeProfile = R->getValueAsDef("TypeProfile"); NumResults = TypeProfile->getValueAsInt("NumResults"); NumOperands = TypeProfile->getValueAsInt("NumOperands"); // Parse the properties. Properties = 0; std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); for (unsigned i = 0, e = PropList.size(); i != e; ++i) { if (PropList[i]->getName() == "SDNPCommutative") { Properties |= 1 << SDNPCommutative; } else if (PropList[i]->getName() == "SDNPAssociative") { Properties |= 1 << SDNPAssociative; } else if (PropList[i]->getName() == "SDNPHasChain") { Properties |= 1 << SDNPHasChain; } else if (PropList[i]->getName() == "SDNPOutGlue") { Properties |= 1 << SDNPOutGlue; } else if (PropList[i]->getName() == "SDNPInGlue") { Properties |= 1 << SDNPInGlue; } else if (PropList[i]->getName() == "SDNPOptInGlue") { Properties |= 1 << SDNPOptInGlue; } else if (PropList[i]->getName() == "SDNPMayStore") { Properties |= 1 << SDNPMayStore; } else if (PropList[i]->getName() == "SDNPMayLoad") { Properties |= 1 << SDNPMayLoad; } else if (PropList[i]->getName() == "SDNPSideEffect") { Properties |= 1 << SDNPSideEffect; } else if (PropList[i]->getName() == "SDNPMemOperand") { Properties |= 1 << SDNPMemOperand; } else if (PropList[i]->getName() == "SDNPVariadic") { Properties |= 1 << SDNPVariadic; } else { errs() << "Unknown SD Node property '" << PropList[i]->getName() << "' on node '" << R->getName() << "'!\n"; exit(1); } } // Parse the type constraints. std::vector<Record*> ConstraintList = TypeProfile->getValueAsListOfDefs("Constraints"); TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); } /// getKnownType - If the type constraints on this node imply a fixed type /// (e.g. all stores return void, etc), then return it as an /// MVT::SimpleValueType. Otherwise, return EEVT::Other. MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { unsigned NumResults = getNumResults(); assert(NumResults <= 1 && "We only work with nodes with zero or one result so far!"); assert(ResNo == 0 && "Only handles single result nodes so far"); for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { // Make sure that this applies to the correct node result. if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # continue; switch (TypeConstraints[i].ConstraintType) { default: break; case SDTypeConstraint::SDTCisVT: return TypeConstraints[i].x.SDTCisVT_Info.VT; case SDTypeConstraint::SDTCisPtrTy: return MVT::iPTR; } } return MVT::Other; } //===----------------------------------------------------------------------===// // TreePatternNode implementation // TreePatternNode::~TreePatternNode() { #if 0 // FIXME: implement refcounted tree nodes! for (unsigned i = 0, e = getNumChildren(); i != e; ++i) delete getChild(i); #endif } static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { if (Operator->getName() == "set" || Operator->getName() == "implicit") return 0; // All return nothing. if (Operator->isSubClassOf("Intrinsic")) return CDP.getIntrinsic(Operator).IS.RetVTs.size(); if (Operator->isSubClassOf("SDNode")) return CDP.getSDNodeInfo(Operator).getNumResults(); if (Operator->isSubClassOf("PatFrag")) { // If we've already parsed this pattern fragment, get it. Otherwise, handle // the forward reference case where one pattern fragment references another // before it is processed. if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) return PFRec->getOnlyTree()->getNumTypes(); // Get the result tree. DagInit *Tree = Operator->getValueAsDag("Fragment"); Record *Op = 0; if (Tree && dynamic_cast<DefInit*>(Tree->getOperator())) Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef(); assert(Op && "Invalid Fragment"); return GetNumNodeResults(Op, CDP); } if (Operator->isSubClassOf("Instruction")) { CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); // FIXME: Should allow access to all the results here. unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; // Add on one implicit def if it has a resolvable type. if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) ++NumDefsToAdd; return NumDefsToAdd; } if (Operator->isSubClassOf("SDNodeXForm")) return 1; // FIXME: Generalize SDNodeXForm Operator->dump(); errs() << "Unhandled node in GetNumNodeResults\n"; exit(1); } void TreePatternNode::print(raw_ostream &OS) const { if (isLeaf()) OS << *getLeafValue(); else OS << '(' << getOperator()->getName(); for (unsigned i = 0, e = Types.size(); i != e; ++i) OS << ':' << getExtType(i).getName(); if (!isLeaf()) { if (getNumChildren() != 0) { OS << " "; getChild(0)->print(OS); for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { OS << ", "; getChild(i)->print(OS); } } OS << ")"; } for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) OS << "<<P:" << PredicateFns[i].getFnName() << ">>"; if (TransformFn) OS << "<<X:" << TransformFn->getName() << ">>"; if (!getName().empty()) OS << ":$" << getName(); } void TreePatternNode::dump() const { print(errs()); } /// isIsomorphicTo - Return true if this node is recursively /// isomorphic to the specified node. For this comparison, the node's /// entire state is considered. The assigned name is ignored, since /// nodes with differing names are considered isomorphic. However, if /// the assigned name is present in the dependent variable set, then /// the assigned name is considered significant and the node is /// isomorphic if the names match. bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, const MultipleUseVarSet &DepVars) const { if (N == this) return true; if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || getPredicateFns() != N->getPredicateFns() || getTransformFn() != N->getTransformFn()) return false; if (isLeaf()) { if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) { return ((DI->getDef() == NDI->getDef()) && (DepVars.find(getName()) == DepVars.end() || getName() == N->getName())); } } return getLeafValue() == N->getLeafValue(); } if (N->getOperator() != getOperator() || N->getNumChildren() != getNumChildren()) return false; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) return false; return true; } /// clone - Make a copy of this tree and all of its children. /// TreePatternNode *TreePatternNode::clone() const { TreePatternNode *New; if (isLeaf()) { New = new TreePatternNode(getLeafValue(), getNumTypes()); } else { std::vector<TreePatternNode*> CChildren; CChildren.reserve(Children.size()); for (unsigned i = 0, e = getNumChildren(); i != e; ++i) CChildren.push_back(getChild(i)->clone()); New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); } New->setName(getName()); New->Types = Types; New->setPredicateFns(getPredicateFns()); New->setTransformFn(getTransformFn()); return New; } /// RemoveAllTypes - Recursively strip all the types of this tree. void TreePatternNode::RemoveAllTypes() { for (unsigned i = 0, e = Types.size(); i != e; ++i) Types[i] = EEVT::TypeSet(); // Reset to unknown type. if (isLeaf()) return; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) getChild(i)->RemoveAllTypes(); } /// SubstituteFormalArguments - Replace the formal arguments in this tree /// with actual values specified by ArgMap. void TreePatternNode:: SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { if (isLeaf()) return; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { TreePatternNode *Child = getChild(i); if (Child->isLeaf()) { Init *Val = Child->getLeafValue(); if (dynamic_cast<DefInit*>(Val) && static_cast<DefInit*>(Val)->getDef()->getName() == "node") { // We found a use of a formal argument, replace it with its value. TreePatternNode *NewChild = ArgMap[Child->getName()]; assert(NewChild && "Couldn't find formal argument!"); assert((Child->getPredicateFns().empty() || NewChild->getPredicateFns() == Child->getPredicateFns()) && "Non-empty child predicate clobbered!"); setChild(i, NewChild); } } else { getChild(i)->SubstituteFormalArguments(ArgMap); } } } /// InlinePatternFragments - If this pattern refers to any pattern /// fragments, inline them into place, giving us a pattern without any /// PatFrag references. TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { if (isLeaf()) return this; // nothing to do. Record *Op = getOperator(); if (!Op->isSubClassOf("PatFrag")) { // Just recursively inline children nodes. for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { TreePatternNode *Child = getChild(i); TreePatternNode *NewChild = Child->InlinePatternFragments(TP); assert((Child->getPredicateFns().empty() || NewChild->getPredicateFns() == Child->getPredicateFns()) && "Non-empty child predicate clobbered!"); setChild(i, NewChild); } return this; } // Otherwise, we found a reference to a fragment. First, look up its // TreePattern record. TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); // Verify that we are passing the right number of operands. if (Frag->getNumArgs() != Children.size()) TP.error("'" + Op->getName() + "' fragment requires " + utostr(Frag->getNumArgs()) + " operands!"); TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); TreePredicateFn PredFn(Frag); if (!PredFn.isAlwaysTrue()) FragTree->addPredicateFn(PredFn); // Resolve formal arguments to their actual value. if (Frag->getNumArgs()) { // Compute the map of formal to actual arguments. std::map<std::string, TreePatternNode*> ArgMap; for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); FragTree->SubstituteFormalArguments(ArgMap); } FragTree->setName(getName()); for (unsigned i = 0, e = Types.size(); i != e; ++i) FragTree->UpdateNodeType(i, getExtType(i), TP); // Transfer in the old predicates. for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) FragTree->addPredicateFn(getPredicateFns()[i]); // Get a new copy of this fragment to stitch into here. //delete this; // FIXME: implement refcounting! // The fragment we inlined could have recursive inlining that is needed. See // if there are any pattern fragments in it and inline them as needed. return FragTree->InlinePatternFragments(TP); } /// getImplicitType - Check to see if the specified record has an implicit /// type which should be applied to it. This will infer the type of register /// references from the register file information, for example. /// static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, bool NotRegisters, TreePattern &TP) { // Check to see if this is a register operand. if (R->isSubClassOf("RegisterOperand")) { assert(ResNo == 0 && "Regoperand ref only has one result!"); if (NotRegisters) return EEVT::TypeSet(); // Unknown. Record *RegClass = R->getValueAsDef("RegClass"); const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes()); } // Check to see if this is a register or a register class. if (R->isSubClassOf("RegisterClass")) { assert(ResNo == 0 && "Regclass ref only has one result!"); if (NotRegisters) return EEVT::TypeSet(); // Unknown. const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); } if (R->isSubClassOf("PatFrag")) { assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); // Pattern fragment types will be resolved when they are inlined. return EEVT::TypeSet(); // Unknown. } if (R->isSubClassOf("Register")) { assert(ResNo == 0 && "Registers only produce one result!"); if (NotRegisters) return EEVT::TypeSet(); // Unknown. const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); return EEVT::TypeSet(T.getRegisterVTs(R)); } if (R->isSubClassOf("SubRegIndex")) { assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); return EEVT::TypeSet(); } if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { assert(ResNo == 0 && "This node only has one result!"); // Using a VTSDNode or CondCodeSDNode. return EEVT::TypeSet(MVT::Other, TP); } if (R->isSubClassOf("ComplexPattern")) { assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); if (NotRegisters) return EEVT::TypeSet(); // Unknown. return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), TP); } if (R->isSubClassOf("PointerLikeRegClass")) { assert(ResNo == 0 && "Regclass can only have one result!"); return EEVT::TypeSet(MVT::iPTR, TP); } if (R->getName() == "node" || R->getName() == "srcvalue" || R->getName() == "zero_reg") { // Placeholder. return EEVT::TypeSet(); // Unknown. } TP.error("Unknown node flavor used in pattern: " + R->getName()); return EEVT::TypeSet(MVT::Other, TP); } /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the /// CodeGenIntrinsic information for it, otherwise return a null pointer. const CodeGenIntrinsic *TreePatternNode:: getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { if (getOperator() != CDP.get_intrinsic_void_sdnode() && getOperator() != CDP.get_intrinsic_w_chain_sdnode() && getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) return 0; unsigned IID = dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); return &CDP.getIntrinsicInfo(IID); } /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, /// return the ComplexPattern information, otherwise return null. const ComplexPattern * TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { if (!isLeaf()) return 0; DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()); if (DI && DI->getDef()->isSubClassOf("ComplexPattern")) return &CGP.getComplexPattern(DI->getDef()); return 0; } /// NodeHasProperty - Return true if this node has the specified property. bool TreePatternNode::NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const { if (isLeaf()) { if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) return CP->hasProperty(Property); return false; } Record *Operator = getOperator(); if (!Operator->isSubClassOf("SDNode")) return false; return CGP.getSDNodeInfo(Operator).hasProperty(Property); } /// TreeHasProperty - Return true if any node in this tree has the specified /// property. bool TreePatternNode::TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const { if (NodeHasProperty(Property, CGP)) return true; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) if (getChild(i)->TreeHasProperty(Property, CGP)) return true; return false; } /// isCommutativeIntrinsic - Return true if the node corresponds to a /// commutative intrinsic. bool TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) return Int->isCommutative; return false; } /// ApplyTypeConstraints - Apply all of the type constraints relevant to /// this node and its children in the tree. This returns true if it makes a /// change, false otherwise. If a type contradiction is found, throw an /// exception. bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); if (isLeaf()) { if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { // If it's a regclass or something else known, include the type. bool MadeChange = false; for (unsigned i = 0, e = Types.size(); i != e; ++i) MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, NotRegisters, TP), TP); return MadeChange; } if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { assert(Types.size() == 1 && "Invalid IntInit"); // Int inits are always integers. :) bool MadeChange = Types[0].EnforceInteger(TP); if (!Types[0].isConcrete()) return MadeChange; MVT::SimpleValueType VT = getType(0); if (VT == MVT::iPTR || VT == MVT::iPTRAny) return MadeChange; unsigned Size = EVT(VT).getSizeInBits(); // Make sure that the value is representable for this type. if (Size >= 32) return MadeChange; int Val = (II->getValue() << (32-Size)) >> (32-Size); if (Val == II->getValue()) return MadeChange; // If sign-extended doesn't fit, does it fit as unsigned? unsigned ValueMask; unsigned UnsignedVal; ValueMask = unsigned(~uint32_t(0UL) >> (32-Size)); UnsignedVal = unsigned(II->getValue()); if ((ValueMask & UnsignedVal) == UnsignedVal) return MadeChange; TP.error("Integer value '" + itostr(II->getValue())+ "' is out of range for type '" + getEnumName(getType(0)) + "'!"); return MadeChange; } return false; } // special handling for set, which isn't really an SDNode. if (getOperator()->getName() == "set") { assert(getNumTypes() == 0 && "Set doesn't produce a value"); assert(getNumChildren() >= 2 && "Missing RHS of a set?"); unsigned NC = getNumChildren(); TreePatternNode *SetVal = getChild(NC-1); bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); for (unsigned i = 0; i < NC-1; ++i) { TreePatternNode *Child = getChild(i); MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); // Types of operands must match. MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); } return MadeChange; } if (getOperator()->getName() == "implicit") { assert(getNumTypes() == 0 && "Node doesn't produce a value"); bool MadeChange = false; for (unsigned i = 0; i < getNumChildren(); ++i) MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); return MadeChange; } if (getOperator()->getName() == "COPY_TO_REGCLASS") { bool MadeChange = false; MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); assert(getChild(0)->getNumTypes() == 1 && getChild(1)->getNumTypes() == 1 && "Unhandled case"); // child #1 of COPY_TO_REGCLASS should be a register class. We don't care // what type it gets, so if it didn't get a concrete type just give it the // first viable type from the reg class. if (!getChild(1)->hasTypeSet(0) && !getChild(1)->getExtType(0).isCompletelyUnknown()) { MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0]; MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP); } return MadeChange; } if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { bool MadeChange = false; // Apply the result type to the node. unsigned NumRetVTs = Int->IS.RetVTs.size(); unsigned NumParamVTs = Int->IS.ParamVTs.size(); for (unsigned i = 0, e = NumRetVTs; i != e; ++i) MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); if (getNumChildren() != NumParamVTs + 1) TP.error("Intrinsic '" + Int->Name + "' expects " + utostr(NumParamVTs) + " operands, not " + utostr(getNumChildren() - 1) + " operands!"); // Apply type info to the intrinsic ID. MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); } return MadeChange; } if (getOperator()->isSubClassOf("SDNode")) { const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); // Check that the number of operands is sane. Negative operands -> varargs. if (NI.getNumOperands() >= 0 && getNumChildren() != (unsigned)NI.getNumOperands()) TP.error(getOperator()->getName() + " node requires exactly " + itostr(NI.getNumOperands()) + " operands!"); bool MadeChange = NI.ApplyTypeConstraints(this, TP); for (unsigned i = 0, e = getNumChildren(); i != e; ++i) MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); return MadeChange; } if (getOperator()->isSubClassOf("Instruction")) { const DAGInstruction &Inst = CDP.getInstruction(getOperator()); CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(getOperator()); bool MadeChange = false; // Apply the result types to the node, these come from the things in the // (outs) list of the instruction. // FIXME: Cap at one result so far. unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) { Record *ResultNode = Inst.getResult(ResNo); if (ResultNode->isSubClassOf("PointerLikeRegClass")) { MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP); } else if (ResultNode->isSubClassOf("RegisterOperand")) { Record *RegClass = ResultNode->getValueAsDef("RegClass"); const CodeGenRegisterClass &RC = CDP.getTargetInfo().getRegisterClass(RegClass); MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); } else if (ResultNode->getName() == "unknown") { // Nothing to do. } else { assert(ResultNode->isSubClassOf("RegisterClass") && "Operands should be register classes!"); const CodeGenRegisterClass &RC = CDP.getTargetInfo().getRegisterClass(ResultNode); MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); } } // If the instruction has implicit defs, we apply the first one as a result. // FIXME: This sucks, it should apply all implicit defs. if (!InstInfo.ImplicitDefs.empty()) { unsigned ResNo = NumResultsToAdd; // FIXME: Generalize to multiple possible types and multiple possible // ImplicitDefs. MVT::SimpleValueType VT = InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); if (VT != MVT::Other) MadeChange |= UpdateNodeType(ResNo, VT, TP); } // If this is an INSERT_SUBREG, constrain the source and destination VTs to // be the same. if (getOperator()->getName() == "INSERT_SUBREG") { assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); } unsigned ChildNo = 0; for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { Record *OperandNode = Inst.getOperand(i); // If the instruction expects a predicate or optional def operand, we // codegen this by setting the operand to it's default value if it has a // non-empty DefaultOps field. if ((OperandNode->isSubClassOf("PredicateOperand") || OperandNode->isSubClassOf("OptionalDefOperand")) && !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) continue; // Verify that we didn't run out of provided operands. if (ChildNo >= getNumChildren()) TP.error("Instruction '" + getOperator()->getName() + "' expects more operands than were provided."); MVT::SimpleValueType VT; TreePatternNode *Child = getChild(ChildNo++); unsigned ChildResNo = 0; // Instructions always use res #0 of their op. if (OperandNode->isSubClassOf("RegisterClass")) { const CodeGenRegisterClass &RC = CDP.getTargetInfo().getRegisterClass(OperandNode); MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); } else if (OperandNode->isSubClassOf("RegisterOperand")) { Record *RegClass = OperandNode->getValueAsDef("RegClass"); const CodeGenRegisterClass &RC = CDP.getTargetInfo().getRegisterClass(RegClass); MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); } else if (OperandNode->isSubClassOf("Operand")) { VT = getValueType(OperandNode->getValueAsDef("Type")); MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP); } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) { MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP); } else if (OperandNode->getName() == "unknown") { // Nothing to do. } else { assert(0 && "Unknown operand type!"); abort(); } MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); } if (ChildNo != getNumChildren()) TP.error("Instruction '" + getOperator()->getName() + "' was provided too many operands!"); return MadeChange; } assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); // Node transforms always take one operand. if (getNumChildren() != 1) TP.error("Node transform '" + getOperator()->getName() + "' requires one operand!"); bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); // If either the output or input of the xform does not have exact // type info. We assume they must be the same. Otherwise, it is perfectly // legal to transform from one type to a completely different type. #if 0 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); return MadeChange; } #endif return MadeChange; } /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the /// RHS of a commutative operation, not the on LHS. static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { if (!N->isLeaf() && N->getOperator()->getName() == "imm") return true; if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue())) return true; return false; } /// canPatternMatch - If it is impossible for this pattern to match on this /// target, fill in Reason and return false. Otherwise, return true. This is /// used as a sanity check for .td files (to prevent people from writing stuff /// that can never possibly work), and to prevent the pattern permuter from /// generating stuff that is useless. bool TreePatternNode::canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP) { if (isLeaf()) return true; for (unsigned i = 0, e = getNumChildren(); i != e; ++i) if (!getChild(i)->canPatternMatch(Reason, CDP)) return false; // If this is an intrinsic, handle cases that would make it not match. For // example, if an operand is required to be an immediate. if (getOperator()->isSubClassOf("Intrinsic")) { // TODO: return true; } // If this node is a commutative operator, check that the LHS isn't an // immediate. const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); bool isCommIntrinsic = isCommutativeIntrinsic(CDP); if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { // Scan all of the operands of the node and make sure that only the last one // is a constant node, unless the RHS also is. if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) if (OnlyOnRHSOfCommutative(getChild(i))) { Reason="Immediate value must be on the RHS of commutative operators!"; return false; } } } return true; } //===----------------------------------------------------------------------===// // TreePattern implementation // TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ isInputPattern = isInput; for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) Trees.push_back(ParseTreePattern(RawPat->getElement(i), "")); } TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ isInputPattern = isInput; Trees.push_back(ParseTreePattern(Pat, "")); } TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ isInputPattern = isInput; Trees.push_back(Pat); } void TreePattern::error(const std::string &Msg) const { dump(); throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); } void TreePattern::ComputeNamedNodes() { for (unsigned i = 0, e = Trees.size(); i != e; ++i) ComputeNamedNodes(Trees[i]); } void TreePattern::ComputeNamedNodes(TreePatternNode *N) { if (!N->getName().empty()) NamedNodes[N->getName()].push_back(N); for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) ComputeNamedNodes(N->getChild(i)); } TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) { Record *R = DI->getDef(); // Direct reference to a leaf DagNode or PatFrag? Turn it into a // TreePatternNode of its own. For example: /// (foo GPR, imm) -> (foo GPR, (imm)) if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) return ParseTreePattern( DagInit::get(DI, "", std::vector<std::pair<Init*, std::string> >()), OpName); // Input argument? TreePatternNode *Res = new TreePatternNode(DI, 1); if (R->getName() == "node" && !OpName.empty()) { if (OpName.empty()) error("'node' argument requires a name to match with operand list"); Args.push_back(OpName); } Res->setName(OpName); return Res; } if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) { if (!OpName.empty()) error("Constant int argument should not have a name!"); return new TreePatternNode(II, 1); } if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) { // Turn this into an IntInit. Init *II = BI->convertInitializerTo(IntRecTy::get()); if (II == 0 || !dynamic_cast<IntInit*>(II)) error("Bits value must be constants!"); return ParseTreePattern(II, OpName); } DagInit *Dag = dynamic_cast<DagInit*>(TheInit); if (!Dag) { TheInit->dump(); error("Pattern has unexpected init kind!"); } DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); if (!OpDef) error("Pattern has unexpected operator type!"); Record *Operator = OpDef->getDef(); if (Operator->isSubClassOf("ValueType")) { // If the operator is a ValueType, then this must be "type cast" of a leaf // node. if (Dag->getNumArgs() != 1) error("Type cast only takes one operand!"); TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); // Apply the type cast. assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); New->UpdateNodeType(0, getValueType(Operator), *this); if (!OpName.empty()) error("ValueType cast should not have a name!"); return New; } // Verify that this is something that makes sense for an operator. if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") && !Operator->isSubClassOf("Instruction") && !Operator->isSubClassOf("SDNodeXForm") && !Operator->isSubClassOf("Intrinsic") && Operator->getName() != "set" && Operator->getName() != "implicit") error("Unrecognized node '" + Operator->getName() + "'!"); // Check to see if this is something that is illegal in an input pattern. if (isInputPattern) { if (Operator->isSubClassOf("Instruction") || Operator->isSubClassOf("SDNodeXForm")) error("Cannot use '" + Operator->getName() + "' in an input pattern!"); } else { if (Operator->isSubClassOf("Intrinsic")) error("Cannot use '" + Operator->getName() + "' in an output pattern!"); if (Operator->isSubClassOf("SDNode") && Operator->getName() != "imm" && Operator->getName() != "fpimm" && Operator->getName() != "tglobaltlsaddr" && Operator->getName() != "tconstpool" && Operator->getName() != "tjumptable" && Operator->getName() != "tframeindex" && Operator->getName() != "texternalsym" && Operator->getName() != "tblockaddress" && Operator->getName() != "tglobaladdr" && Operator->getName() != "bb" && Operator->getName() != "vt") error("Cannot use '" + Operator->getName() + "' in an output pattern!"); } std::vector<TreePatternNode*> Children; // Parse all the operands. for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); // If the operator is an intrinsic, then this is just syntactic sugar for for // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and // convert the intrinsic name to a number. if (Operator->isSubClassOf("Intrinsic")) { const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; // If this intrinsic returns void, it must have side-effects and thus a // chain. if (Int.IS.RetVTs.empty()) Operator = getDAGPatterns().get_intrinsic_void_sdnode(); else if (Int.ModRef != CodeGenIntrinsic::NoMem) // Has side-effects, requires chain. Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); else // Otherwise, no chain. Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); Children.insert(Children.begin(), IIDNode); } unsigned NumResults = GetNumNodeResults(Operator, CDP); TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); Result->setName(OpName); if (!Dag->getName().empty()) { assert(Result->getName().empty()); Result->setName(Dag->getName()); } return Result; } /// SimplifyTree - See if we can simplify this tree to eliminate something that /// will never match in favor of something obvious that will. This is here /// strictly as a convenience to target authors because it allows them to write /// more type generic things and have useless type casts fold away. /// /// This returns true if any change is made. static bool SimplifyTree(TreePatternNode *&N) { if (N->isLeaf()) return false; // If we have a bitconvert with a resolved type and if the source and // destination types are the same, then the bitconvert is useless, remove it. if (N->getOperator()->getName() == "bitconvert" && N->getExtType(0).isConcrete() && N->getExtType(0) == N->getChild(0)->getExtType(0) && N->getName().empty()) { N = N->getChild(0); SimplifyTree(N); return true; } // Walk all children. bool MadeChange = false; for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { TreePatternNode *Child = N->getChild(i); MadeChange |= SimplifyTree(Child); N->setChild(i, Child); } return MadeChange; } /// InferAllTypes - Infer/propagate as many types throughout the expression /// patterns as possible. Return true if all types are inferred, false /// otherwise. Throw an exception if a type contradiction is found. bool TreePattern:: InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { if (NamedNodes.empty()) ComputeNamedNodes(); bool MadeChange = true; while (MadeChange) { MadeChange = false; for (unsigned i = 0, e = Trees.size(); i != e; ++i) { MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); MadeChange |= SimplifyTree(Trees[i]); } // If there are constraints on our named nodes, apply them. for (StringMap<SmallVector<TreePatternNode*,1> >::iterator I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { SmallVectorImpl<TreePatternNode*> &Nodes = I->second; // If we have input named node types, propagate their types to the named // values here. if (InNamedTypes) { // FIXME: Should be error? assert(InNamedTypes->count(I->getKey()) && "Named node in output pattern but not input pattern?"); const SmallVectorImpl<TreePatternNode*> &InNodes = InNamedTypes->find(I->getKey())->second; // The input types should be fully resolved by now. for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { // If this node is a register class, and it is the root of the pattern // then we're mapping something onto an input register. We allow // changing the type of the input register in this case. This allows // us to match things like: // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) { DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue()); if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || DI->getDef()->isSubClassOf("RegisterOperand"))) continue; } assert(Nodes[i]->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"); MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0), *this); } } // If there are multiple nodes with the same name, they must all have the // same type. if (I->second.size() > 1) { for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"); MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); } } } } bool HasUnresolvedTypes = false; for (unsigned i = 0, e = Trees.size(); i != e; ++i) HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); return !HasUnresolvedTypes; } void TreePattern::print(raw_ostream &OS) const { OS << getRecord()->getName(); if (!Args.empty()) { OS << "(" << Args[0]; for (unsigned i = 1, e = Args.size(); i != e; ++i) OS << ", " << Args[i]; OS << ")"; } OS << ": "; if (Trees.size() > 1) OS << "[\n"; for (unsigned i = 0, e = Trees.size(); i != e; ++i) { OS << "\t"; Trees[i]->print(OS); OS << "\n"; } if (Trees.size() > 1) OS << "]\n"; } void TreePattern::dump() const { print(errs()); } //===----------------------------------------------------------------------===// // CodeGenDAGPatterns implementation // CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R), Target(R) { Intrinsics = LoadIntrinsics(Records, false); TgtIntrinsics = LoadIntrinsics(Records, true); ParseNodeInfo(); ParseNodeTransforms(); ParseComplexPatterns(); ParsePatternFragments(); ParseDefaultOperands(); ParseInstructions(); ParsePatterns(); // Generate variants. For example, commutative patterns can match // multiple ways. Add them to PatternsToMatch as well. GenerateVariants(); // Infer instruction flags. For example, we can detect loads, // stores, and side effects in many cases by examining an // instruction's pattern. InferInstructionFlags(); } CodeGenDAGPatterns::~CodeGenDAGPatterns() { for (pf_iterator I = PatternFragments.begin(), E = PatternFragments.end(); I != E; ++I) delete I->second; } Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { Record *N = Records.getDef(Name); if (!N || !N->isSubClassOf("SDNode")) { errs() << "Error getting SDNode '" << Name << "'!\n"; exit(1); } return N; } // Parse all of the SDNode definitions for the target, populating SDNodes. void CodeGenDAGPatterns::ParseNodeInfo() { std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); while (!Nodes.empty()) { SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); Nodes.pop_back(); } // Get the builtin intrinsic nodes. intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); } /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms /// map, and emit them to the file as functions. void CodeGenDAGPatterns::ParseNodeTransforms() { std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); while (!Xforms.empty()) { Record *XFormNode = Xforms.back(); Record *SDNode = XFormNode->getValueAsDef("Opcode"); std::string Code = XFormNode->getValueAsCode("XFormFunction"); SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); Xforms.pop_back(); } } void CodeGenDAGPatterns::ParseComplexPatterns() { std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); while (!AMs.empty()) { ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); AMs.pop_back(); } } /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td /// file, building up the PatternFragments map. After we've collected them all, /// inline fragments together as necessary, so that there are no references left /// inside a pattern fragment to a pattern fragment. /// void CodeGenDAGPatterns::ParsePatternFragments() { std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); // First step, parse all of the fragments. for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); PatternFragments[Fragments[i]] = P; // Validate the argument list, converting it to set, to discard duplicates. std::vector<std::string> &Args = P->getArgList(); std::set<std::string> OperandsSet(Args.begin(), Args.end()); if (OperandsSet.count("")) P->error("Cannot have unnamed 'node' values in pattern fragment!"); // Parse the operands list. DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); // Special cases: ops == outs == ins. Different names are used to // improve readability. if (!OpsOp || (OpsOp->getDef()->getName() != "ops" && OpsOp->getDef()->getName() != "outs" && OpsOp->getDef()->getName() != "ins")) P->error("Operands list should start with '(ops ... '!"); // Copy over the arguments. Args.clear(); for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || static_cast<DefInit*>(OpsList->getArg(j))-> getDef()->getName() != "node") P->error("Operands list should all be 'node' values."); if (OpsList->getArgName(j).empty()) P->error("Operands list should have names for each operand!"); if (!OperandsSet.count(OpsList->getArgName(j))) P->error("'" + OpsList->getArgName(j) + "' does not occur in pattern or was multiply specified!"); OperandsSet.erase(OpsList->getArgName(j)); Args.push_back(OpsList->getArgName(j)); } if (!OperandsSet.empty()) P->error("Operands list does not contain an entry for operand '" + *OperandsSet.begin() + "'!"); // If there is a code init for this fragment, keep track of the fact that // this fragment uses it. TreePredicateFn PredFn(P); if (!PredFn.isAlwaysTrue()) P->getOnlyTree()->addPredicateFn(PredFn); // If there is a node transformation corresponding to this, keep track of // it. Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? P->getOnlyTree()->setTransformFn(Transform); } // Now that we've parsed all of the tree fragments, do a closure on them so // that there are not references to PatFrags left inside of them. for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { TreePattern *ThePat = PatternFragments[Fragments[i]]; ThePat->InlinePatternFragments(); // Infer as many types as possible. Don't worry about it if we don't infer // all of them, some may depend on the inputs of the pattern. try { ThePat->InferAllTypes(); } catch (...) { // If this pattern fragment is not supported by this target (no types can // satisfy its constraints), just ignore it. If the bogus pattern is // actually used by instructions, the type consistency error will be // reported there. } // If debugging, print out the pattern fragment result. DEBUG(ThePat->dump()); } } void CodeGenDAGPatterns::ParseDefaultOperands() { std::vector<Record*> DefaultOps[2]; DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand"); DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand"); // Find some SDNode. assert(!SDNodes.empty() && "No SDNodes parsed?"); Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); for (unsigned iter = 0; iter != 2; ++iter) { for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); // Clone the DefaultInfo dag node, changing the operator from 'ops' to // SomeSDnode so that we can parse this. std::vector<std::pair<Init*, std::string> > Ops; for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) Ops.push_back(std::make_pair(DefaultInfo->getArg(op), DefaultInfo->getArgName(op))); DagInit *DI = DagInit::get(SomeSDNode, "", Ops); // Create a TreePattern to parse this. TreePattern P(DefaultOps[iter][i], DI, false, *this); assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); // Copy the operands over into a DAGDefaultOperand. DAGDefaultOperand DefaultOpInfo; TreePatternNode *T = P.getTree(0); for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { TreePatternNode *TPN = T->getChild(op); while (TPN->ApplyTypeConstraints(P, false)) /* Resolve all types */; if (TPN->ContainsUnresolvedType()) { if (iter == 0) throw "Value #" + utostr(i) + " of PredicateOperand '" + DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; else throw "Value #" + utostr(i) + " of OptionalDefOperand '" + DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; } DefaultOpInfo.DefaultOps.push_back(TPN); } // Insert it into the DefaultOperands map so we can find it later. DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo; } } } /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an /// instruction input. Return true if this is a real use. static bool HandleUse(TreePattern *I, TreePatternNode *Pat, std::map<std::string, TreePatternNode*> &InstInputs) { // No name -> not interesting. if (Pat->getName().empty()) { if (Pat->isLeaf()) { DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || DI->getDef()->isSubClassOf("RegisterOperand"))) I->error("Input " + DI->getDef()->getName() + " must be named!"); } return false; } Record *Rec; if (Pat->isLeaf()) { DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); Rec = DI->getDef(); } else { Rec = Pat->getOperator(); } // SRCVALUE nodes are ignored. if (Rec->getName() == "srcvalue") return false; TreePatternNode *&Slot = InstInputs[Pat->getName()]; if (!Slot) { Slot = Pat; return true; } Record *SlotRec; if (Slot->isLeaf()) { SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); } else { assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); SlotRec = Slot->getOperator(); } // Ensure that the inputs agree if we've already seen this input. if (Rec != SlotRec) I->error("All $" + Pat->getName() + " inputs must agree with each other"); if (Slot->getExtTypes() != Pat->getExtTypes()) I->error("All $" + Pat->getName() + " inputs must agree with each other"); return true; } /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is /// part of "I", the instruction), computing the set of inputs and outputs of /// the pattern. Report errors if we see anything naughty. void CodeGenDAGPatterns:: FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, std::map<std::string, TreePatternNode*> &InstInputs, std::map<std::string, TreePatternNode*>&InstResults, std::vector<Record*> &InstImpResults) { if (Pat->isLeaf()) { bool isUse = HandleUse(I, Pat, InstInputs); if (!isUse && Pat->getTransformFn()) I->error("Cannot specify a transform function for a non-input value!"); return; } if (Pat->getOperator()->getName() == "implicit") { for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { TreePatternNode *Dest = Pat->getChild(i); if (!Dest->isLeaf()) I->error("implicitly defined value should be a register!"); DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); if (!Val || !Val->getDef()->isSubClassOf("Register")) I->error("implicitly defined value should be a register!"); InstImpResults.push_back(Val->getDef()); } return; } if (Pat->getOperator()->getName() != "set") { // If this is not a set, verify that the children nodes are not void typed, // and recurse. for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { if (Pat->getChild(i)->getNumTypes() == 0) I->error("Cannot have void nodes inside of patterns!"); FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, InstImpResults); } // If this is a non-leaf node with no children, treat it basically as if // it were a leaf. This handles nodes like (imm). bool isUse = HandleUse(I, Pat, InstInputs); if (!isUse && Pat->getTransformFn()) I->error("Cannot specify a transform function for a non-input value!"); return; } // Otherwise, this is a set, validate and collect instruction results. if (Pat->getNumChildren() == 0) I->error("set requires operands!"); if (Pat->getTransformFn()) I->error("Cannot specify a transform function on a set node!"); // Check the set destinations. unsigned NumDests = Pat->getNumChildren()-1; for (unsigned i = 0; i != NumDests; ++i) { TreePatternNode *Dest = Pat->getChild(i); if (!Dest->isLeaf()) I->error("set destination should be a register!"); DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); if (!Val) I->error("set destination should be a register!"); if (Val->getDef()->isSubClassOf("RegisterClass") || Val->getDef()->isSubClassOf("RegisterOperand") || Val->getDef()->isSubClassOf("PointerLikeRegClass")) { if (Dest->getName().empty()) I->error("set destination must have a name!"); if (InstResults.count(Dest->getName())) I->error("cannot set '" + Dest->getName() +"' multiple times"); InstResults[Dest->getName()] = Dest; } else if (Val->getDef()->isSubClassOf("Register")) { InstImpResults.push_back(Val->getDef()); } else { I->error("set destination should be a register!"); } } // Verify and collect info from the computation. FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), InstInputs, InstResults, InstImpResults); } //===----------------------------------------------------------------------===// // Instruction Analysis //===----------------------------------------------------------------------===// class InstAnalyzer { const CodeGenDAGPatterns &CDP; bool &mayStore; bool &mayLoad; bool &IsBitcast; bool &HasSideEffects; bool &IsVariadic; public: InstAnalyzer(const CodeGenDAGPatterns &cdp, bool &maystore, bool &mayload, bool &isbc, bool &hse, bool &isv) : CDP(cdp), mayStore(maystore), mayLoad(mayload), IsBitcast(isbc), HasSideEffects(hse), IsVariadic(isv) { } /// Analyze - Analyze the specified instruction, returning true if the /// instruction had a pattern. bool Analyze(Record *InstRecord) { const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern(); if (Pattern == 0) { HasSideEffects = 1; return false; // No pattern. } // FIXME: Assume only the first tree is the pattern. The others are clobber // nodes. AnalyzeNode(Pattern->getTree(0)); return true; } private: bool IsNodeBitcast(const TreePatternNode *N) const { if (HasSideEffects || mayLoad || mayStore || IsVariadic) return false; if (N->getNumChildren() != 2) return false; const TreePatternNode *N0 = N->getChild(0); if (!N0->isLeaf() || !dynamic_cast<DefInit*>(N0->getLeafValue())) return false; const TreePatternNode *N1 = N->getChild(1); if (N1->isLeaf()) return false; if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) return false; const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) return false; return OpInfo.getEnumName() == "ISD::BITCAST"; } void AnalyzeNode(const TreePatternNode *N) { if (N->isLeaf()) { if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { Record *LeafRec = DI->getDef(); // Handle ComplexPattern leaves. if (LeafRec->isSubClassOf("ComplexPattern")) { const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); if (CP.hasProperty(SDNPMayStore)) mayStore = true; if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true; } } return; } // Analyze children. for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) AnalyzeNode(N->getChild(i)); // Ignore set nodes, which are not SDNodes. if (N->getOperator()->getName() == "set") { IsBitcast = IsNodeBitcast(N); return; } // Get information about the SDNode for the operator. const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); // Notice properties of the node. if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true; if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true; if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { // If this is an intrinsic, analyze it. if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) mayLoad = true;// These may load memory. if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem) mayStore = true;// Intrinsics that can write to memory are 'mayStore'. if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) // WriteMem intrinsics can have other strange effects. HasSideEffects = true; } } }; static void InferFromPattern(const CodeGenInstruction &Inst, bool &MayStore, bool &MayLoad, bool &IsBitcast, bool &HasSideEffects, bool &IsVariadic, const CodeGenDAGPatterns &CDP) { MayStore = MayLoad = IsBitcast = HasSideEffects = IsVariadic = false; bool HadPattern = InstAnalyzer(CDP, MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic) .Analyze(Inst.TheDef); // InstAnalyzer only correctly analyzes mayStore/mayLoad so far. if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it. // If we decided that this is a store from the pattern, then the .td file // entry is redundant. if (MayStore) fprintf(stderr, "Warning: mayStore flag explicitly set on instruction '%s'" " but flag already inferred from pattern.\n", Inst.TheDef->getName().c_str()); MayStore = true; } if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it. // If we decided that this is a load from the pattern, then the .td file // entry is redundant. if (MayLoad) fprintf(stderr, "Warning: mayLoad flag explicitly set on instruction '%s'" " but flag already inferred from pattern.\n", Inst.TheDef->getName().c_str()); MayLoad = true; } if (Inst.neverHasSideEffects) { if (HadPattern) fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' " "which already has a pattern\n", Inst.TheDef->getName().c_str()); HasSideEffects = false; } if (Inst.hasSideEffects) { if (HasSideEffects) fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' " "which already inferred this.\n", Inst.TheDef->getName().c_str()); HasSideEffects = true; } if (Inst.Operands.isVariadic) IsVariadic = true; // Can warn if we want. } /// ParseInstructions - Parse all of the instructions, inlining and resolving /// any fragments involved. This populates the Instructions list with fully /// resolved instructions. void CodeGenDAGPatterns::ParseInstructions() { std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { ListInit *LI = 0; if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) LI = Instrs[i]->getValueAsListInit("Pattern"); // If there is no pattern, only collect minimal information about the // instruction for its operand list. We have to assume that there is one // result, as we have no detailed info. if (!LI || LI->getSize() == 0) { std::vector<Record*> Results; std::vector<Record*> Operands; CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); if (InstInfo.Operands.size() != 0) { if (InstInfo.Operands.NumDefs == 0) { // These produce no results for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j) Operands.push_back(InstInfo.Operands[j].Rec); } else { // Assume the first operand is the result. Results.push_back(InstInfo.Operands[0].Rec); // The rest are inputs. for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j) Operands.push_back(InstInfo.Operands[j].Rec); } } // Create and insert the instruction. std::vector<Record*> ImpResults; Instructions.insert(std::make_pair(Instrs[i], DAGInstruction(0, Results, Operands, ImpResults))); continue; // no pattern. } // Parse the instruction. TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); // Inline pattern fragments into it. I->InlinePatternFragments(); // Infer as many types as possible. If we cannot infer all of them, we can // never do anything with this instruction pattern: report it to the user. if (!I->InferAllTypes()) I->error("Could not infer all types in pattern!"); // InstInputs - Keep track of all of the inputs of the instruction, along // with the record they are declared as. std::map<std::string, TreePatternNode*> InstInputs; // InstResults - Keep track of all the virtual registers that are 'set' // in the instruction, including what reg class they are. std::map<std::string, TreePatternNode*> InstResults; std::vector<Record*> InstImpResults; // Verify that the top-level forms in the instruction are of void type, and // fill in the InstResults map. for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { TreePatternNode *Pat = I->getTree(j); if (Pat->getNumTypes() != 0) I->error("Top-level forms in instruction pattern should have" " void types"); // Find inputs and outputs, and verify the structure of the uses/defs. FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, InstImpResults); } // Now that we have inputs and outputs of the pattern, inspect the operands // list for the instruction. This determines the order that operands are // added to the machine instruction the node corresponds to. unsigned NumResults = InstResults.size(); // Parse the operands list from the (ops) list, validating it. assert(I->getArgList().empty() && "Args list should still be empty here!"); CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]); // Check that all of the results occur first in the list. std::vector<Record*> Results; TreePatternNode *Res0Node = 0; for (unsigned i = 0; i != NumResults; ++i) { if (i == CGI.Operands.size()) I->error("'" + InstResults.begin()->first + "' set but does not appear in operand list!"); const std::string &OpName = CGI.Operands[i].Name; // Check that it exists in InstResults. TreePatternNode *RNode = InstResults[OpName]; if (RNode == 0) I->error("Operand $" + OpName + " does not exist in operand list!"); if (i == 0) Res0Node = RNode; Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); if (R == 0) I->error("Operand $" + OpName + " should be a set destination: all " "outputs must occur before inputs in operand list!"); if (CGI.Operands[i].Rec != R) I->error("Operand $" + OpName + " class mismatch!"); // Remember the return type. Results.push_back(CGI.Operands[i].Rec); // Okay, this one checks out. InstResults.erase(OpName); } // Loop over the inputs next. Make a copy of InstInputs so we can destroy // the copy while we're checking the inputs. std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); std::vector<TreePatternNode*> ResultNodeOperands; std::vector<Record*> Operands; for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { CGIOperandList::OperandInfo &Op = CGI.Operands[i]; const std::string &OpName = Op.Name; if (OpName.empty()) I->error("Operand #" + utostr(i) + " in operands list has no name!"); if (!InstInputsCheck.count(OpName)) { // If this is an predicate operand or optional def operand with an // DefaultOps set filled in, we can ignore this. When we codegen it, // we will do so as always executed. if (Op.Rec->isSubClassOf("PredicateOperand") || Op.Rec->isSubClassOf("OptionalDefOperand")) { // Does it have a non-empty DefaultOps field? If so, ignore this // operand. if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) continue; } I->error("Operand $" + OpName + " does not appear in the instruction pattern"); } TreePatternNode *InVal = InstInputsCheck[OpName]; InstInputsCheck.erase(OpName); // It occurred, remove from map. if (InVal->isLeaf() && dynamic_cast<DefInit*>(InVal->getLeafValue())) { Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) I->error("Operand $" + OpName + "'s register class disagrees" " between the operand and pattern"); } Operands.push_back(Op.Rec); // Construct the result for the dest-pattern operand list. TreePatternNode *OpNode = InVal->clone(); // No predicate is useful on the result. OpNode->clearPredicateFns(); // Promote the xform function to be an explicit node if set. if (Record *Xform = OpNode->getTransformFn()) { OpNode->setTransformFn(0); std::vector<TreePatternNode*> Children; Children.push_back(OpNode); OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); } ResultNodeOperands.push_back(OpNode); } if (!InstInputsCheck.empty()) I->error("Input operand $" + InstInputsCheck.begin()->first + " occurs in pattern but not in operands list!"); TreePatternNode *ResultPattern = new TreePatternNode(I->getRecord(), ResultNodeOperands, GetNumNodeResults(I->getRecord(), *this)); // Copy fully inferred output node type to instruction result pattern. for (unsigned i = 0; i != NumResults; ++i) ResultPattern->setType(i, Res0Node->getExtType(i)); // Create and insert the instruction. // FIXME: InstImpResults should not be part of DAGInstruction. DAGInstruction TheInst(I, Results, Operands, InstImpResults); Instructions.insert(std::make_pair(I->getRecord(), TheInst)); // Use a temporary tree pattern to infer all types and make sure that the // constructed result is correct. This depends on the instruction already // being inserted into the Instructions map. TreePattern Temp(I->getRecord(), ResultPattern, false, *this); Temp.InferAllTypes(&I->getNamedNodesMap()); DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; TheInsertedInst.setResultPattern(Temp.getOnlyTree()); DEBUG(I->dump()); } // If we can, convert the instructions to be patterns that are matched! for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II = Instructions.begin(), E = Instructions.end(); II != E; ++II) { DAGInstruction &TheInst = II->second; const TreePattern *I = TheInst.getPattern(); if (I == 0) continue; // No pattern. // FIXME: Assume only the first tree is the pattern. The others are clobber // nodes. TreePatternNode *Pattern = I->getTree(0); TreePatternNode *SrcPattern; if (Pattern->getOperator()->getName() == "set") { SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); } else{ // Not a set (store or something?) SrcPattern = Pattern; } Record *Instr = II->first; AddPatternToMatch(I, PatternToMatch(Instr, Instr->getValueAsListInit("Predicates"), SrcPattern, TheInst.getResultPattern(), TheInst.getImpResults(), Instr->getValueAsInt("AddedComplexity"), Instr->getID())); } } typedef std::pair<const TreePatternNode*, unsigned> NameRecord; static void FindNames(const TreePatternNode *P, std::map<std::string, NameRecord> &Names, const TreePattern *PatternTop) { if (!P->getName().empty()) { NameRecord &Rec = Names[P->getName()]; // If this is the first instance of the name, remember the node. if (Rec.second++ == 0) Rec.first = P; else if (Rec.first->getExtTypes() != P->getExtTypes()) PatternTop->error("repetition of value: $" + P->getName() + " where different uses have different types!"); } if (!P->isLeaf()) { for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) FindNames(P->getChild(i), Names, PatternTop); } } void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, const PatternToMatch &PTM) { // Do some sanity checking on the pattern we're about to match. std::string Reason; if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) Pattern->error("Pattern can never match: " + Reason); // If the source pattern's root is a complex pattern, that complex pattern // must specify the nodes it can potentially match. if (const ComplexPattern *CP = PTM.getSrcPattern()->getComplexPatternInfo(*this)) if (CP->getRootNodes().empty()) Pattern->error("ComplexPattern at root must specify list of opcodes it" " could match"); // Find all of the named values in the input and output, ensure they have the // same type. std::map<std::string, NameRecord> SrcNames, DstNames; FindNames(PTM.getSrcPattern(), SrcNames, Pattern); FindNames(PTM.getDstPattern(), DstNames, Pattern); // Scan all of the named values in the destination pattern, rejecting them if // they don't exist in the input pattern. for (std::map<std::string, NameRecord>::iterator I = DstNames.begin(), E = DstNames.end(); I != E; ++I) { if (SrcNames[I->first].first == 0) Pattern->error("Pattern has input without matching name in output: $" + I->first); } // Scan all of the named values in the source pattern, rejecting them if the // name isn't used in the dest, and isn't used to tie two values together. for (std::map<std::string, NameRecord>::iterator I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1) Pattern->error("Pattern has dead named input: $" + I->first); PatternsToMatch.push_back(PTM); } void CodeGenDAGPatterns::InferInstructionFlags() { const std::vector<const CodeGenInstruction*> &Instructions = Target.getInstructionsByEnumValue(); for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { CodeGenInstruction &InstInfo = const_cast<CodeGenInstruction &>(*Instructions[i]); // Determine properties of the instruction from its pattern. bool MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic; InferFromPattern(InstInfo, MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic, *this); InstInfo.mayStore = MayStore; InstInfo.mayLoad = MayLoad; InstInfo.isBitcast = IsBitcast; InstInfo.hasSideEffects = HasSideEffects; InstInfo.Operands.isVariadic = IsVariadic; // Sanity checks. if (InstInfo.isReMaterializable && InstInfo.hasSideEffects) throw TGError(InstInfo.TheDef->getLoc(), "The instruction " + InstInfo.TheDef->getName() + " is rematerializable AND has unmodeled side effects?"); } } /// Given a pattern result with an unresolved type, see if we can find one /// instruction with an unresolved result type. Force this result type to an /// arbitrary element if it's possible types to converge results. static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { if (N->isLeaf()) return false; // Analyze children. for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) if (ForceArbitraryInstResultType(N->getChild(i), TP)) return true; if (!N->getOperator()->isSubClassOf("Instruction")) return false; // If this type is already concrete or completely unknown we can't do // anything. for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) continue; // Otherwise, force its type to the first possibility (an arbitrary choice). if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) return true; } return false; } void CodeGenDAGPatterns::ParsePatterns() { std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { Record *CurPattern = Patterns[i]; DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); // Inline pattern fragments into it. Pattern->InlinePatternFragments(); ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); if (LI->getSize() == 0) continue; // no pattern. // Parse the instruction. TreePattern *Result = new TreePattern(CurPattern, LI, false, *this); // Inline pattern fragments into it. Result->InlinePatternFragments(); if (Result->getNumTrees() != 1) Result->error("Cannot handle instructions producing instructions " "with temporaries yet!"); bool IterateInference; bool InferredAllPatternTypes, InferredAllResultTypes; do { // Infer as many types as possible. If we cannot infer all of them, we // can never do anything with this pattern: report it to the user. InferredAllPatternTypes = Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); // Infer as many types as possible. If we cannot infer all of them, we // can never do anything with this pattern: report it to the user. InferredAllResultTypes = Result->InferAllTypes(&Pattern->getNamedNodesMap()); IterateInference = false; // Apply the type of the result to the source pattern. This helps us // resolve cases where the input type is known to be a pointer type (which // is considered resolved), but the result knows it needs to be 32- or // 64-bits. Infer the other way for good measure. for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(), Pattern->getTree(0)->getNumTypes()); i != e; ++i) { IterateInference = Pattern->getTree(0)-> UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result); IterateInference |= Result->getTree(0)-> UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result); } // If our iteration has converged and the input pattern's types are fully // resolved but the result pattern is not fully resolved, we may have a // situation where we have two instructions in the result pattern and // the instructions require a common register class, but don't care about // what actual MVT is used. This is actually a bug in our modelling: // output patterns should have register classes, not MVTs. // // In any case, to handle this, we just go through and disambiguate some // arbitrary types to the result pattern's nodes. if (!IterateInference && InferredAllPatternTypes && !InferredAllResultTypes) IterateInference = ForceArbitraryInstResultType(Result->getTree(0), *Result); } while (IterateInference); // Verify that we inferred enough types that we can do something with the // pattern and result. If these fire the user has to add type casts. if (!InferredAllPatternTypes) Pattern->error("Could not infer all types in pattern!"); if (!InferredAllResultTypes) { Pattern->dump(); Result->error("Could not infer all types in pattern result!"); } // Validate that the input pattern is correct. std::map<std::string, TreePatternNode*> InstInputs; std::map<std::string, TreePatternNode*> InstResults; std::vector<Record*> InstImpResults; for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), InstInputs, InstResults, InstImpResults); // Promote the xform function to be an explicit node if set. TreePatternNode *DstPattern = Result->getOnlyTree(); std::vector<TreePatternNode*> ResultNodeOperands; for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { TreePatternNode *OpNode = DstPattern->getChild(ii); if (Record *Xform = OpNode->getTransformFn()) { OpNode->setTransformFn(0); std::vector<TreePatternNode*> Children; Children.push_back(OpNode); OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); } ResultNodeOperands.push_back(OpNode); } DstPattern = Result->getOnlyTree(); if (!DstPattern->isLeaf()) DstPattern = new TreePatternNode(DstPattern->getOperator(), ResultNodeOperands, DstPattern->getNumTypes()); for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i) DstPattern->setType(i, Result->getOnlyTree()->getExtType(i)); TreePattern Temp(Result->getRecord(), DstPattern, false, *this); Temp.InferAllTypes(); AddPatternToMatch(Pattern, PatternToMatch(CurPattern, CurPattern->getValueAsListInit("Predicates"), Pattern->getTree(0), Temp.getOnlyTree(), InstImpResults, CurPattern->getValueAsInt("AddedComplexity"), CurPattern->getID())); } } /// CombineChildVariants - Given a bunch of permutations of each child of the /// 'operator' node, put them together in all possible ways. static void CombineChildVariants(TreePatternNode *Orig, const std::vector<std::vector<TreePatternNode*> > &ChildVariants, std::vector<TreePatternNode*> &OutVariants, CodeGenDAGPatterns &CDP, const MultipleUseVarSet &DepVars) { // Make sure that each operand has at least one variant to choose from. for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) if (ChildVariants[i].empty()) return; // The end result is an all-pairs construction of the resultant pattern. std::vector<unsigned> Idxs; Idxs.resize(ChildVariants.size()); bool NotDone; do { #ifndef NDEBUG DEBUG(if (!Idxs.empty()) { errs() << Orig->getOperator()->getName() << ": Idxs = [ "; for (unsigned i = 0; i < Idxs.size(); ++i) { errs() << Idxs[i] << " "; } errs() << "]\n"; }); #endif // Create the variant and add it to the output list. std::vector<TreePatternNode*> NewChildren; for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) NewChildren.push_back(ChildVariants[i][Idxs[i]]); TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, Orig->getNumTypes()); // Copy over properties. R->setName(Orig->getName()); R->setPredicateFns(Orig->getPredicateFns()); R->setTransformFn(Orig->getTransformFn()); for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) R->setType(i, Orig->getExtType(i)); // If this pattern cannot match, do not include it as a variant. std::string ErrString; if (!R->canPatternMatch(ErrString, CDP)) { delete R; } else { bool AlreadyExists = false; // Scan to see if this pattern has already been emitted. We can get // duplication due to things like commuting: // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) // which are the same pattern. Ignore the dups. for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) if (R->isIsomorphicTo(OutVariants[i], DepVars)) { AlreadyExists = true; break; } if (AlreadyExists) delete R; else OutVariants.push_back(R); } // Increment indices to the next permutation by incrementing the // indicies from last index backward, e.g., generate the sequence // [0, 0], [0, 1], [1, 0], [1, 1]. int IdxsIdx; for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) Idxs[IdxsIdx] = 0; else break; } NotDone = (IdxsIdx >= 0); } while (NotDone); } /// CombineChildVariants - A helper function for binary operators. /// static void CombineChildVariants(TreePatternNode *Orig, const std::vector<TreePatternNode*> &LHS, const std::vector<TreePatternNode*> &RHS, std::vector<TreePatternNode*> &OutVariants, CodeGenDAGPatterns &CDP, const MultipleUseVarSet &DepVars) { std::vector<std::vector<TreePatternNode*> > ChildVariants; ChildVariants.push_back(LHS); ChildVariants.push_back(RHS); CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); } static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, std::vector<TreePatternNode *> &Children) { assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); Record *Operator = N->getOperator(); // Only permit raw nodes. if (!N->getName().empty() || !N->getPredicateFns().empty() || N->getTransformFn()) { Children.push_back(N); return; } if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) Children.push_back(N->getChild(0)); else GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) Children.push_back(N->getChild(1)); else GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); } /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of /// the (potentially recursive) pattern by using algebraic laws. /// static void GenerateVariantsOf(TreePatternNode *N, std::vector<TreePatternNode*> &OutVariants, CodeGenDAGPatterns &CDP, const MultipleUseVarSet &DepVars) { // We cannot permute leaves. if (N->isLeaf()) { OutVariants.push_back(N); return; } // Look up interesting info about the node. const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); // If this node is associative, re-associate. if (NodeInfo.hasProperty(SDNPAssociative)) { // Re-associate by pulling together all of the linked operators std::vector<TreePatternNode*> MaximalChildren; GatherChildrenOfAssociativeOpcode(N, MaximalChildren); // Only handle child sizes of 3. Otherwise we'll end up trying too many // permutations. if (MaximalChildren.size() == 3) { // Find the variants of all of our maximal children. std::vector<TreePatternNode*> AVariants, BVariants, CVariants; GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); // There are only two ways we can permute the tree: // (A op B) op C and A op (B op C) // Within these forms, we can also permute A/B/C. // Generate legal pair permutations of A/B/C. std::vector<TreePatternNode*> ABVariants; std::vector<TreePatternNode*> BAVariants; std::vector<TreePatternNode*> ACVariants; std::vector<TreePatternNode*> CAVariants; std::vector<TreePatternNode*> BCVariants; std::vector<TreePatternNode*> CBVariants; CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); // Combine those into the result: (x op x) op x CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); // Combine those into the result: x op (x op x) CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); return; } } // Compute permutations of all children. std::vector<std::vector<TreePatternNode*> > ChildVariants; ChildVariants.resize(N->getNumChildren()); for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); // Build all permutations based on how the children were formed. CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); // If this node is commutative, consider the commuted order. bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { assert((N->getNumChildren()==2 || isCommIntrinsic) && "Commutative but doesn't have 2 children!"); // Don't count children which are actually register references. unsigned NC = 0; for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { TreePatternNode *Child = N->getChild(i); if (Child->isLeaf()) if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { Record *RR = DI->getDef(); if (RR->isSubClassOf("Register")) continue; } NC++; } // Consider the commuted order. if (isCommIntrinsic) { // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd // operands are the commutative operands, and there might be more operands // after those. assert(NC >= 3 && "Commutative intrinsic should have at least 3 childrean!"); std::vector<std::vector<TreePatternNode*> > Variants; Variants.push_back(ChildVariants[0]); // Intrinsic id. Variants.push_back(ChildVariants[2]); Variants.push_back(ChildVariants[1]); for (unsigned i = 3; i != NC; ++i) Variants.push_back(ChildVariants[i]); CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); } else if (NC == 2) CombineChildVariants(N, ChildVariants[1], ChildVariants[0], OutVariants, CDP, DepVars); } } // GenerateVariants - Generate variants. For example, commutative patterns can // match multiple ways. Add them to PatternsToMatch as well. void CodeGenDAGPatterns::GenerateVariants() { DEBUG(errs() << "Generating instruction variants.\n"); // Loop over all of the patterns we've collected, checking to see if we can // generate variants of the instruction, through the exploitation of // identities. This permits the target to provide aggressive matching without // the .td file having to contain tons of variants of instructions. // // Note that this loop adds new patterns to the PatternsToMatch list, but we // intentionally do not reconsider these. Any variants of added patterns have // already been added. // for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { MultipleUseVarSet DepVars; std::vector<TreePatternNode*> Variants; FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); DEBUG(errs() << "Dependent/multiply used variables: "); DEBUG(DumpDepVars(DepVars)); DEBUG(errs() << "\n"); GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, DepVars); assert(!Variants.empty() && "Must create at least original variant!"); Variants.erase(Variants.begin()); // Remove the original pattern. if (Variants.empty()) // No variants for this pattern. continue; DEBUG(errs() << "FOUND VARIANTS OF: "; PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); for (unsigned v = 0, e = Variants.size(); v != e; ++v) { TreePatternNode *Variant = Variants[v]; DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); errs() << "\n"); // Scan to see if an instruction or explicit pattern already matches this. bool AlreadyExists = false; for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { // Skip if the top level predicates do not match. if (PatternsToMatch[i].getPredicates() != PatternsToMatch[p].getPredicates()) continue; // Check to see if this variant already exists. if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), DepVars)) { DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); AlreadyExists = true; break; } } // If we already have it, ignore the variant. if (AlreadyExists) continue; // Otherwise, add it to the list of patterns we have. PatternsToMatch. push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), Variant, PatternsToMatch[i].getDstPattern(), PatternsToMatch[i].getDstRegs(), PatternsToMatch[i].getAddedComplexity(), Record::getNewUID())); } DEBUG(errs() << "\n"); } }