//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines structures to encapsulate information gleaned from the // target register and register class definitions. // //===----------------------------------------------------------------------===// #include "CodeGenRegisters.h" #include "CodeGenTarget.h" #include "llvm/TableGen/Error.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" using namespace llvm; //===----------------------------------------------------------------------===// // CodeGenRegister //===----------------------------------------------------------------------===// CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) : TheDef(R), EnumValue(Enum), CostPerUse(R->getValueAsInt("CostPerUse")), SubRegsComplete(false) {} const std::string &CodeGenRegister::getName() const { return TheDef->getName(); } namespace { struct Orphan { CodeGenRegister *SubReg; Record *First, *Second; Orphan(CodeGenRegister *r, Record *a, Record *b) : SubReg(r), First(a), Second(b) {} }; } const CodeGenRegister::SubRegMap & CodeGenRegister::getSubRegs(CodeGenRegBank &RegBank) { // Only compute this map once. if (SubRegsComplete) return SubRegs; SubRegsComplete = true; std::vector<Record*> SubList = TheDef->getValueAsListOfDefs("SubRegs"); std::vector<Record*> Indices = TheDef->getValueAsListOfDefs("SubRegIndices"); if (SubList.size() != Indices.size()) throw TGError(TheDef->getLoc(), "Register " + getName() + " SubRegIndices doesn't match SubRegs"); // First insert the direct subregs and make sure they are fully indexed. for (unsigned i = 0, e = SubList.size(); i != e; ++i) { CodeGenRegister *SR = RegBank.getReg(SubList[i]); if (!SubRegs.insert(std::make_pair(Indices[i], SR)).second) throw TGError(TheDef->getLoc(), "SubRegIndex " + Indices[i]->getName() + " appears twice in Register " + getName()); } // Keep track of inherited subregs and how they can be reached. SmallVector<Orphan, 8> Orphans; // Clone inherited subregs and place duplicate entries on Orphans. // Here the order is important - earlier subregs take precedence. for (unsigned i = 0, e = SubList.size(); i != e; ++i) { CodeGenRegister *SR = RegBank.getReg(SubList[i]); const SubRegMap &Map = SR->getSubRegs(RegBank); // Add this as a super-register of SR now all sub-registers are in the list. // This creates a topological ordering, the exact order depends on the // order getSubRegs is called on all registers. SR->SuperRegs.push_back(this); for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; ++SI) { if (!SubRegs.insert(*SI).second) Orphans.push_back(Orphan(SI->second, Indices[i], SI->first)); // Noop sub-register indexes are possible, so avoid duplicates. if (SI->second != SR) SI->second->SuperRegs.push_back(this); } } // Process the composites. ListInit *Comps = TheDef->getValueAsListInit("CompositeIndices"); for (unsigned i = 0, e = Comps->size(); i != e; ++i) { DagInit *Pat = dynamic_cast<DagInit*>(Comps->getElement(i)); if (!Pat) throw TGError(TheDef->getLoc(), "Invalid dag '" + Comps->getElement(i)->getAsString() + "' in CompositeIndices"); DefInit *BaseIdxInit = dynamic_cast<DefInit*>(Pat->getOperator()); if (!BaseIdxInit || !BaseIdxInit->getDef()->isSubClassOf("SubRegIndex")) throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " + Pat->getAsString()); // Resolve list of subreg indices into R2. CodeGenRegister *R2 = this; for (DagInit::const_arg_iterator di = Pat->arg_begin(), de = Pat->arg_end(); di != de; ++di) { DefInit *IdxInit = dynamic_cast<DefInit*>(*di); if (!IdxInit || !IdxInit->getDef()->isSubClassOf("SubRegIndex")) throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " + Pat->getAsString()); const SubRegMap &R2Subs = R2->getSubRegs(RegBank); SubRegMap::const_iterator ni = R2Subs.find(IdxInit->getDef()); if (ni == R2Subs.end()) throw TGError(TheDef->getLoc(), "Composite " + Pat->getAsString() + " refers to bad index in " + R2->getName()); R2 = ni->second; } // Insert composite index. Allow overriding inherited indices etc. SubRegs[BaseIdxInit->getDef()] = R2; // R2 is no longer an orphan. for (unsigned j = 0, je = Orphans.size(); j != je; ++j) if (Orphans[j].SubReg == R2) Orphans[j].SubReg = 0; } // Now Orphans contains the inherited subregisters without a direct index. // Create inferred indexes for all missing entries. for (unsigned i = 0, e = Orphans.size(); i != e; ++i) { Orphan &O = Orphans[i]; if (!O.SubReg) continue; SubRegs[RegBank.getCompositeSubRegIndex(O.First, O.Second, true)] = O.SubReg; } return SubRegs; } void CodeGenRegister::addSubRegsPreOrder(SetVector<CodeGenRegister*> &OSet) const { assert(SubRegsComplete && "Must precompute sub-registers"); std::vector<Record*> Indices = TheDef->getValueAsListOfDefs("SubRegIndices"); for (unsigned i = 0, e = Indices.size(); i != e; ++i) { CodeGenRegister *SR = SubRegs.find(Indices[i])->second; if (OSet.insert(SR)) SR->addSubRegsPreOrder(OSet); } } //===----------------------------------------------------------------------===// // RegisterTuples //===----------------------------------------------------------------------===// // A RegisterTuples def is used to generate pseudo-registers from lists of // sub-registers. We provide a SetTheory expander class that returns the new // registers. namespace { struct TupleExpander : SetTheory::Expander { void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) { std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); unsigned Dim = Indices.size(); ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); if (Dim != SubRegs->getSize()) throw TGError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); if (Dim < 2) throw TGError(Def->getLoc(), "Tuples must have at least 2 sub-registers"); // Evaluate the sub-register lists to be zipped. unsigned Length = ~0u; SmallVector<SetTheory::RecSet, 4> Lists(Dim); for (unsigned i = 0; i != Dim; ++i) { ST.evaluate(SubRegs->getElement(i), Lists[i]); Length = std::min(Length, unsigned(Lists[i].size())); } if (Length == 0) return; // Precompute some types. Record *RegisterCl = Def->getRecords().getClass("Register"); RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); StringInit *BlankName = StringInit::get(""); // Zip them up. for (unsigned n = 0; n != Length; ++n) { std::string Name; Record *Proto = Lists[0][n]; std::vector<Init*> Tuple; unsigned CostPerUse = 0; for (unsigned i = 0; i != Dim; ++i) { Record *Reg = Lists[i][n]; if (i) Name += '_'; Name += Reg->getName(); Tuple.push_back(DefInit::get(Reg)); CostPerUse = std::max(CostPerUse, unsigned(Reg->getValueAsInt("CostPerUse"))); } // Create a new Record representing the synthesized register. This record // is only for consumption by CodeGenRegister, it is not added to the // RecordKeeper. Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords()); Elts.insert(NewReg); // Copy Proto super-classes. for (unsigned i = 0, e = Proto->getSuperClasses().size(); i != e; ++i) NewReg->addSuperClass(Proto->getSuperClasses()[i]); // Copy Proto fields. for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { RecordVal RV = Proto->getValues()[i]; // Replace the sub-register list with Tuple. if (RV.getName() == "SubRegs") RV.setValue(ListInit::get(Tuple, RegisterRecTy)); // Provide a blank AsmName. MC hacks are required anyway. if (RV.getName() == "AsmName") RV.setValue(BlankName); // CostPerUse is aggregated from all Tuple members. if (RV.getName() == "CostPerUse") RV.setValue(IntInit::get(CostPerUse)); // Copy fields from the RegisterTuples def. if (RV.getName() == "SubRegIndices" || RV.getName() == "CompositeIndices") { NewReg->addValue(*Def->getValue(RV.getName())); continue; } // Some fields get their default uninitialized value. if (RV.getName() == "DwarfNumbers" || RV.getName() == "DwarfAlias" || RV.getName() == "Aliases") { if (const RecordVal *DefRV = RegisterCl->getValue(RV.getName())) NewReg->addValue(*DefRV); continue; } // Everything else is copied from Proto. NewReg->addValue(RV); } } } }; } //===----------------------------------------------------------------------===// // CodeGenRegisterClass //===----------------------------------------------------------------------===// CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) : TheDef(R), Name(R->getName()), EnumValue(-1) { // Rename anonymous register classes. if (R->getName().size() > 9 && R->getName()[9] == '.') { static unsigned AnonCounter = 0; R->setName("AnonRegClass_"+utostr(AnonCounter++)); } std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { Record *Type = TypeList[i]; if (!Type->isSubClassOf("ValueType")) throw "RegTypes list member '" + Type->getName() + "' does not derive from the ValueType class!"; VTs.push_back(getValueType(Type)); } assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); // Allocation order 0 is the full set. AltOrders provides others. const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); ListInit *AltOrders = R->getValueAsListInit("AltOrders"); Orders.resize(1 + AltOrders->size()); // Default allocation order always contains all registers. for (unsigned i = 0, e = Elements->size(); i != e; ++i) { Orders[0].push_back((*Elements)[i]); Members.insert(RegBank.getReg((*Elements)[i])); } // Alternative allocation orders may be subsets. SetTheory::RecSet Order; for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { RegBank.getSets().evaluate(AltOrders->getElement(i), Order); Orders[1 + i].append(Order.begin(), Order.end()); // Verify that all altorder members are regclass members. while (!Order.empty()) { CodeGenRegister *Reg = RegBank.getReg(Order.back()); Order.pop_back(); if (!contains(Reg)) throw TGError(R->getLoc(), " AltOrder register " + Reg->getName() + " is not a class member"); } } // SubRegClasses is a list<dag> containing (RC, subregindex, ...) dags. ListInit *SRC = R->getValueAsListInit("SubRegClasses"); for (ListInit::const_iterator i = SRC->begin(), e = SRC->end(); i != e; ++i) { DagInit *DAG = dynamic_cast<DagInit*>(*i); if (!DAG) throw "SubRegClasses must contain DAGs"; DefInit *DAGOp = dynamic_cast<DefInit*>(DAG->getOperator()); Record *RCRec; if (!DAGOp || !(RCRec = DAGOp->getDef())->isSubClassOf("RegisterClass")) throw "Operator '" + DAG->getOperator()->getAsString() + "' in SubRegClasses is not a RegisterClass"; // Iterate over args, all SubRegIndex instances. for (DagInit::const_arg_iterator ai = DAG->arg_begin(), ae = DAG->arg_end(); ai != ae; ++ai) { DefInit *Idx = dynamic_cast<DefInit*>(*ai); Record *IdxRec; if (!Idx || !(IdxRec = Idx->getDef())->isSubClassOf("SubRegIndex")) throw "Argument '" + (*ai)->getAsString() + "' in SubRegClasses is not a SubRegIndex"; if (!SubRegClasses.insert(std::make_pair(IdxRec, RCRec)).second) throw "SubRegIndex '" + IdxRec->getName() + "' mentioned twice"; } } // Allow targets to override the size in bits of the RegisterClass. unsigned Size = R->getValueAsInt("Size"); Namespace = R->getValueAsString("Namespace"); SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits(); SpillAlignment = R->getValueAsInt("Alignment"); CopyCost = R->getValueAsInt("CopyCost"); Allocatable = R->getValueAsBit("isAllocatable"); AltOrderSelect = R->getValueAsCode("AltOrderSelect"); } // Create an inferred register class that was missing from the .td files. // Most properties will be inherited from the closest super-class after the // class structure has been computed. CodeGenRegisterClass::CodeGenRegisterClass(StringRef Name, Key Props) : Members(*Props.Members), TheDef(0), Name(Name), EnumValue(-1), SpillSize(Props.SpillSize), SpillAlignment(Props.SpillAlignment), CopyCost(0), Allocatable(true) { } // Compute inherited propertied for a synthesized register class. void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { assert(!getDef() && "Only synthesized classes can inherit properties"); assert(!SuperClasses.empty() && "Synthesized class without super class"); // The last super-class is the smallest one. CodeGenRegisterClass &Super = *SuperClasses.back(); // Most properties are copied directly. // Exceptions are members, size, and alignment Namespace = Super.Namespace; VTs = Super.VTs; CopyCost = Super.CopyCost; Allocatable = Super.Allocatable; AltOrderSelect = Super.AltOrderSelect; // Copy all allocation orders, filter out foreign registers from the larger // super-class. Orders.resize(Super.Orders.size()); for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) if (contains(RegBank.getReg(Super.Orders[i][j]))) Orders[i].push_back(Super.Orders[i][j]); } bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { return Members.count(Reg); } namespace llvm { raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment; for (CodeGenRegister::Set::const_iterator I = K.Members->begin(), E = K.Members->end(); I != E; ++I) OS << ", " << (*I)->getName(); return OS << " }"; } } // This is a simple lexicographical order that can be used to search for sets. // It is not the same as the topological order provided by TopoOrderRC. bool CodeGenRegisterClass::Key:: operator<(const CodeGenRegisterClass::Key &B) const { assert(Members && B.Members); if (*Members != *B.Members) return *Members < *B.Members; if (SpillSize != B.SpillSize) return SpillSize < B.SpillSize; return SpillAlignment < B.SpillAlignment; } // Returns true if RC is a strict subclass. // RC is a sub-class of this class if it is a valid replacement for any // instruction operand where a register of this classis required. It must // satisfy these conditions: // // 1. All RC registers are also in this. // 2. The RC spill size must not be smaller than our spill size. // 3. RC spill alignment must be compatible with ours. // static bool testSubClass(const CodeGenRegisterClass *A, const CodeGenRegisterClass *B) { return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 && A->SpillSize <= B->SpillSize && std::includes(A->getMembers().begin(), A->getMembers().end(), B->getMembers().begin(), B->getMembers().end(), CodeGenRegister::Less()); } /// Sorting predicate for register classes. This provides a topological /// ordering that arranges all register classes before their sub-classes. /// /// Register classes with the same registers, spill size, and alignment form a /// clique. They will be ordered alphabetically. /// static int TopoOrderRC(const void *PA, const void *PB) { const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA; const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB; if (A == B) return 0; // Order by descending set size. Note that the classes' allocation order may // not have been computed yet. The Members set is always vaild. if (A->getMembers().size() > B->getMembers().size()) return -1; if (A->getMembers().size() < B->getMembers().size()) return 1; // Order by ascending spill size. if (A->SpillSize < B->SpillSize) return -1; if (A->SpillSize > B->SpillSize) return 1; // Order by ascending spill alignment. if (A->SpillAlignment < B->SpillAlignment) return -1; if (A->SpillAlignment > B->SpillAlignment) return 1; // Finally order by name as a tie breaker. return A->getName() < B->getName(); } std::string CodeGenRegisterClass::getQualifiedName() const { if (Namespace.empty()) return getName(); else return Namespace + "::" + getName(); } // Compute sub-classes of all register classes. // Assume the classes are ordered topologically. void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses(); // Visit backwards so sub-classes are seen first. for (unsigned rci = RegClasses.size(); rci; --rci) { CodeGenRegisterClass &RC = *RegClasses[rci - 1]; RC.SubClasses.resize(RegClasses.size()); RC.SubClasses.set(RC.EnumValue); // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. for (unsigned s = rci; s != RegClasses.size(); ++s) { if (RC.SubClasses.test(s)) continue; CodeGenRegisterClass *SubRC = RegClasses[s]; if (!testSubClass(&RC, SubRC)) continue; // SubRC is a sub-class. Grap all its sub-classes so we won't have to // check them again. RC.SubClasses |= SubRC->SubClasses; } // Sweep up missed clique members. They will be immediately preceeding RC. for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s) RC.SubClasses.set(s - 1); } // Compute the SuperClasses lists from the SubClasses vectors. for (unsigned rci = 0; rci != RegClasses.size(); ++rci) { const BitVector &SC = RegClasses[rci]->getSubClasses(); for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) { if (unsigned(s) == rci) continue; RegClasses[s]->SuperClasses.push_back(RegClasses[rci]); } } // With the class hierarchy in place, let synthesized register classes inherit // properties from their closest super-class. The iteration order here can // propagate properties down multiple levels. for (unsigned rci = 0; rci != RegClasses.size(); ++rci) if (!RegClasses[rci]->getDef()) RegClasses[rci]->inheritProperties(RegBank); } //===----------------------------------------------------------------------===// // CodeGenRegBank //===----------------------------------------------------------------------===// CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) : Records(Records) { // Configure register Sets to understand register classes and tuples. Sets.addFieldExpander("RegisterClass", "MemberList"); Sets.addExpander("RegisterTuples", new TupleExpander()); // Read in the user-defined (named) sub-register indices. // More indices will be synthesized later. SubRegIndices = Records.getAllDerivedDefinitions("SubRegIndex"); std::sort(SubRegIndices.begin(), SubRegIndices.end(), LessRecord()); NumNamedIndices = SubRegIndices.size(); // Read in the register definitions. std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); std::sort(Regs.begin(), Regs.end(), LessRecord()); Registers.reserve(Regs.size()); // Assign the enumeration values. for (unsigned i = 0, e = Regs.size(); i != e; ++i) getReg(Regs[i]); // Expand tuples and number the new registers. std::vector<Record*> Tups = Records.getAllDerivedDefinitions("RegisterTuples"); for (unsigned i = 0, e = Tups.size(); i != e; ++i) { const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]); for (unsigned j = 0, je = TupRegs->size(); j != je; ++j) getReg((*TupRegs)[j]); } // Precompute all sub-register maps now all the registers are known. // This will create Composite entries for all inferred sub-register indices. for (unsigned i = 0, e = Registers.size(); i != e; ++i) Registers[i]->getSubRegs(*this); // Read in register class definitions. std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); if (RCs.empty()) throw std::string("No 'RegisterClass' subclasses defined!"); // Allocate user-defined register classes. RegClasses.reserve(RCs.size()); for (unsigned i = 0, e = RCs.size(); i != e; ++i) addToMaps(new CodeGenRegisterClass(*this, RCs[i])); // Infer missing classes to create a full algebra. computeInferredRegisterClasses(); // Order register classes topologically and assign enum values. array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC); for (unsigned i = 0, e = RegClasses.size(); i != e; ++i) RegClasses[i]->EnumValue = i; CodeGenRegisterClass::computeSubClasses(*this); } CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { CodeGenRegister *&Reg = Def2Reg[Def]; if (Reg) return Reg; Reg = new CodeGenRegister(Def, Registers.size() + 1); Registers.push_back(Reg); return Reg; } void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { RegClasses.push_back(RC); if (Record *Def = RC->getDef()) Def2RC.insert(std::make_pair(Def, RC)); // Duplicate classes are rejected by insert(). // That's OK, we only care about the properties handled by CGRC::Key. CodeGenRegisterClass::Key K(*RC); Key2RC.insert(std::make_pair(K, RC)); } CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { if (CodeGenRegisterClass *RC = Def2RC[Def]) return RC; throw TGError(Def->getLoc(), "Not a known RegisterClass!"); } Record *CodeGenRegBank::getCompositeSubRegIndex(Record *A, Record *B, bool create) { // Look for an existing entry. Record *&Comp = Composite[std::make_pair(A, B)]; if (Comp || !create) return Comp; // None exists, synthesize one. std::string Name = A->getName() + "_then_" + B->getName(); Comp = new Record(Name, SMLoc(), Records); SubRegIndices.push_back(Comp); return Comp; } unsigned CodeGenRegBank::getSubRegIndexNo(Record *idx) { std::vector<Record*>::const_iterator i = std::find(SubRegIndices.begin(), SubRegIndices.end(), idx); assert(i != SubRegIndices.end() && "Not a SubRegIndex"); return (i - SubRegIndices.begin()) + 1; } void CodeGenRegBank::computeComposites() { for (unsigned i = 0, e = Registers.size(); i != e; ++i) { CodeGenRegister *Reg1 = Registers[i]; const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs(); for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), e1 = SRM1.end(); i1 != e1; ++i1) { Record *Idx1 = i1->first; CodeGenRegister *Reg2 = i1->second; // Ignore identity compositions. if (Reg1 == Reg2) continue; const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); // Try composing Idx1 with another SubRegIndex. for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), e2 = SRM2.end(); i2 != e2; ++i2) { std::pair<Record*, Record*> IdxPair(Idx1, i2->first); CodeGenRegister *Reg3 = i2->second; // Ignore identity compositions. if (Reg2 == Reg3) continue; // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. for (CodeGenRegister::SubRegMap::const_iterator i1d = SRM1.begin(), e1d = SRM1.end(); i1d != e1d; ++i1d) { if (i1d->second == Reg3) { std::pair<CompositeMap::iterator, bool> Ins = Composite.insert(std::make_pair(IdxPair, i1d->first)); // Conflicting composition? Emit a warning but allow it. if (!Ins.second && Ins.first->second != i1d->first) { errs() << "Warning: SubRegIndex " << getQualifiedName(Idx1) << " and " << getQualifiedName(IdxPair.second) << " compose ambiguously as " << getQualifiedName(Ins.first->second) << " or " << getQualifiedName(i1d->first) << "\n"; } } } } } } // We don't care about the difference between (Idx1, Idx2) -> Idx2 and invalid // compositions, so remove any mappings of that form. for (CompositeMap::iterator i = Composite.begin(), e = Composite.end(); i != e;) { CompositeMap::iterator j = i; ++i; if (j->first.second == j->second) Composite.erase(j); } } // Compute sets of overlapping registers. // // The standard set is all super-registers and all sub-registers, but the // target description can add arbitrary overlapping registers via the 'Aliases' // field. This complicates things, but we can compute overlapping sets using // the following rules: // // 1. The relation overlap(A, B) is reflexive and symmetric but not transitive. // // 2. overlap(A, B) implies overlap(A, S) for all S in supers(B). // // Alternatively: // // overlap(A, B) iff there exists: // A' in { A, subregs(A) } and B' in { B, subregs(B) } such that: // A' = B' or A' in aliases(B') or B' in aliases(A'). // // Here subregs(A) is the full flattened sub-register set returned by // A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the // description of register A. // // This also implies that registers with a common sub-register are considered // overlapping. This can happen when forming register pairs: // // P0 = (R0, R1) // P1 = (R1, R2) // P2 = (R2, R3) // // In this case, we will infer an overlap between P0 and P1 because of the // shared sub-register R1. There is no overlap between P0 and P2. // void CodeGenRegBank:: computeOverlaps(std::map<const CodeGenRegister*, CodeGenRegister::Set> &Map) { assert(Map.empty()); // Collect overlaps that don't follow from rule 2. for (unsigned i = 0, e = Registers.size(); i != e; ++i) { CodeGenRegister *Reg = Registers[i]; CodeGenRegister::Set &Overlaps = Map[Reg]; // Reg overlaps itself. Overlaps.insert(Reg); // All super-registers overlap. const CodeGenRegister::SuperRegList &Supers = Reg->getSuperRegs(); Overlaps.insert(Supers.begin(), Supers.end()); // Form symmetrical relations from the special Aliases[] lists. std::vector<Record*> RegList = Reg->TheDef->getValueAsListOfDefs("Aliases"); for (unsigned i2 = 0, e2 = RegList.size(); i2 != e2; ++i2) { CodeGenRegister *Reg2 = getReg(RegList[i2]); CodeGenRegister::Set &Overlaps2 = Map[Reg2]; const CodeGenRegister::SuperRegList &Supers2 = Reg2->getSuperRegs(); // Reg overlaps Reg2 which implies it overlaps supers(Reg2). Overlaps.insert(Reg2); Overlaps.insert(Supers2.begin(), Supers2.end()); Overlaps2.insert(Reg); Overlaps2.insert(Supers.begin(), Supers.end()); } } // Apply rule 2. and inherit all sub-register overlaps. for (unsigned i = 0, e = Registers.size(); i != e; ++i) { CodeGenRegister *Reg = Registers[i]; CodeGenRegister::Set &Overlaps = Map[Reg]; const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM.begin(), e2 = SRM.end(); i2 != e2; ++i2) { CodeGenRegister::Set &Overlaps2 = Map[i2->second]; Overlaps.insert(Overlaps2.begin(), Overlaps2.end()); } } } void CodeGenRegBank::computeDerivedInfo() { computeComposites(); } // Infer missing register classes. // // For every register class RC, make sure that the set of registers in RC with // a given SubIxx sub-register form a register class. void CodeGenRegBank::computeInferredRegisterClasses() { // When this function is called, the register classes have not been sorted // and assigned EnumValues yet. That means getSubClasses(), // getSuperClasses(), and hasSubClass() functions are defunct. // Map SubRegIndex to register set. typedef std::map<Record*, CodeGenRegister::Set, LessRecord> SubReg2SetMap; // Visit all register classes, including the ones being added by the loop. for (unsigned rci = 0; rci != RegClasses.size(); ++rci) { CodeGenRegisterClass &RC = *RegClasses[rci]; // Compute the set of registers supporting each SubRegIndex. SubReg2SetMap SRSets; for (CodeGenRegister::Set::const_iterator RI = RC.getMembers().begin(), RE = RC.getMembers().end(); RI != RE; ++RI) { const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs(); for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), E = SRM.end(); I != E; ++I) SRSets[I->first].insert(*RI); } // Find matching classes for all SRSets entries. Iterate in SubRegIndex // numerical order to visit synthetic indices last. for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) { Record *SubIdx = SubRegIndices[sri]; SubReg2SetMap::const_iterator I = SRSets.find(SubIdx); // Unsupported SubRegIndex. Skip it. if (I == SRSets.end()) continue; // In most cases, all RC registers support the SubRegIndex. if (I->second.size() == RC.getMembers().size()) { RC.setSubClassWithSubReg(SubIdx, &RC); continue; } // This is a real subset. See if we have a matching class. CodeGenRegisterClass::Key K(&I->second, RC.SpillSize, RC.SpillAlignment); RCKeyMap::const_iterator FoundI = Key2RC.find(K); if (FoundI != Key2RC.end()) { RC.setSubClassWithSubReg(SubIdx, FoundI->second); continue; } // Class doesn't exist. CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(RC.getName() + "_with_" + I->first->getName(), K); addToMaps(NewRC); RC.setSubClassWithSubReg(SubIdx, NewRC); } } } /// getRegisterClassForRegister - Find the register class that contains the /// specified physical register. If the register is not in a register class, /// return null. If the register is in multiple classes, and the classes have a /// superset-subset relationship and the same set of types, return the /// superclass. Otherwise return null. const CodeGenRegisterClass* CodeGenRegBank::getRegClassForRegister(Record *R) { const CodeGenRegister *Reg = getReg(R); ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses(); const CodeGenRegisterClass *FoundRC = 0; for (unsigned i = 0, e = RCs.size(); i != e; ++i) { const CodeGenRegisterClass &RC = *RCs[i]; if (!RC.contains(Reg)) continue; // If this is the first class that contains the register, // make a note of it and go on to the next class. if (!FoundRC) { FoundRC = &RC; continue; } // If a register's classes have different types, return null. if (RC.getValueTypes() != FoundRC->getValueTypes()) return 0; // Check to see if the previously found class that contains // the register is a subclass of the current class. If so, // prefer the superclass. if (RC.hasSubClass(FoundRC)) { FoundRC = &RC; continue; } // Check to see if the previously found class that contains // the register is a superclass of the current class. If so, // prefer the superclass. if (FoundRC->hasSubClass(&RC)) continue; // Multiple classes, and neither is a superclass of the other. // Return null. return 0; } return FoundRC; }