//===- SetTheory.cpp - Generate ordered sets from DAG expressions ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SetTheory class that computes ordered sets of // Records from DAG expressions. // //===----------------------------------------------------------------------===// #include "SetTheory.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/Support/Format.h" using namespace llvm; // Define the standard operators. namespace { typedef SetTheory::RecSet RecSet; typedef SetTheory::RecVec RecVec; // (add a, b, ...) Evaluate and union all arguments. struct AddOp : public SetTheory::Operator { void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) { ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts); } }; // (sub Add, Sub, ...) Set difference. struct SubOp : public SetTheory::Operator { void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) { if (Expr->arg_size() < 2) throw "Set difference needs at least two arguments: " + Expr->getAsString(); RecSet Add, Sub; ST.evaluate(*Expr->arg_begin(), Add); ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Sub); for (RecSet::iterator I = Add.begin(), E = Add.end(); I != E; ++I) if (!Sub.count(*I)) Elts.insert(*I); } }; // (and S1, S2) Set intersection. struct AndOp : public SetTheory::Operator { void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) { if (Expr->arg_size() != 2) throw "Set intersection requires two arguments: " + Expr->getAsString(); RecSet S1, S2; ST.evaluate(Expr->arg_begin()[0], S1); ST.evaluate(Expr->arg_begin()[1], S2); for (RecSet::iterator I = S1.begin(), E = S1.end(); I != E; ++I) if (S2.count(*I)) Elts.insert(*I); } }; // SetIntBinOp - Abstract base class for (Op S, N) operators. struct SetIntBinOp : public SetTheory::Operator { virtual void apply2(SetTheory &ST, DagInit *Expr, RecSet &Set, int64_t N, RecSet &Elts) =0; void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) { if (Expr->arg_size() != 2) throw "Operator requires (Op Set, Int) arguments: " + Expr->getAsString(); RecSet Set; ST.evaluate(Expr->arg_begin()[0], Set); IntInit *II = dynamic_cast<IntInit*>(Expr->arg_begin()[1]); if (!II) throw "Second argument must be an integer: " + Expr->getAsString(); apply2(ST, Expr, Set, II->getValue(), Elts); } }; // (shl S, N) Shift left, remove the first N elements. struct ShlOp : public SetIntBinOp { void apply2(SetTheory &ST, DagInit *Expr, RecSet &Set, int64_t N, RecSet &Elts) { if (N < 0) throw "Positive shift required: " + Expr->getAsString(); if (unsigned(N) < Set.size()) Elts.insert(Set.begin() + N, Set.end()); } }; // (trunc S, N) Truncate after the first N elements. struct TruncOp : public SetIntBinOp { void apply2(SetTheory &ST, DagInit *Expr, RecSet &Set, int64_t N, RecSet &Elts) { if (N < 0) throw "Positive length required: " + Expr->getAsString(); if (unsigned(N) > Set.size()) N = Set.size(); Elts.insert(Set.begin(), Set.begin() + N); } }; // Left/right rotation. struct RotOp : public SetIntBinOp { const bool Reverse; RotOp(bool Rev) : Reverse(Rev) {} void apply2(SetTheory &ST, DagInit *Expr, RecSet &Set, int64_t N, RecSet &Elts) { if (Reverse) N = -N; // N > 0 -> rotate left, N < 0 -> rotate right. if (Set.empty()) return; if (N < 0) N = Set.size() - (-N % Set.size()); else N %= Set.size(); Elts.insert(Set.begin() + N, Set.end()); Elts.insert(Set.begin(), Set.begin() + N); } }; // (decimate S, N) Pick every N'th element of S. struct DecimateOp : public SetIntBinOp { void apply2(SetTheory &ST, DagInit *Expr, RecSet &Set, int64_t N, RecSet &Elts) { if (N <= 0) throw "Positive stride required: " + Expr->getAsString(); for (unsigned I = 0; I < Set.size(); I += N) Elts.insert(Set[I]); } }; // (sequence "Format", From, To) Generate a sequence of records by name. struct SequenceOp : public SetTheory::Operator { void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts) { if (Expr->arg_size() != 3) throw "Bad args to (sequence \"Format\", From, To): " + Expr->getAsString(); std::string Format; if (StringInit *SI = dynamic_cast<StringInit*>(Expr->arg_begin()[0])) Format = SI->getValue(); else throw "Format must be a string: " + Expr->getAsString(); int64_t From, To; if (IntInit *II = dynamic_cast<IntInit*>(Expr->arg_begin()[1])) From = II->getValue(); else throw "From must be an integer: " + Expr->getAsString(); if (From < 0 || From >= (1 << 30)) throw "From out of range"; if (IntInit *II = dynamic_cast<IntInit*>(Expr->arg_begin()[2])) To = II->getValue(); else throw "From must be an integer: " + Expr->getAsString(); if (To < 0 || To >= (1 << 30)) throw "To out of range"; RecordKeeper &Records = dynamic_cast<DefInit&>(*Expr->getOperator()).getDef()->getRecords(); int Step = From <= To ? 1 : -1; for (To += Step; From != To; From += Step) { std::string Name; raw_string_ostream OS(Name); OS << format(Format.c_str(), unsigned(From)); Record *Rec = Records.getDef(OS.str()); if (!Rec) throw "No def named '" + Name + "': " + Expr->getAsString(); // Try to reevaluate Rec in case it is a set. if (const RecVec *Result = ST.expand(Rec)) Elts.insert(Result->begin(), Result->end()); else Elts.insert(Rec); } } }; // Expand a Def into a set by evaluating one of its fields. struct FieldExpander : public SetTheory::Expander { StringRef FieldName; FieldExpander(StringRef fn) : FieldName(fn) {} void expand(SetTheory &ST, Record *Def, RecSet &Elts) { ST.evaluate(Def->getValueInit(FieldName), Elts); } }; } // end anonymous namespace SetTheory::SetTheory() { addOperator("add", new AddOp); addOperator("sub", new SubOp); addOperator("and", new AndOp); addOperator("shl", new ShlOp); addOperator("trunc", new TruncOp); addOperator("rotl", new RotOp(false)); addOperator("rotr", new RotOp(true)); addOperator("decimate", new DecimateOp); addOperator("sequence", new SequenceOp); } void SetTheory::addOperator(StringRef Name, Operator *Op) { Operators[Name] = Op; } void SetTheory::addExpander(StringRef ClassName, Expander *E) { Expanders[ClassName] = E; } void SetTheory::addFieldExpander(StringRef ClassName, StringRef FieldName) { addExpander(ClassName, new FieldExpander(FieldName)); } void SetTheory::evaluate(Init *Expr, RecSet &Elts) { // A def in a list can be a just an element, or it may expand. if (DefInit *Def = dynamic_cast<DefInit*>(Expr)) { if (const RecVec *Result = expand(Def->getDef())) return Elts.insert(Result->begin(), Result->end()); Elts.insert(Def->getDef()); return; } // Lists simply expand. if (ListInit *LI = dynamic_cast<ListInit*>(Expr)) return evaluate(LI->begin(), LI->end(), Elts); // Anything else must be a DAG. DagInit *DagExpr = dynamic_cast<DagInit*>(Expr); if (!DagExpr) throw "Invalid set element: " + Expr->getAsString(); DefInit *OpInit = dynamic_cast<DefInit*>(DagExpr->getOperator()); if (!OpInit) throw "Bad set expression: " + Expr->getAsString(); Operator *Op = Operators.lookup(OpInit->getDef()->getName()); if (!Op) throw "Unknown set operator: " + Expr->getAsString(); Op->apply(*this, DagExpr, Elts); } const RecVec *SetTheory::expand(Record *Set) { // Check existing entries for Set and return early. ExpandMap::iterator I = Expansions.find(Set); if (I != Expansions.end()) return &I->second; // This is the first time we see Set. Find a suitable expander. try { const std::vector<Record*> &SC = Set->getSuperClasses(); for (unsigned i = 0, e = SC.size(); i != e; ++i) if (Expander *Exp = Expanders.lookup(SC[i]->getName())) { // This breaks recursive definitions. RecVec &EltVec = Expansions[Set]; RecSet Elts; Exp->expand(*this, Set, Elts); EltVec.assign(Elts.begin(), Elts.end()); return &EltVec; } } catch (const std::string &Error) { throw TGError(Set->getLoc(), Error); } // Set is not expandable. return 0; }