//===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a pass (at IR level) to replace atomic instructions with // __atomic_* library calls, or target specific instruction which implement the // same semantics in a way which better fits the target backend. This can // include the use of (intrinsic-based) load-linked/store-conditional loops, // AtomicCmpXchg, or type coercions. // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/AtomicExpandUtils.h" #include "llvm/CodeGen/RuntimeLibcalls.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Pass.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include <cassert> #include <cstdint> #include <iterator> using namespace llvm; #define DEBUG_TYPE "atomic-expand" namespace { class AtomicExpand: public FunctionPass { const TargetLowering *TLI = nullptr; public: static char ID; // Pass identification, replacement for typeid AtomicExpand() : FunctionPass(ID) { initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; private: bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); bool tryExpandAtomicLoad(LoadInst *LI); bool expandAtomicLoadToLL(LoadInst *LI); bool expandAtomicLoadToCmpXchg(LoadInst *LI); StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); bool expandAtomicStore(StoreInst *SI); bool tryExpandAtomicRMW(AtomicRMWInst *AI); Value * insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder, function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); void expandAtomicOpToLLSC( Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder, function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); void expandPartwordAtomicRMW( AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind); void expandPartwordCmpXchg(AtomicCmpXchgInst *I); AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); static Value *insertRMWCmpXchgLoop( IRBuilder<> &Builder, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder, function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, CreateCmpXchgInstFun CreateCmpXchg); bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); bool isIdempotentRMW(AtomicRMWInst *RMWI); bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand, Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls); void expandAtomicLoadToLibcall(LoadInst *LI); void expandAtomicStoreToLibcall(StoreInst *LI); void expandAtomicRMWToLibcall(AtomicRMWInst *I); void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); friend bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, CreateCmpXchgInstFun CreateCmpXchg); }; } // end anonymous namespace char AtomicExpand::ID = 0; char &llvm::AtomicExpandID = AtomicExpand::ID; INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", false, false) FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } // Helper functions to retrieve the size of atomic instructions. static unsigned getAtomicOpSize(LoadInst *LI) { const DataLayout &DL = LI->getModule()->getDataLayout(); return DL.getTypeStoreSize(LI->getType()); } static unsigned getAtomicOpSize(StoreInst *SI) { const DataLayout &DL = SI->getModule()->getDataLayout(); return DL.getTypeStoreSize(SI->getValueOperand()->getType()); } static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { const DataLayout &DL = RMWI->getModule()->getDataLayout(); return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); } static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { const DataLayout &DL = CASI->getModule()->getDataLayout(); return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); } // Helper functions to retrieve the alignment of atomic instructions. static unsigned getAtomicOpAlign(LoadInst *LI) { unsigned Align = LI->getAlignment(); // In the future, if this IR restriction is relaxed, we should // return DataLayout::getABITypeAlignment when there's no align // value. assert(Align != 0 && "An atomic LoadInst always has an explicit alignment"); return Align; } static unsigned getAtomicOpAlign(StoreInst *SI) { unsigned Align = SI->getAlignment(); // In the future, if this IR restriction is relaxed, we should // return DataLayout::getABITypeAlignment when there's no align // value. assert(Align != 0 && "An atomic StoreInst always has an explicit alignment"); return Align; } static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) { // TODO(PR27168): This instruction has no alignment attribute, but unlike the // default alignment for load/store, the default here is to assume // it has NATURAL alignment, not DataLayout-specified alignment. const DataLayout &DL = RMWI->getModule()->getDataLayout(); return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); } static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) { // TODO(PR27168): same comment as above. const DataLayout &DL = CASI->getModule()->getDataLayout(); return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); } // Determine if a particular atomic operation has a supported size, // and is of appropriate alignment, to be passed through for target // lowering. (Versus turning into a __atomic libcall) template <typename Inst> static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { unsigned Size = getAtomicOpSize(I); unsigned Align = getAtomicOpAlign(I); return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; } bool AtomicExpand::runOnFunction(Function &F) { auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); if (!TPC) return false; auto &TM = TPC->getTM<TargetMachine>(); if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) return false; TLI = TM.getSubtargetImpl(F)->getTargetLowering(); SmallVector<Instruction *, 1> AtomicInsts; // Changing control-flow while iterating through it is a bad idea, so gather a // list of all atomic instructions before we start. for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { Instruction *I = &*II; if (I->isAtomic() && !isa<FenceInst>(I)) AtomicInsts.push_back(I); } bool MadeChange = false; for (auto I : AtomicInsts) { auto LI = dyn_cast<LoadInst>(I); auto SI = dyn_cast<StoreInst>(I); auto RMWI = dyn_cast<AtomicRMWInst>(I); auto CASI = dyn_cast<AtomicCmpXchgInst>(I); assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); // If the Size/Alignment is not supported, replace with a libcall. if (LI) { if (!atomicSizeSupported(TLI, LI)) { expandAtomicLoadToLibcall(LI); MadeChange = true; continue; } } else if (SI) { if (!atomicSizeSupported(TLI, SI)) { expandAtomicStoreToLibcall(SI); MadeChange = true; continue; } } else if (RMWI) { if (!atomicSizeSupported(TLI, RMWI)) { expandAtomicRMWToLibcall(RMWI); MadeChange = true; continue; } } else if (CASI) { if (!atomicSizeSupported(TLI, CASI)) { expandAtomicCASToLibcall(CASI); MadeChange = true; continue; } } if (TLI->shouldInsertFencesForAtomic(I)) { auto FenceOrdering = AtomicOrdering::Monotonic; if (LI && isAcquireOrStronger(LI->getOrdering())) { FenceOrdering = LI->getOrdering(); LI->setOrdering(AtomicOrdering::Monotonic); } else if (SI && isReleaseOrStronger(SI->getOrdering())) { FenceOrdering = SI->getOrdering(); SI->setOrdering(AtomicOrdering::Monotonic); } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || isAcquireOrStronger(RMWI->getOrdering()))) { FenceOrdering = RMWI->getOrdering(); RMWI->setOrdering(AtomicOrdering::Monotonic); } else if (CASI && !TLI->shouldExpandAtomicCmpXchgInIR(CASI) && (isReleaseOrStronger(CASI->getSuccessOrdering()) || isAcquireOrStronger(CASI->getSuccessOrdering()))) { // If a compare and swap is lowered to LL/SC, we can do smarter fence // insertion, with a stronger one on the success path than on the // failure path. As a result, fence insertion is directly done by // expandAtomicCmpXchg in that case. FenceOrdering = CASI->getSuccessOrdering(); CASI->setSuccessOrdering(AtomicOrdering::Monotonic); CASI->setFailureOrdering(AtomicOrdering::Monotonic); } if (FenceOrdering != AtomicOrdering::Monotonic) { MadeChange |= bracketInstWithFences(I, FenceOrdering); } } if (LI) { if (LI->getType()->isFloatingPointTy()) { // TODO: add a TLI hook to control this so that each target can // convert to lowering the original type one at a time. LI = convertAtomicLoadToIntegerType(LI); assert(LI->getType()->isIntegerTy() && "invariant broken"); MadeChange = true; } MadeChange |= tryExpandAtomicLoad(LI); } else if (SI) { if (SI->getValueOperand()->getType()->isFloatingPointTy()) { // TODO: add a TLI hook to control this so that each target can // convert to lowering the original type one at a time. SI = convertAtomicStoreToIntegerType(SI); assert(SI->getValueOperand()->getType()->isIntegerTy() && "invariant broken"); MadeChange = true; } if (TLI->shouldExpandAtomicStoreInIR(SI)) MadeChange |= expandAtomicStore(SI); } else if (RMWI) { // There are two different ways of expanding RMW instructions: // - into a load if it is idempotent // - into a Cmpxchg/LL-SC loop otherwise // we try them in that order. if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { MadeChange = true; } else { MadeChange |= tryExpandAtomicRMW(RMWI); } } else if (CASI) { // TODO: when we're ready to make the change at the IR level, we can // extend convertCmpXchgToInteger for floating point too. assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && "unimplemented - floating point not legal at IR level"); if (CASI->getCompareOperand()->getType()->isPointerTy() ) { // TODO: add a TLI hook to control this so that each target can // convert to lowering the original type one at a time. CASI = convertCmpXchgToIntegerType(CASI); assert(CASI->getCompareOperand()->getType()->isIntegerTy() && "invariant broken"); MadeChange = true; } unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; unsigned ValueSize = getAtomicOpSize(CASI); if (ValueSize < MinCASSize) { assert(!TLI->shouldExpandAtomicCmpXchgInIR(CASI) && "MinCmpXchgSizeInBits not yet supported for LL/SC expansions."); expandPartwordCmpXchg(CASI); } else { if (TLI->shouldExpandAtomicCmpXchgInIR(CASI)) MadeChange |= expandAtomicCmpXchg(CASI); } } } return MadeChange; } bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { IRBuilder<> Builder(I); auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); // We have a guard here because not every atomic operation generates a // trailing fence. if (TrailingFence) TrailingFence->moveAfter(I); return (LeadingFence || TrailingFence); } /// Get the iX type with the same bitwidth as T. IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, const DataLayout &DL) { EVT VT = TLI->getValueType(DL, T); unsigned BitWidth = VT.getStoreSizeInBits(); assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); return IntegerType::get(T->getContext(), BitWidth); } /// Convert an atomic load of a non-integral type to an integer load of the /// equivalent bitwidth. See the function comment on /// convertAtomicStoreToIntegerType for background. LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { auto *M = LI->getModule(); Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout()); IRBuilder<> Builder(LI); Value *Addr = LI->getPointerOperand(); Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); Value *NewAddr = Builder.CreateBitCast(Addr, PT); auto *NewLI = Builder.CreateLoad(NewAddr); NewLI->setAlignment(LI->getAlignment()); NewLI->setVolatile(LI->isVolatile()); NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); LI->replaceAllUsesWith(NewVal); LI->eraseFromParent(); return NewLI; } bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { switch (TLI->shouldExpandAtomicLoadInIR(LI)) { case TargetLoweringBase::AtomicExpansionKind::None: return false; case TargetLoweringBase::AtomicExpansionKind::LLSC: expandAtomicOpToLLSC( LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(), [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); return true; case TargetLoweringBase::AtomicExpansionKind::LLOnly: return expandAtomicLoadToLL(LI); case TargetLoweringBase::AtomicExpansionKind::CmpXChg: return expandAtomicLoadToCmpXchg(LI); } llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); } bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { IRBuilder<> Builder(LI); // On some architectures, load-linked instructions are atomic for larger // sizes than normal loads. For example, the only 64-bit load guaranteed // to be single-copy atomic by ARM is an ldrexd (A3.5.3). Value *Val = TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); LI->replaceAllUsesWith(Val); LI->eraseFromParent(); return true; } bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { IRBuilder<> Builder(LI); AtomicOrdering Order = LI->getOrdering(); Value *Addr = LI->getPointerOperand(); Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); Constant *DummyVal = Constant::getNullValue(Ty); Value *Pair = Builder.CreateAtomicCmpXchg( Addr, DummyVal, DummyVal, Order, AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); LI->replaceAllUsesWith(Loaded); LI->eraseFromParent(); return true; } /// Convert an atomic store of a non-integral type to an integer store of the /// equivalent bitwidth. We used to not support floating point or vector /// atomics in the IR at all. The backends learned to deal with the bitcast /// idiom because that was the only way of expressing the notion of a atomic /// float or vector store. The long term plan is to teach each backend to /// instruction select from the original atomic store, but as a migration /// mechanism, we convert back to the old format which the backends understand. /// Each backend will need individual work to recognize the new format. StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { IRBuilder<> Builder(SI); auto *M = SI->getModule(); Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), M->getDataLayout()); Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); Value *Addr = SI->getPointerOperand(); Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); Value *NewAddr = Builder.CreateBitCast(Addr, PT); StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); NewSI->setAlignment(SI->getAlignment()); NewSI->setVolatile(SI->isVolatile()); NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); SI->eraseFromParent(); return NewSI; } bool AtomicExpand::expandAtomicStore(StoreInst *SI) { // This function is only called on atomic stores that are too large to be // atomic if implemented as a native store. So we replace them by an // atomic swap, that can be implemented for example as a ldrex/strex on ARM // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. // It is the responsibility of the target to only signal expansion via // shouldExpandAtomicRMW in cases where this is required and possible. IRBuilder<> Builder(SI); AtomicRMWInst *AI = Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), SI->getOrdering()); SI->eraseFromParent(); // Now we have an appropriate swap instruction, lower it as usual. return tryExpandAtomicRMW(AI); } static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, Value *Loaded, Value *NewVal, AtomicOrdering MemOpOrder, Value *&Success, Value *&NewLoaded) { Value* Pair = Builder.CreateAtomicCmpXchg( Addr, Loaded, NewVal, MemOpOrder, AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); Success = Builder.CreateExtractValue(Pair, 1, "success"); NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); } /// Emit IR to implement the given atomicrmw operation on values in registers, /// returning the new value. static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, Value *Loaded, Value *Inc) { Value *NewVal; switch (Op) { case AtomicRMWInst::Xchg: return Inc; case AtomicRMWInst::Add: return Builder.CreateAdd(Loaded, Inc, "new"); case AtomicRMWInst::Sub: return Builder.CreateSub(Loaded, Inc, "new"); case AtomicRMWInst::And: return Builder.CreateAnd(Loaded, Inc, "new"); case AtomicRMWInst::Nand: return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); case AtomicRMWInst::Or: return Builder.CreateOr(Loaded, Inc, "new"); case AtomicRMWInst::Xor: return Builder.CreateXor(Loaded, Inc, "new"); case AtomicRMWInst::Max: NewVal = Builder.CreateICmpSGT(Loaded, Inc); return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); case AtomicRMWInst::Min: NewVal = Builder.CreateICmpSLE(Loaded, Inc); return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); case AtomicRMWInst::UMax: NewVal = Builder.CreateICmpUGT(Loaded, Inc); return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); case AtomicRMWInst::UMin: NewVal = Builder.CreateICmpULE(Loaded, Inc); return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); default: llvm_unreachable("Unknown atomic op"); } } bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { switch (TLI->shouldExpandAtomicRMWInIR(AI)) { case TargetLoweringBase::AtomicExpansionKind::None: return false; case TargetLoweringBase::AtomicExpansionKind::LLSC: { unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; unsigned ValueSize = getAtomicOpSize(AI); if (ValueSize < MinCASSize) { llvm_unreachable( "MinCmpXchgSizeInBits not yet supported for LL/SC architectures."); } else { auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { return performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); }; expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), AI->getOrdering(), PerformOp); } return true; } case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; unsigned ValueSize = getAtomicOpSize(AI); if (ValueSize < MinCASSize) { expandPartwordAtomicRMW(AI, TargetLoweringBase::AtomicExpansionKind::CmpXChg); } else { expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); } return true; } default: llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); } } namespace { /// Result values from createMaskInstrs helper. struct PartwordMaskValues { Type *WordType; Type *ValueType; Value *AlignedAddr; Value *ShiftAmt; Value *Mask; Value *Inv_Mask; }; } // end anonymous namespace /// This is a helper function which builds instructions to provide /// values necessary for partword atomic operations. It takes an /// incoming address, Addr, and ValueType, and constructs the address, /// shift-amounts and masks needed to work with a larger value of size /// WordSize. /// /// AlignedAddr: Addr rounded down to a multiple of WordSize /// /// ShiftAmt: Number of bits to right-shift a WordSize value loaded /// from AlignAddr for it to have the same value as if /// ValueType was loaded from Addr. /// /// Mask: Value to mask with the value loaded from AlignAddr to /// include only the part that would've been loaded from Addr. /// /// Inv_Mask: The inverse of Mask. static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, Type *ValueType, Value *Addr, unsigned WordSize) { PartwordMaskValues Ret; BasicBlock *BB = I->getParent(); Function *F = BB->getParent(); Module *M = I->getModule(); LLVMContext &Ctx = F->getContext(); const DataLayout &DL = M->getDataLayout(); unsigned ValueSize = DL.getTypeStoreSize(ValueType); assert(ValueSize < WordSize); Ret.ValueType = ValueType; Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8); Type *WordPtrType = Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); Ret.AlignedAddr = Builder.CreateIntToPtr( Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType, "AlignedAddr"); Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB"); if (DL.isLittleEndian()) { // turn bytes into bits Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3); } else { // turn bytes into bits, and count from the other side. Ret.ShiftAmt = Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3); } Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt"); Ret.Mask = Builder.CreateShl( ConstantInt::get(Ret.WordType, (1 << ValueSize * 8) - 1), Ret.ShiftAmt, "Mask"); Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask"); return Ret; } /// Emit IR to implement a masked version of a given atomicrmw /// operation. (That is, only the bits under the Mask should be /// affected by the operation) static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, Value *Loaded, Value *Shifted_Inc, Value *Inc, const PartwordMaskValues &PMV) { switch (Op) { case AtomicRMWInst::Xchg: { Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); return FinalVal; } case AtomicRMWInst::Or: case AtomicRMWInst::Xor: // Or/Xor won't affect any other bits, so can just be done // directly. return performAtomicOp(Op, Builder, Loaded, Shifted_Inc); case AtomicRMWInst::Add: case AtomicRMWInst::Sub: case AtomicRMWInst::And: case AtomicRMWInst::Nand: { // The other arithmetic ops need to be masked into place. Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); return FinalVal; } case AtomicRMWInst::Max: case AtomicRMWInst::Min: case AtomicRMWInst::UMax: case AtomicRMWInst::UMin: { // Finally, comparison ops will operate on the full value, so // truncate down to the original size, and expand out again after // doing the operation. Value *Loaded_Shiftdown = Builder.CreateTrunc( Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType); Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc); Value *NewVal_Shiftup = Builder.CreateShl( Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup); return FinalVal; } default: llvm_unreachable("Unknown atomic op"); } } /// Expand a sub-word atomicrmw operation into an appropriate /// word-sized operation. /// /// It will create an LL/SC or cmpxchg loop, as appropriate, the same /// way as a typical atomicrmw expansion. The only difference here is /// that the operation inside of the loop must operate only upon a /// part of the value. void AtomicExpand::expandPartwordAtomicRMW( AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg); AtomicOrdering MemOpOrder = AI->getOrdering(); IRBuilder<> Builder(AI); PartwordMaskValues PMV = createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), TLI->getMinCmpXchgSizeInBits() / 8); Value *ValOperand_Shifted = Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), PMV.ShiftAmt, "ValOperand_Shifted"); auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, ValOperand_Shifted, AI->getValOperand(), PMV); }; // TODO: When we're ready to support LLSC conversions too, use // insertRMWLLSCLoop here for ExpansionKind==LLSC. Value *OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder, PerformPartwordOp, createCmpXchgInstFun); Value *FinalOldResult = Builder.CreateTrunc( Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType); AI->replaceAllUsesWith(FinalOldResult); AI->eraseFromParent(); } void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { // The basic idea here is that we're expanding a cmpxchg of a // smaller memory size up to a word-sized cmpxchg. To do this, we // need to add a retry-loop for strong cmpxchg, so that // modifications to other parts of the word don't cause a spurious // failure. // This generates code like the following: // [[Setup mask values PMV.*]] // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt // %InitLoaded = load i32* %addr // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask // br partword.cmpxchg.loop // partword.cmpxchg.loop: // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, // i32 %FullWord_NewVal success_ordering failure_ordering // %OldVal = extractvalue { i32, i1 } %NewCI, 0 // %Success = extractvalue { i32, i1 } %NewCI, 1 // br i1 %Success, label %partword.cmpxchg.end, // label %partword.cmpxchg.failure // partword.cmpxchg.failure: // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut // br i1 %ShouldContinue, label %partword.cmpxchg.loop, // label %partword.cmpxchg.end // partword.cmpxchg.end: // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt // %FinalOldVal = trunc i32 %tmp1 to i8 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 Value *Addr = CI->getPointerOperand(); Value *Cmp = CI->getCompareOperand(); Value *NewVal = CI->getNewValOperand(); BasicBlock *BB = CI->getParent(); Function *F = BB->getParent(); IRBuilder<> Builder(CI); LLVMContext &Ctx = Builder.getContext(); const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8; BasicBlock *EndBB = BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); auto FailureBB = BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); // The split call above "helpfully" added a branch at the end of BB // (to the wrong place). std::prev(BB->end())->eraseFromParent(); Builder.SetInsertPoint(BB); PartwordMaskValues PMV = createMaskInstrs( Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize); // Shift the incoming values over, into the right location in the word. Value *NewVal_Shifted = Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); Value *Cmp_Shifted = Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); // Load the entire current word, and mask into place the expected and new // values LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); InitLoaded->setVolatile(CI->isVolatile()); Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); Builder.CreateBr(LoopBB); // partword.cmpxchg.loop: Builder.SetInsertPoint(LoopBB); PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); // Mask/Or the expected and new values into place in the loaded word. Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); NewCI->setVolatile(CI->isVolatile()); // When we're building a strong cmpxchg, we need a loop, so you // might think we could use a weak cmpxchg inside. But, using strong // allows the below comparison for ShouldContinue, and we're // expecting the underlying cmpxchg to be a machine instruction, // which is strong anyways. NewCI->setWeak(CI->isWeak()); Value *OldVal = Builder.CreateExtractValue(NewCI, 0); Value *Success = Builder.CreateExtractValue(NewCI, 1); if (CI->isWeak()) Builder.CreateBr(EndBB); else Builder.CreateCondBr(Success, EndBB, FailureBB); // partword.cmpxchg.failure: Builder.SetInsertPoint(FailureBB); // Upon failure, verify that the masked-out part of the loaded value // has been modified. If it didn't, abort the cmpxchg, since the // masked-in part must've. Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); // Add the second value to the phi from above Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); // partword.cmpxchg.end: Builder.SetInsertPoint(CI); Value *FinalOldVal = Builder.CreateTrunc( Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType); Value *Res = UndefValue::get(CI->getType()); Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); Res = Builder.CreateInsertValue(Res, Success, 1); CI->replaceAllUsesWith(Res); CI->eraseFromParent(); } void AtomicExpand::expandAtomicOpToLLSC( Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder, function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { IRBuilder<> Builder(I); Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp); I->replaceAllUsesWith(Loaded); I->eraseFromParent(); } Value *AtomicExpand::insertRMWLLSCLoop( IRBuilder<> &Builder, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder, function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { LLVMContext &Ctx = Builder.getContext(); BasicBlock *BB = Builder.GetInsertBlock(); Function *F = BB->getParent(); // Given: atomicrmw some_op iN* %addr, iN %incr ordering // // The standard expansion we produce is: // [...] // atomicrmw.start: // %loaded = @load.linked(%addr) // %new = some_op iN %loaded, %incr // %stored = @store_conditional(%new, %addr) // %try_again = icmp i32 ne %stored, 0 // br i1 %try_again, label %loop, label %atomicrmw.end // atomicrmw.end: // [...] BasicBlock *ExitBB = BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); // The split call above "helpfully" added a branch at the end of BB (to the // wrong place). std::prev(BB->end())->eraseFromParent(); Builder.SetInsertPoint(BB); Builder.CreateBr(LoopBB); // Start the main loop block now that we've taken care of the preliminaries. Builder.SetInsertPoint(LoopBB); Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); Value *NewVal = PerformOp(Builder, Loaded); Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); Value *TryAgain = Builder.CreateICmpNE( StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); Builder.SetInsertPoint(ExitBB, ExitBB->begin()); return Loaded; } /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of /// the equivalent bitwidth. We used to not support pointer cmpxchg in the /// IR. As a migration step, we convert back to what use to be the standard /// way to represent a pointer cmpxchg so that we can update backends one by /// one. AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { auto *M = CI->getModule(); Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), M->getDataLayout()); IRBuilder<> Builder(CI); Value *Addr = CI->getPointerOperand(); Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); Value *NewAddr = Builder.CreateBitCast(Addr, PT); Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal, CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); NewCI->setVolatile(CI->isVolatile()); NewCI->setWeak(CI->isWeak()); LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); Value *OldVal = Builder.CreateExtractValue(NewCI, 0); Value *Succ = Builder.CreateExtractValue(NewCI, 1); OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); Value *Res = UndefValue::get(CI->getType()); Res = Builder.CreateInsertValue(Res, OldVal, 0); Res = Builder.CreateInsertValue(Res, Succ, 1); CI->replaceAllUsesWith(Res); CI->eraseFromParent(); return NewCI; } bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); AtomicOrdering FailureOrder = CI->getFailureOrdering(); Value *Addr = CI->getPointerOperand(); BasicBlock *BB = CI->getParent(); Function *F = BB->getParent(); LLVMContext &Ctx = F->getContext(); // If shouldInsertFencesForAtomic() returns true, then the target does not // want to deal with memory orders, and emitLeading/TrailingFence should take // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we // should preserve the ordering. bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder; // In implementations which use a barrier to achieve release semantics, we can // delay emitting this barrier until we know a store is actually going to be // attempted. The cost of this delay is that we need 2 copies of the block // emitting the load-linked, affecting code size. // // Ideally, this logic would be unconditional except for the minsize check // since in other cases the extra blocks naturally collapse down to the // minimal loop. Unfortunately, this puts too much stress on later // optimisations so we avoid emitting the extra logic in those cases too. bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && SuccessOrder != AtomicOrdering::Monotonic && SuccessOrder != AtomicOrdering::Acquire && !F->optForMinSize(); // There's no overhead for sinking the release barrier in a weak cmpxchg, so // do it even on minsize. bool UseUnconditionalReleaseBarrier = F->optForMinSize() && !CI->isWeak(); // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord // // The full expansion we produce is: // [...] // cmpxchg.start: // %unreleasedload = @load.linked(%addr) // %should_store = icmp eq %unreleasedload, %desired // br i1 %should_store, label %cmpxchg.fencedstore, // label %cmpxchg.nostore // cmpxchg.releasingstore: // fence? // br label cmpxchg.trystore // cmpxchg.trystore: // %loaded.trystore = phi [%unreleasedload, %releasingstore], // [%releasedload, %cmpxchg.releasedload] // %stored = @store_conditional(%new, %addr) // %success = icmp eq i32 %stored, 0 // br i1 %success, label %cmpxchg.success, // label %cmpxchg.releasedload/%cmpxchg.failure // cmpxchg.releasedload: // %releasedload = @load.linked(%addr) // %should_store = icmp eq %releasedload, %desired // br i1 %should_store, label %cmpxchg.trystore, // label %cmpxchg.failure // cmpxchg.success: // fence? // br label %cmpxchg.end // cmpxchg.nostore: // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], // [%releasedload, // %cmpxchg.releasedload/%cmpxchg.trystore] // @load_linked_fail_balance()? // br label %cmpxchg.failure // cmpxchg.failure: // fence? // br label %cmpxchg.end // cmpxchg.end: // %loaded = phi [%loaded.nostore, %cmpxchg.failure], // [%loaded.trystore, %cmpxchg.trystore] // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 // [...] BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); auto ReleasedLoadBB = BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); auto ReleasingStoreBB = BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); // This grabs the DebugLoc from CI IRBuilder<> Builder(CI); // The split call above "helpfully" added a branch at the end of BB (to the // wrong place), but we might want a fence too. It's easiest to just remove // the branch entirely. std::prev(BB->end())->eraseFromParent(); Builder.SetInsertPoint(BB); if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) TLI->emitLeadingFence(Builder, CI, SuccessOrder); Builder.CreateBr(StartBB); // Start the main loop block now that we've taken care of the preliminaries. Builder.SetInsertPoint(StartBB); Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); Value *ShouldStore = Builder.CreateICmpEQ( UnreleasedLoad, CI->getCompareOperand(), "should_store"); // If the cmpxchg doesn't actually need any ordering when it fails, we can // jump straight past that fence instruction (if it exists). Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); Builder.SetInsertPoint(ReleasingStoreBB); if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) TLI->emitLeadingFence(Builder, CI, SuccessOrder); Builder.CreateBr(TryStoreBB); Builder.SetInsertPoint(TryStoreBB); Value *StoreSuccess = TLI->emitStoreConditional( Builder, CI->getNewValOperand(), Addr, MemOpOrder); StoreSuccess = Builder.CreateICmpEQ( StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; Builder.CreateCondBr(StoreSuccess, SuccessBB, CI->isWeak() ? FailureBB : RetryBB); Builder.SetInsertPoint(ReleasedLoadBB); Value *SecondLoad; if (HasReleasedLoadBB) { SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(), "should_store"); // If the cmpxchg doesn't actually need any ordering when it fails, we can // jump straight past that fence instruction (if it exists). Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); } else Builder.CreateUnreachable(); // Make sure later instructions don't get reordered with a fence if // necessary. Builder.SetInsertPoint(SuccessBB); if (ShouldInsertFencesForAtomic) TLI->emitTrailingFence(Builder, CI, SuccessOrder); Builder.CreateBr(ExitBB); Builder.SetInsertPoint(NoStoreBB); // In the failing case, where we don't execute the store-conditional, the // target might want to balance out the load-linked with a dedicated // instruction (e.g., on ARM, clearing the exclusive monitor). TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); Builder.CreateBr(FailureBB); Builder.SetInsertPoint(FailureBB); if (ShouldInsertFencesForAtomic) TLI->emitTrailingFence(Builder, CI, FailureOrder); Builder.CreateBr(ExitBB); // Finally, we have control-flow based knowledge of whether the cmpxchg // succeeded or not. We expose this to later passes by converting any // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate // PHI. Builder.SetInsertPoint(ExitBB, ExitBB->begin()); PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); // Setup the builder so we can create any PHIs we need. Value *Loaded; if (!HasReleasedLoadBB) Loaded = UnreleasedLoad; else { Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin()); PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB); TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin()); PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB); NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); Builder.SetInsertPoint(ExitBB, ++ExitBB->begin()); PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB); ExitLoaded->addIncoming(NoStoreLoaded, FailureBB); Loaded = ExitLoaded; } // Look for any users of the cmpxchg that are just comparing the loaded value // against the desired one, and replace them with the CFG-derived version. SmallVector<ExtractValueInst *, 2> PrunedInsts; for (auto User : CI->users()) { ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); if (!EV) continue; assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && "weird extraction from { iN, i1 }"); if (EV->getIndices()[0] == 0) EV->replaceAllUsesWith(Loaded); else EV->replaceAllUsesWith(Success); PrunedInsts.push_back(EV); } // We can remove the instructions now we're no longer iterating through them. for (auto EV : PrunedInsts) EV->eraseFromParent(); if (!CI->use_empty()) { // Some use of the full struct return that we don't understand has happened, // so we've got to reconstruct it properly. Value *Res; Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); Res = Builder.CreateInsertValue(Res, Success, 1); CI->replaceAllUsesWith(Res); } CI->eraseFromParent(); return true; } bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); if(!C) return false; AtomicRMWInst::BinOp Op = RMWI->getOperation(); switch(Op) { case AtomicRMWInst::Add: case AtomicRMWInst::Sub: case AtomicRMWInst::Or: case AtomicRMWInst::Xor: return C->isZero(); case AtomicRMWInst::And: return C->isMinusOne(); // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... default: return false; } } bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { tryExpandAtomicLoad(ResultingLoad); return true; } return false; } Value *AtomicExpand::insertRMWCmpXchgLoop( IRBuilder<> &Builder, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder, function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, CreateCmpXchgInstFun CreateCmpXchg) { LLVMContext &Ctx = Builder.getContext(); BasicBlock *BB = Builder.GetInsertBlock(); Function *F = BB->getParent(); // Given: atomicrmw some_op iN* %addr, iN %incr ordering // // The standard expansion we produce is: // [...] // %init_loaded = load atomic iN* %addr // br label %loop // loop: // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] // %new = some_op iN %loaded, %incr // %pair = cmpxchg iN* %addr, iN %loaded, iN %new // %new_loaded = extractvalue { iN, i1 } %pair, 0 // %success = extractvalue { iN, i1 } %pair, 1 // br i1 %success, label %atomicrmw.end, label %loop // atomicrmw.end: // [...] BasicBlock *ExitBB = BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); // The split call above "helpfully" added a branch at the end of BB (to the // wrong place), but we want a load. It's easiest to just remove // the branch entirely. std::prev(BB->end())->eraseFromParent(); Builder.SetInsertPoint(BB); LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr); // Atomics require at least natural alignment. InitLoaded->setAlignment(ResultTy->getPrimitiveSizeInBits() / 8); Builder.CreateBr(LoopBB); // Start the main loop block now that we've taken care of the preliminaries. Builder.SetInsertPoint(LoopBB); PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); Loaded->addIncoming(InitLoaded, BB); Value *NewVal = PerformOp(Builder, Loaded); Value *NewLoaded = nullptr; Value *Success = nullptr; CreateCmpXchg(Builder, Addr, Loaded, NewVal, MemOpOrder == AtomicOrdering::Unordered ? AtomicOrdering::Monotonic : MemOpOrder, Success, NewLoaded); assert(Success && NewLoaded); Loaded->addIncoming(NewLoaded, LoopBB); Builder.CreateCondBr(Success, ExitBB, LoopBB); Builder.SetInsertPoint(ExitBB, ExitBB->begin()); return NewLoaded; } // Note: This function is exposed externally by AtomicExpandUtils.h bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, CreateCmpXchgInstFun CreateCmpXchg) { IRBuilder<> Builder(AI); Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(), [&](IRBuilder<> &Builder, Value *Loaded) { return performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); }, CreateCmpXchg); AI->replaceAllUsesWith(Loaded); AI->eraseFromParent(); return true; } // In order to use one of the sized library calls such as // __atomic_fetch_add_4, the alignment must be sufficient, the size // must be one of the potentially-specialized sizes, and the value // type must actually exist in C on the target (otherwise, the // function wouldn't actually be defined.) static bool canUseSizedAtomicCall(unsigned Size, unsigned Align, const DataLayout &DL) { // TODO: "LargestSize" is an approximation for "largest type that // you can express in C". It seems to be the case that int128 is // supported on all 64-bit platforms, otherwise only up to 64-bit // integers are supported. If we get this wrong, then we'll try to // call a sized libcall that doesn't actually exist. There should // really be some more reliable way in LLVM of determining integer // sizes which are valid in the target's C ABI... unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; return Align >= Size && (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && Size <= LargestSize; } void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { static const RTLIB::Libcall Libcalls[6] = { RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; unsigned Size = getAtomicOpSize(I); unsigned Align = getAtomicOpAlign(I); bool expanded = expandAtomicOpToLibcall( I, Size, Align, I->getPointerOperand(), nullptr, nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); (void)expanded; assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load"); } void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { static const RTLIB::Libcall Libcalls[6] = { RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; unsigned Size = getAtomicOpSize(I); unsigned Align = getAtomicOpAlign(I); bool expanded = expandAtomicOpToLibcall( I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); (void)expanded; assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store"); } void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { static const RTLIB::Libcall Libcalls[6] = { RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; unsigned Size = getAtomicOpSize(I); unsigned Align = getAtomicOpAlign(I); bool expanded = expandAtomicOpToLibcall( I, Size, Align, I->getPointerOperand(), I->getNewValOperand(), I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), Libcalls); (void)expanded; assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS"); } static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { static const RTLIB::Libcall LibcallsXchg[6] = { RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; static const RTLIB::Libcall LibcallsAdd[6] = { RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; static const RTLIB::Libcall LibcallsSub[6] = { RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; static const RTLIB::Libcall LibcallsAnd[6] = { RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; static const RTLIB::Libcall LibcallsOr[6] = { RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; static const RTLIB::Libcall LibcallsXor[6] = { RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; static const RTLIB::Libcall LibcallsNand[6] = { RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; switch (Op) { case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Should not have BAD_BINOP."); case AtomicRMWInst::Xchg: return makeArrayRef(LibcallsXchg); case AtomicRMWInst::Add: return makeArrayRef(LibcallsAdd); case AtomicRMWInst::Sub: return makeArrayRef(LibcallsSub); case AtomicRMWInst::And: return makeArrayRef(LibcallsAnd); case AtomicRMWInst::Or: return makeArrayRef(LibcallsOr); case AtomicRMWInst::Xor: return makeArrayRef(LibcallsXor); case AtomicRMWInst::Nand: return makeArrayRef(LibcallsNand); case AtomicRMWInst::Max: case AtomicRMWInst::Min: case AtomicRMWInst::UMax: case AtomicRMWInst::UMin: // No atomic libcalls are available for max/min/umax/umin. return {}; } llvm_unreachable("Unexpected AtomicRMW operation."); } void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); unsigned Size = getAtomicOpSize(I); unsigned Align = getAtomicOpAlign(I); bool Success = false; if (!Libcalls.empty()) Success = expandAtomicOpToLibcall( I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); // The expansion failed: either there were no libcalls at all for // the operation (min/max), or there were only size-specialized // libcalls (add/sub/etc) and we needed a generic. So, expand to a // CAS libcall, via a CAS loop, instead. if (!Success) { expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded, Value *NewVal, AtomicOrdering MemOpOrder, Value *&Success, Value *&NewLoaded) { // Create the CAS instruction normally... AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( Addr, Loaded, NewVal, MemOpOrder, AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); Success = Builder.CreateExtractValue(Pair, 1, "success"); NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); // ...and then expand the CAS into a libcall. expandAtomicCASToLibcall(Pair); }); } } // A helper routine for the above expandAtomic*ToLibcall functions. // // 'Libcalls' contains an array of enum values for the particular // ATOMIC libcalls to be emitted. All of the other arguments besides // 'I' are extracted from the Instruction subclass by the // caller. Depending on the particular call, some will be null. bool AtomicExpand::expandAtomicOpToLibcall( Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand, Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { assert(Libcalls.size() == 6); LLVMContext &Ctx = I->getContext(); Module *M = I->getModule(); const DataLayout &DL = M->getDataLayout(); IRBuilder<> Builder(I); IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL); Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy); // TODO: the "order" argument type is "int", not int32. So // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); Constant *OrderingVal = ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); Constant *Ordering2Val = nullptr; if (CASExpected) { assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); Ordering2Val = ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); } bool HasResult = I->getType() != Type::getVoidTy(Ctx); RTLIB::Libcall RTLibType; if (UseSizedLibcall) { switch (Size) { case 1: RTLibType = Libcalls[1]; break; case 2: RTLibType = Libcalls[2]; break; case 4: RTLibType = Libcalls[3]; break; case 8: RTLibType = Libcalls[4]; break; case 16: RTLibType = Libcalls[5]; break; } } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { RTLibType = Libcalls[0]; } else { // Can't use sized function, and there's no generic for this // operation, so give up. return false; } // Build up the function call. There's two kinds. First, the sized // variants. These calls are going to be one of the following (with // N=1,2,4,8,16): // iN __atomic_load_N(iN *ptr, int ordering) // void __atomic_store_N(iN *ptr, iN val, int ordering) // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, // int success_order, int failure_order) // // Note that these functions can be used for non-integer atomic // operations, the values just need to be bitcast to integers on the // way in and out. // // And, then, the generic variants. They look like the following: // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) // void __atomic_store(size_t size, void *ptr, void *val, int ordering) // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, // int ordering) // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, // void *desired, int success_order, // int failure_order) // // The different signatures are built up depending on the // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' // variables. AllocaInst *AllocaCASExpected = nullptr; Value *AllocaCASExpected_i8 = nullptr; AllocaInst *AllocaValue = nullptr; Value *AllocaValue_i8 = nullptr; AllocaInst *AllocaResult = nullptr; Value *AllocaResult_i8 = nullptr; Type *ResultTy; SmallVector<Value *, 6> Args; AttributeList Attr; // 'size' argument. if (!UseSizedLibcall) { // Note, getIntPtrType is assumed equivalent to size_t. Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); } // 'ptr' argument. Value *PtrVal = Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx)); Args.push_back(PtrVal); // 'expected' argument, if present. if (CASExpected) { AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); AllocaCASExpected->setAlignment(AllocaAlignment); AllocaCASExpected_i8 = Builder.CreateBitCast(AllocaCASExpected, Type::getInt8PtrTy(Ctx)); Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); Args.push_back(AllocaCASExpected_i8); } // 'val' argument ('desired' for cas), if present. if (ValueOperand) { if (UseSizedLibcall) { Value *IntValue = Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); Args.push_back(IntValue); } else { AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); AllocaValue->setAlignment(AllocaAlignment); AllocaValue_i8 = Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); Args.push_back(AllocaValue_i8); } } // 'ret' argument. if (!CASExpected && HasResult && !UseSizedLibcall) { AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); AllocaResult->setAlignment(AllocaAlignment); AllocaResult_i8 = Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx)); Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); Args.push_back(AllocaResult_i8); } // 'ordering' ('success_order' for cas) argument. Args.push_back(OrderingVal); // 'failure_order' argument, if present. if (Ordering2Val) Args.push_back(Ordering2Val); // Now, the return type. if (CASExpected) { ResultTy = Type::getInt1Ty(Ctx); Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt); } else if (HasResult && UseSizedLibcall) ResultTy = SizedIntTy; else ResultTy = Type::getVoidTy(Ctx); // Done with setting up arguments and return types, create the call: SmallVector<Type *, 6> ArgTys; for (Value *Arg : Args) ArgTys.push_back(Arg->getType()); FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); Constant *LibcallFn = M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); CallInst *Call = Builder.CreateCall(LibcallFn, Args); Call->setAttributes(Attr); Value *Result = Call; // And then, extract the results... if (ValueOperand && !UseSizedLibcall) Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); if (CASExpected) { // The final result from the CAS is {load of 'expected' alloca, bool result // from call} Type *FinalResultTy = I->getType(); Value *V = UndefValue::get(FinalResultTy); Value *ExpectedOut = Builder.CreateAlignedLoad(AllocaCASExpected, AllocaAlignment); Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); V = Builder.CreateInsertValue(V, ExpectedOut, 0); V = Builder.CreateInsertValue(V, Result, 1); I->replaceAllUsesWith(V); } else if (HasResult) { Value *V; if (UseSizedLibcall) V = Builder.CreateBitOrPointerCast(Result, I->getType()); else { V = Builder.CreateAlignedLoad(AllocaResult, AllocaAlignment); Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); } I->replaceAllUsesWith(V); } I->eraseFromParent(); return true; }