// Copyright (c) 2017 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <memory> #include <string> #include <vector> #include "gmock/gmock.h" #include "spirv-tools/libspirv.hpp" #include "spirv-tools/optimizer.hpp" #include "test/opt/pass_fixture.h" #include "test/opt/pass_utils.h" namespace spvtools { namespace opt { namespace { using CompactIdsTest = PassTest<::testing::Test>; TEST_F(CompactIdsTest, PassOff) { const std::string before = R"(OpCapability Addresses OpCapability Kernel OpCapability GenericPointer OpCapability Linkage OpMemoryModel Physical32 OpenCL %99 = OpTypeInt 32 0 %10 = OpTypeVector %99 2 %20 = OpConstant %99 2 %30 = OpTypeArray %99 %20 )"; const std::string after = before; SetAssembleOptions(SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); SetDisassembleOptions(SPV_BINARY_TO_TEXT_OPTION_NO_HEADER); SinglePassRunAndCheck<NullPass>(before, after, false, false); } TEST_F(CompactIdsTest, PassOn) { const std::string before = R"(OpCapability Addresses OpCapability Kernel OpCapability GenericPointer OpCapability Linkage OpMemoryModel Physical32 OpenCL OpEntryPoint Kernel %3 "simple_kernel" %99 = OpTypeInt 32 0 %10 = OpTypeVector %99 2 %20 = OpConstant %99 2 %30 = OpTypeArray %99 %20 %40 = OpTypeVoid %50 = OpTypeFunction %40 %3 = OpFunction %40 None %50 %70 = OpLabel OpReturn OpFunctionEnd )"; const std::string after = R"(OpCapability Addresses OpCapability Kernel OpCapability GenericPointer OpCapability Linkage OpMemoryModel Physical32 OpenCL OpEntryPoint Kernel %1 "simple_kernel" %2 = OpTypeInt 32 0 %3 = OpTypeVector %2 2 %4 = OpConstant %2 2 %5 = OpTypeArray %2 %4 %6 = OpTypeVoid %7 = OpTypeFunction %6 %1 = OpFunction %6 None %7 %8 = OpLabel OpReturn OpFunctionEnd )"; SetAssembleOptions(SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); SetDisassembleOptions(SPV_BINARY_TO_TEXT_OPTION_NO_HEADER); SinglePassRunAndCheck<CompactIdsPass>(before, after, false, false); } TEST(CompactIds, InstructionResultIsUpdated) { // For https://github.com/KhronosGroup/SPIRV-Tools/issues/827 // In that bug, the compact Ids pass was directly updating the result Id // word for an OpFunction instruction, but not updating the cached // result_id_ in that Instruction object. // // This test is a bit cheesy. We don't expose internal interfaces enough // to see the inconsistency. So reproduce the original scenario, with // compact ids followed by a pass that trips up on the inconsistency. const std::string input(R"(OpCapability Shader OpMemoryModel Logical Simple OpEntryPoint GLCompute %100 "main" %200 = OpTypeVoid %300 = OpTypeFunction %200 %100 = OpFunction %200 None %300 %400 = OpLabel OpReturn OpFunctionEnd )"); std::vector<uint32_t> binary; const spv_target_env env = SPV_ENV_UNIVERSAL_1_0; spvtools::SpirvTools tools(env); auto assembled = tools.Assemble( input, &binary, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); EXPECT_TRUE(assembled); spvtools::Optimizer optimizer(env); optimizer.RegisterPass(CreateCompactIdsPass()); // The exhaustive inliner will use the result_id optimizer.RegisterPass(CreateInlineExhaustivePass()); // This should not crash! optimizer.Run(binary.data(), binary.size(), &binary); std::string disassembly; tools.Disassemble(binary, &disassembly, SPV_BINARY_TO_TEXT_OPTION_NO_HEADER); const std::string expected(R"(OpCapability Shader OpMemoryModel Logical Simple OpEntryPoint GLCompute %1 "main" %2 = OpTypeVoid %3 = OpTypeFunction %2 %1 = OpFunction %2 None %3 %4 = OpLabel OpReturn OpFunctionEnd )"); EXPECT_THAT(disassembly, ::testing::Eq(expected)); } TEST(CompactIds, HeaderIsUpdated) { const std::string input(R"(OpCapability Shader OpMemoryModel Logical Simple OpEntryPoint GLCompute %100 "main" %200 = OpTypeVoid %300 = OpTypeFunction %200 %100 = OpFunction %200 None %300 %400 = OpLabel OpReturn OpFunctionEnd )"); std::vector<uint32_t> binary; const spv_target_env env = SPV_ENV_UNIVERSAL_1_0; spvtools::SpirvTools tools(env); auto assembled = tools.Assemble( input, &binary, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); EXPECT_TRUE(assembled); spvtools::Optimizer optimizer(env); optimizer.RegisterPass(CreateCompactIdsPass()); // The exhaustive inliner will use the result_id optimizer.RegisterPass(CreateInlineExhaustivePass()); // This should not crash! optimizer.Run(binary.data(), binary.size(), &binary); std::string disassembly; tools.Disassemble(binary, &disassembly, SPV_BINARY_TO_TEXT_OPTION_NONE); const std::string expected(R"(; SPIR-V ; Version: 1.0 ; Generator: Khronos SPIR-V Tools Assembler; 0 ; Bound: 5 ; Schema: 0 OpCapability Shader OpMemoryModel Logical Simple OpEntryPoint GLCompute %1 "main" %2 = OpTypeVoid %3 = OpTypeFunction %2 %1 = OpFunction %2 None %3 %4 = OpLabel OpReturn OpFunctionEnd )"); EXPECT_THAT(disassembly, ::testing::Eq(expected)); } // Test context consistency check after invalidating // CFG and others by compact IDs Pass. // Uses a GLSL shader with named labels for variety TEST(CompactIds, ConsistentCheck) { const std::string input(R"(OpCapability Shader OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %main "main" %in_var_A %out_var_SV_TARGET OpExecutionMode %main OriginUpperLeft OpSource HLSL 600 OpName %main "main" OpName %in_var_A "in.var.A" OpName %out_var_SV_TARGET "out.var.SV_TARGET" OpDecorate %in_var_A Location 0 OpDecorate %out_var_SV_TARGET Location 0 %void = OpTypeVoid %3 = OpTypeFunction %void %float = OpTypeFloat 32 %v4float = OpTypeVector %float 4 %_ptr_Input_v4float = OpTypePointer Input %v4float %_ptr_Output_v4float = OpTypePointer Output %v4float %in_var_A = OpVariable %_ptr_Input_v4float Input %out_var_SV_TARGET = OpVariable %_ptr_Output_v4float Output %main = OpFunction %void None %3 %5 = OpLabel %12 = OpLoad %v4float %in_var_A %23 = OpVectorShuffle %v4float %12 %12 0 0 0 1 OpStore %out_var_SV_TARGET %23 OpReturn OpFunctionEnd )"); spvtools::SpirvTools tools(SPV_ENV_UNIVERSAL_1_1); std::unique_ptr<IRContext> context = BuildModule(SPV_ENV_UNIVERSAL_1_1, nullptr, input, SPV_TEXT_TO_BINARY_OPTION_PRESERVE_NUMERIC_IDS); ASSERT_NE(context, nullptr); CompactIdsPass compact_id_pass; context->BuildInvalidAnalyses(compact_id_pass.GetPreservedAnalyses()); const auto status = compact_id_pass.Run(context.get()); ASSERT_NE(status, Pass::Status::Failure); EXPECT_TRUE(context->IsConsistent()); // Test output just in case std::vector<uint32_t> binary; context->module()->ToBinary(&binary, false); std::string disassembly; tools.Disassemble(binary, &disassembly, SpirvTools::kDefaultDisassembleOption); const std::string expected(R"(OpCapability Shader OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %main "main" %in_var_A %out_var_SV_TARGET OpExecutionMode %main OriginUpperLeft OpSource HLSL 600 OpName %main "main" OpName %in_var_A "in.var.A" OpName %out_var_SV_TARGET "out.var.SV_TARGET" OpDecorate %in_var_A Location 0 OpDecorate %out_var_SV_TARGET Location 0 %void = OpTypeVoid %5 = OpTypeFunction %void %float = OpTypeFloat 32 %v4float = OpTypeVector %float 4 %_ptr_Input_v4float = OpTypePointer Input %v4float %_ptr_Output_v4float = OpTypePointer Output %v4float %in_var_A = OpVariable %_ptr_Input_v4float Input %out_var_SV_TARGET = OpVariable %_ptr_Output_v4float Output %main = OpFunction %void None %5 %10 = OpLabel %11 = OpLoad %v4float %in_var_A %12 = OpVectorShuffle %v4float %11 %11 0 0 0 1 OpStore %out_var_SV_TARGET %12 OpReturn OpFunctionEnd )"); EXPECT_THAT(disassembly, ::testing::Eq(expected)); } } // namespace } // namespace opt } // namespace spvtools