//===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits information about intrinsic functions. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "IntrinsicEmitter.h" #include "StringMatcher.h" #include "llvm/TableGen/Record.h" #include "llvm/ADT/StringExtras.h" #include <algorithm> using namespace llvm; //===----------------------------------------------------------------------===// // IntrinsicEmitter Implementation //===----------------------------------------------------------------------===// void IntrinsicEmitter::run(raw_ostream &OS) { EmitSourceFileHeader("Intrinsic Function Source Fragment", OS); std::vector<CodeGenIntrinsic> Ints = LoadIntrinsics(Records, TargetOnly); if (TargetOnly && !Ints.empty()) TargetPrefix = Ints[0].TargetPrefix; EmitPrefix(OS); // Emit the enum information. EmitEnumInfo(Ints, OS); // Emit the intrinsic ID -> name table. EmitIntrinsicToNameTable(Ints, OS); // Emit the intrinsic ID -> overload table. EmitIntrinsicToOverloadTable(Ints, OS); // Emit the function name recognizer. EmitFnNameRecognizer(Ints, OS); // Emit the intrinsic verifier. EmitVerifier(Ints, OS); // Emit the intrinsic declaration generator. EmitGenerator(Ints, OS); // Emit the intrinsic parameter attributes. EmitAttributes(Ints, OS); // Emit intrinsic alias analysis mod/ref behavior. EmitModRefBehavior(Ints, OS); // Emit a list of intrinsics with corresponding GCC builtins. EmitGCCBuiltinList(Ints, OS); // Emit code to translate GCC builtins into LLVM intrinsics. EmitIntrinsicToGCCBuiltinMap(Ints, OS); EmitSuffix(OS); } void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) { OS << "// VisualStudio defines setjmp as _setjmp\n" "#if defined(_MSC_VER) && defined(setjmp) && \\\n" " !defined(setjmp_undefined_for_msvc)\n" "# pragma push_macro(\"setjmp\")\n" "# undef setjmp\n" "# define setjmp_undefined_for_msvc\n" "#endif\n\n"; } void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) { OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n" "// let's return it to _setjmp state\n" "# pragma pop_macro(\"setjmp\")\n" "# undef setjmp_undefined_for_msvc\n" "#endif\n\n"; } void IntrinsicEmitter::EmitEnumInfo(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { OS << "// Enum values for Intrinsics.h\n"; OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { OS << " " << Ints[i].EnumName; OS << ((i != e-1) ? ", " : " "); OS << std::string(40-Ints[i].EnumName.size(), ' ') << "// " << Ints[i].Name << "\n"; } OS << "#endif\n\n"; } void IntrinsicEmitter:: EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { // Build a 'first character of function name' -> intrinsic # mapping. std::map<char, std::vector<unsigned> > IntMapping; for (unsigned i = 0, e = Ints.size(); i != e; ++i) IntMapping[Ints[i].Name[5]].push_back(i); OS << "// Function name -> enum value recognizer code.\n"; OS << "#ifdef GET_FUNCTION_RECOGNIZER\n"; OS << " StringRef NameR(Name+6, Len-6); // Skip over 'llvm.'\n"; OS << " switch (Name[5]) { // Dispatch on first letter.\n"; OS << " default: break;\n"; // Emit the intrinsic matching stuff by first letter. for (std::map<char, std::vector<unsigned> >::iterator I = IntMapping.begin(), E = IntMapping.end(); I != E; ++I) { OS << " case '" << I->first << "':\n"; std::vector<unsigned> &IntList = I->second; // Emit all the overloaded intrinsics first, build a table of the // non-overloaded ones. std::vector<StringMatcher::StringPair> MatchTable; for (unsigned i = 0, e = IntList.size(); i != e; ++i) { unsigned IntNo = IntList[i]; std::string Result = "return " + TargetPrefix + "Intrinsic::" + Ints[IntNo].EnumName + ";"; if (!Ints[IntNo].isOverloaded) { MatchTable.push_back(std::make_pair(Ints[IntNo].Name.substr(6),Result)); continue; } // For overloaded intrinsics, only the prefix needs to match std::string TheStr = Ints[IntNo].Name.substr(6); TheStr += '.'; // Require "bswap." instead of bswap. OS << " if (NameR.startswith(\"" << TheStr << "\")) " << Result << '\n'; } // Emit the matcher logic for the fixed length strings. StringMatcher("NameR", MatchTable, OS).Emit(1); OS << " break; // end of '" << I->first << "' case.\n"; } OS << " }\n"; OS << "#endif\n\n"; } void IntrinsicEmitter:: EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { OS << "// Intrinsic ID to name table\n"; OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n"; OS << " // Note that entry #0 is the invalid intrinsic!\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) OS << " \"" << Ints[i].Name << "\",\n"; OS << "#endif\n\n"; } void IntrinsicEmitter:: EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { OS << "// Intrinsic ID to overload table\n"; OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n"; OS << " // Note that entry #0 is the invalid intrinsic!\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { OS << " "; if (Ints[i].isOverloaded) OS << "true"; else OS << "false"; OS << ",\n"; } OS << "#endif\n\n"; } static void EmitTypeForValueType(raw_ostream &OS, MVT::SimpleValueType VT) { if (EVT(VT).isInteger()) { unsigned BitWidth = EVT(VT).getSizeInBits(); OS << "IntegerType::get(Context, " << BitWidth << ")"; } else if (VT == MVT::Other) { // MVT::OtherVT is used to mean the empty struct type here. OS << "StructType::get(Context)"; } else if (VT == MVT::f32) { OS << "Type::getFloatTy(Context)"; } else if (VT == MVT::f64) { OS << "Type::getDoubleTy(Context)"; } else if (VT == MVT::f80) { OS << "Type::getX86_FP80Ty(Context)"; } else if (VT == MVT::f128) { OS << "Type::getFP128Ty(Context)"; } else if (VT == MVT::ppcf128) { OS << "Type::getPPC_FP128Ty(Context)"; } else if (VT == MVT::isVoid) { OS << "Type::getVoidTy(Context)"; } else if (VT == MVT::Metadata) { OS << "Type::getMetadataTy(Context)"; } else if (VT == MVT::x86mmx) { OS << "Type::getX86_MMXTy(Context)"; } else { assert(false && "Unsupported ValueType!"); } } static void EmitTypeGenerate(raw_ostream &OS, const Record *ArgType, unsigned &ArgNo); static void EmitTypeGenerate(raw_ostream &OS, const std::vector<Record*> &ArgTypes, unsigned &ArgNo) { if (ArgTypes.empty()) return EmitTypeForValueType(OS, MVT::isVoid); if (ArgTypes.size() == 1) return EmitTypeGenerate(OS, ArgTypes.front(), ArgNo); OS << "StructType::get("; for (std::vector<Record*>::const_iterator I = ArgTypes.begin(), E = ArgTypes.end(); I != E; ++I) { EmitTypeGenerate(OS, *I, ArgNo); OS << ", "; } OS << " NULL)"; } static void EmitTypeGenerate(raw_ostream &OS, const Record *ArgType, unsigned &ArgNo) { MVT::SimpleValueType VT = getValueType(ArgType->getValueAsDef("VT")); if (ArgType->isSubClassOf("LLVMMatchType")) { unsigned Number = ArgType->getValueAsInt("Number"); assert(Number < ArgNo && "Invalid matching number!"); if (ArgType->isSubClassOf("LLVMExtendedElementVectorType")) OS << "VectorType::getExtendedElementVectorType" << "(dyn_cast<VectorType>(Tys[" << Number << "]))"; else if (ArgType->isSubClassOf("LLVMTruncatedElementVectorType")) OS << "VectorType::getTruncatedElementVectorType" << "(dyn_cast<VectorType>(Tys[" << Number << "]))"; else OS << "Tys[" << Number << "]"; } else if (VT == MVT::iAny || VT == MVT::fAny || VT == MVT::vAny) { // NOTE: The ArgNo variable here is not the absolute argument number, it is // the index of the "arbitrary" type in the Tys array passed to the // Intrinsic::getDeclaration function. Consequently, we only want to // increment it when we actually hit an overloaded type. Getting this wrong // leads to very subtle bugs! OS << "Tys[" << ArgNo++ << "]"; } else if (EVT(VT).isVector()) { EVT VVT = VT; OS << "VectorType::get("; EmitTypeForValueType(OS, VVT.getVectorElementType().getSimpleVT().SimpleTy); OS << ", " << VVT.getVectorNumElements() << ")"; } else if (VT == MVT::iPTR) { OS << "PointerType::getUnqual("; EmitTypeGenerate(OS, ArgType->getValueAsDef("ElTy"), ArgNo); OS << ")"; } else if (VT == MVT::iPTRAny) { // Make sure the user has passed us an argument type to overload. If not, // treat it as an ordinary (not overloaded) intrinsic. OS << "(" << ArgNo << " < Tys.size()) ? Tys[" << ArgNo << "] : PointerType::getUnqual("; EmitTypeGenerate(OS, ArgType->getValueAsDef("ElTy"), ArgNo); OS << ")"; ++ArgNo; } else if (VT == MVT::isVoid) { if (ArgNo == 0) OS << "Type::getVoidTy(Context)"; else // MVT::isVoid is used to mean varargs here. OS << "..."; } else { EmitTypeForValueType(OS, VT); } } /// RecordListComparator - Provide a deterministic comparator for lists of /// records. namespace { typedef std::pair<std::vector<Record*>, std::vector<Record*> > RecPair; struct RecordListComparator { bool operator()(const RecPair &LHS, const RecPair &RHS) const { unsigned i = 0; const std::vector<Record*> *LHSVec = &LHS.first; const std::vector<Record*> *RHSVec = &RHS.first; unsigned RHSSize = RHSVec->size(); unsigned LHSSize = LHSVec->size(); for (; i != LHSSize; ++i) { if (i == RHSSize) return false; // RHS is shorter than LHS. if ((*LHSVec)[i] != (*RHSVec)[i]) return (*LHSVec)[i]->getName() < (*RHSVec)[i]->getName(); } if (i != RHSSize) return true; i = 0; LHSVec = &LHS.second; RHSVec = &RHS.second; RHSSize = RHSVec->size(); LHSSize = LHSVec->size(); for (i = 0; i != LHSSize; ++i) { if (i == RHSSize) return false; // RHS is shorter than LHS. if ((*LHSVec)[i] != (*RHSVec)[i]) return (*LHSVec)[i]->getName() < (*RHSVec)[i]->getName(); } return i != RHSSize; } }; } void IntrinsicEmitter::EmitVerifier(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { OS << "// Verifier::visitIntrinsicFunctionCall code.\n"; OS << "#ifdef GET_INTRINSIC_VERIFIER\n"; OS << " switch (ID) {\n"; OS << " default: assert(0 && \"Invalid intrinsic!\");\n"; // This checking can emit a lot of very common code. To reduce the amount of // code that we emit, batch up cases that have identical types. This avoids // problems where GCC can run out of memory compiling Verifier.cpp. typedef std::map<RecPair, std::vector<unsigned>, RecordListComparator> MapTy; MapTy UniqueArgInfos; // Compute the unique argument type info. for (unsigned i = 0, e = Ints.size(); i != e; ++i) UniqueArgInfos[make_pair(Ints[i].IS.RetTypeDefs, Ints[i].IS.ParamTypeDefs)].push_back(i); // Loop through the array, emitting one comparison for each batch. for (MapTy::iterator I = UniqueArgInfos.begin(), E = UniqueArgInfos.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) OS << " case Intrinsic::" << Ints[I->second[i]].EnumName << ":\t\t// " << Ints[I->second[i]].Name << "\n"; const RecPair &ArgTypes = I->first; const std::vector<Record*> &RetTys = ArgTypes.first; const std::vector<Record*> &ParamTys = ArgTypes.second; std::vector<unsigned> OverloadedTypeIndices; OS << " VerifyIntrinsicPrototype(ID, IF, " << RetTys.size() << ", " << ParamTys.size(); // Emit return types. for (unsigned j = 0, je = RetTys.size(); j != je; ++j) { Record *ArgType = RetTys[j]; OS << ", "; if (ArgType->isSubClassOf("LLVMMatchType")) { unsigned Number = ArgType->getValueAsInt("Number"); assert(Number < OverloadedTypeIndices.size() && "Invalid matching number!"); Number = OverloadedTypeIndices[Number]; if (ArgType->isSubClassOf("LLVMExtendedElementVectorType")) OS << "~(ExtendedElementVectorType | " << Number << ")"; else if (ArgType->isSubClassOf("LLVMTruncatedElementVectorType")) OS << "~(TruncatedElementVectorType | " << Number << ")"; else OS << "~" << Number; } else { MVT::SimpleValueType VT = getValueType(ArgType->getValueAsDef("VT")); OS << getEnumName(VT); if (EVT(VT).isOverloaded()) OverloadedTypeIndices.push_back(j); if (VT == MVT::isVoid && j != 0 && j != je - 1) throw "Var arg type not last argument"; } } // Emit the parameter types. for (unsigned j = 0, je = ParamTys.size(); j != je; ++j) { Record *ArgType = ParamTys[j]; OS << ", "; if (ArgType->isSubClassOf("LLVMMatchType")) { unsigned Number = ArgType->getValueAsInt("Number"); assert(Number < OverloadedTypeIndices.size() && "Invalid matching number!"); Number = OverloadedTypeIndices[Number]; if (ArgType->isSubClassOf("LLVMExtendedElementVectorType")) OS << "~(ExtendedElementVectorType | " << Number << ")"; else if (ArgType->isSubClassOf("LLVMTruncatedElementVectorType")) OS << "~(TruncatedElementVectorType | " << Number << ")"; else OS << "~" << Number; } else { MVT::SimpleValueType VT = getValueType(ArgType->getValueAsDef("VT")); OS << getEnumName(VT); if (EVT(VT).isOverloaded()) OverloadedTypeIndices.push_back(j + RetTys.size()); if (VT == MVT::isVoid && j != 0 && j != je - 1) throw "Var arg type not last argument"; } } OS << ");\n"; OS << " break;\n"; } OS << " }\n"; OS << "#endif\n\n"; } void IntrinsicEmitter::EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { OS << "// Code for generating Intrinsic function declarations.\n"; OS << "#ifdef GET_INTRINSIC_GENERATOR\n"; OS << " switch (id) {\n"; OS << " default: assert(0 && \"Invalid intrinsic!\");\n"; // Similar to GET_INTRINSIC_VERIFIER, batch up cases that have identical // types. typedef std::map<RecPair, std::vector<unsigned>, RecordListComparator> MapTy; MapTy UniqueArgInfos; // Compute the unique argument type info. for (unsigned i = 0, e = Ints.size(); i != e; ++i) UniqueArgInfos[make_pair(Ints[i].IS.RetTypeDefs, Ints[i].IS.ParamTypeDefs)].push_back(i); // Loop through the array, emitting one generator for each batch. std::string IntrinsicStr = TargetPrefix + "Intrinsic::"; for (MapTy::iterator I = UniqueArgInfos.begin(), E = UniqueArgInfos.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) OS << " case " << IntrinsicStr << Ints[I->second[i]].EnumName << ":\t\t// " << Ints[I->second[i]].Name << "\n"; const RecPair &ArgTypes = I->first; const std::vector<Record*> &RetTys = ArgTypes.first; const std::vector<Record*> &ParamTys = ArgTypes.second; unsigned N = ParamTys.size(); if (N > 1 && getValueType(ParamTys[N - 1]->getValueAsDef("VT")) == MVT::isVoid) { OS << " IsVarArg = true;\n"; --N; } unsigned ArgNo = 0; OS << " ResultTy = "; EmitTypeGenerate(OS, RetTys, ArgNo); OS << ";\n"; for (unsigned j = 0; j != N; ++j) { OS << " ArgTys.push_back("; EmitTypeGenerate(OS, ParamTys[j], ArgNo); OS << ");\n"; } OS << " break;\n"; } OS << " }\n"; OS << "#endif\n\n"; } namespace { enum ModRefKind { MRK_none, MRK_readonly, MRK_readnone }; ModRefKind getModRefKind(const CodeGenIntrinsic &intrinsic) { switch (intrinsic.ModRef) { case CodeGenIntrinsic::NoMem: return MRK_readnone; case CodeGenIntrinsic::ReadArgMem: case CodeGenIntrinsic::ReadMem: return MRK_readonly; case CodeGenIntrinsic::ReadWriteArgMem: case CodeGenIntrinsic::ReadWriteMem: return MRK_none; } assert(0 && "bad mod-ref kind"); return MRK_none; } struct AttributeComparator { bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const { // Sort throwing intrinsics after non-throwing intrinsics. if (L->canThrow != R->canThrow) return R->canThrow; // Try to order by readonly/readnone attribute. ModRefKind LK = getModRefKind(*L); ModRefKind RK = getModRefKind(*R); if (LK != RK) return (LK > RK); // Order by argument attributes. // This is reliable because each side is already sorted internally. return (L->ArgumentAttributes < R->ArgumentAttributes); } }; } /// EmitAttributes - This emits the Intrinsic::getAttributes method. void IntrinsicEmitter:: EmitAttributes(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { OS << "// Add parameter attributes that are not common to all intrinsics.\n"; OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n"; if (TargetOnly) OS << "static AttrListPtr getAttributes(" << TargetPrefix << "Intrinsic::ID id) {\n"; else OS << "AttrListPtr Intrinsic::getAttributes(ID id) {\n"; // Compute the maximum number of attribute arguments. std::vector<const CodeGenIntrinsic*> sortedIntrinsics(Ints.size()); unsigned maxArgAttrs = 0; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { const CodeGenIntrinsic &intrinsic = Ints[i]; sortedIntrinsics[i] = &intrinsic; maxArgAttrs = std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size())); } // Emit an array of AttributeWithIndex. Most intrinsics will have // at least one entry, for the function itself (index ~1), which is // usually nounwind. OS << " AttributeWithIndex AWI[" << maxArgAttrs+1 << "];\n"; OS << " unsigned NumAttrs = 0;\n"; OS << " switch (id) {\n"; OS << " default: break;\n"; AttributeComparator precedes; std::stable_sort(sortedIntrinsics.begin(), sortedIntrinsics.end(), precedes); for (unsigned i = 0, e = sortedIntrinsics.size(); i != e; ++i) { const CodeGenIntrinsic &intrinsic = *sortedIntrinsics[i]; OS << " case " << TargetPrefix << "Intrinsic::" << intrinsic.EnumName << ":\n"; // Fill out the case if this is the last case for this range of // intrinsics. if (i + 1 != e && !precedes(&intrinsic, sortedIntrinsics[i + 1])) continue; // Keep track of the number of attributes we're writing out. unsigned numAttrs = 0; // The argument attributes are alreadys sorted by argument index. for (unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size(); ai != ae;) { unsigned argNo = intrinsic.ArgumentAttributes[ai].first; OS << " AWI[" << numAttrs++ << "] = AttributeWithIndex::get(" << argNo+1 << ", "; bool moreThanOne = false; do { if (moreThanOne) OS << '|'; switch (intrinsic.ArgumentAttributes[ai].second) { case CodeGenIntrinsic::NoCapture: OS << "Attribute::NoCapture"; break; } ++ai; moreThanOne = true; } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo); OS << ");\n"; } ModRefKind modRef = getModRefKind(intrinsic); if (!intrinsic.canThrow || modRef) { OS << " AWI[" << numAttrs++ << "] = AttributeWithIndex::get(~0, "; if (!intrinsic.canThrow) { OS << "Attribute::NoUnwind"; if (modRef) OS << '|'; } switch (modRef) { case MRK_none: break; case MRK_readonly: OS << "Attribute::ReadOnly"; break; case MRK_readnone: OS << "Attribute::ReadNone"; break; } OS << ");\n"; } if (numAttrs) { OS << " NumAttrs = " << numAttrs << ";\n"; OS << " break;\n"; } else { OS << " return AttrListPtr();\n"; } } OS << " }\n"; OS << " return AttrListPtr::get(AWI, NumAttrs);\n"; OS << "}\n"; OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n"; } /// EmitModRefBehavior - Determine intrinsic alias analysis mod/ref behavior. void IntrinsicEmitter:: EmitModRefBehavior(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS){ OS << "// Determine intrinsic alias analysis mod/ref behavior.\n"; OS << "#ifdef GET_INTRINSIC_MODREF_BEHAVIOR\n"; OS << "switch (iid) {\n"; OS << "default:\n return UnknownModRefBehavior;\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { if (Ints[i].ModRef == CodeGenIntrinsic::ReadWriteMem) continue; OS << "case " << TargetPrefix << "Intrinsic::" << Ints[i].EnumName << ":\n"; switch (Ints[i].ModRef) { default: assert(false && "Unknown Mod/Ref type!"); case CodeGenIntrinsic::NoMem: OS << " return DoesNotAccessMemory;\n"; break; case CodeGenIntrinsic::ReadArgMem: OS << " return OnlyReadsArgumentPointees;\n"; break; case CodeGenIntrinsic::ReadMem: OS << " return OnlyReadsMemory;\n"; break; case CodeGenIntrinsic::ReadWriteArgMem: OS << " return OnlyAccessesArgumentPointees;\n"; break; } } OS << "}\n"; OS << "#endif // GET_INTRINSIC_MODREF_BEHAVIOR\n\n"; } void IntrinsicEmitter:: EmitGCCBuiltinList(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS){ OS << "// Get the GCC builtin that corresponds to an LLVM intrinsic.\n"; OS << "#ifdef GET_GCC_BUILTIN_NAME\n"; OS << " switch (F->getIntrinsicID()) {\n"; OS << " default: BuiltinName = \"\"; break;\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { if (!Ints[i].GCCBuiltinName.empty()) { OS << " case Intrinsic::" << Ints[i].EnumName << ": BuiltinName = \"" << Ints[i].GCCBuiltinName << "\"; break;\n"; } } OS << " }\n"; OS << "#endif\n\n"; } /// EmitTargetBuiltins - All of the builtins in the specified map are for the /// same target, and we already checked it. static void EmitTargetBuiltins(const std::map<std::string, std::string> &BIM, const std::string &TargetPrefix, raw_ostream &OS) { std::vector<StringMatcher::StringPair> Results; for (std::map<std::string, std::string>::const_iterator I = BIM.begin(), E = BIM.end(); I != E; ++I) { std::string ResultCode = "return " + TargetPrefix + "Intrinsic::" + I->second + ";"; Results.push_back(StringMatcher::StringPair(I->first, ResultCode)); } StringMatcher("BuiltinName", Results, OS).Emit(); } void IntrinsicEmitter:: EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { typedef std::map<std::string, std::map<std::string, std::string> > BIMTy; BIMTy BuiltinMap; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { if (!Ints[i].GCCBuiltinName.empty()) { // Get the map for this target prefix. std::map<std::string, std::string> &BIM =BuiltinMap[Ints[i].TargetPrefix]; if (!BIM.insert(std::make_pair(Ints[i].GCCBuiltinName, Ints[i].EnumName)).second) throw "Intrinsic '" + Ints[i].TheDef->getName() + "': duplicate GCC builtin name!"; } } OS << "// Get the LLVM intrinsic that corresponds to a GCC builtin.\n"; OS << "// This is used by the C front-end. The GCC builtin name is passed\n"; OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n"; OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n"; OS << "#ifdef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN\n"; if (TargetOnly) { OS << "static " << TargetPrefix << "Intrinsic::ID " << "getIntrinsicForGCCBuiltin(const char " << "*TargetPrefixStr, const char *BuiltinNameStr) {\n"; } else { OS << "Intrinsic::ID Intrinsic::getIntrinsicForGCCBuiltin(const char " << "*TargetPrefixStr, const char *BuiltinNameStr) {\n"; } OS << " StringRef BuiltinName(BuiltinNameStr);\n"; OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n"; // Note: this could emit significantly better code if we cared. for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){ OS << " "; if (!I->first.empty()) OS << "if (TargetPrefix == \"" << I->first << "\") "; else OS << "/* Target Independent Builtins */ "; OS << "{\n"; // Emit the comparisons for this target prefix. EmitTargetBuiltins(I->second, TargetPrefix, OS); OS << " }\n"; } OS << " return "; if (!TargetPrefix.empty()) OS << "(" << TargetPrefix << "Intrinsic::ID)"; OS << "Intrinsic::not_intrinsic;\n"; OS << "}\n"; OS << "#endif\n\n"; }