//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass munges the code in the input function to better prepare it for // SelectionDAG-based code generation. This works around limitations in it's // basic-block-at-a-time approach. It should eventually be removed. // //===----------------------------------------------------------------------===// #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Statepoint.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/IR/ValueMap.h" #include "llvm/Pass.h" #include "llvm/Support/BlockFrequency.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/BypassSlowDivision.h" #include "llvm/Transforms/Utils/SimplifyLibCalls.h" #include <algorithm> #include <cassert> #include <cstdint> #include <iterator> #include <limits> #include <memory> #include <utility> #include <vector> using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "codegenprepare" STATISTIC(NumBlocksElim, "Number of blocks eliminated"); STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " "sunken Cmps"); STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " "of sunken Casts"); STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " "computations were sunk"); STATISTIC(NumMemoryInstsPhiCreated, "Number of phis created when address " "computations were sunk to memory instructions"); STATISTIC(NumMemoryInstsSelectCreated, "Number of select created when address " "computations were sunk to memory instructions"); STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); STATISTIC(NumAndsAdded, "Number of and mask instructions added to form ext loads"); STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); STATISTIC(NumRetsDup, "Number of return instructions duplicated"); STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); static cl::opt<bool> DisableBranchOpts( "disable-cgp-branch-opts", cl::Hidden, cl::init(false), cl::desc("Disable branch optimizations in CodeGenPrepare")); static cl::opt<bool> DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), cl::desc("Disable GC optimizations in CodeGenPrepare")); static cl::opt<bool> DisableSelectToBranch( "disable-cgp-select2branch", cl::Hidden, cl::init(false), cl::desc("Disable select to branch conversion.")); static cl::opt<bool> AddrSinkUsingGEPs( "addr-sink-using-gep", cl::Hidden, cl::init(true), cl::desc("Address sinking in CGP using GEPs.")); static cl::opt<bool> EnableAndCmpSinking( "enable-andcmp-sinking", cl::Hidden, cl::init(true), cl::desc("Enable sinkinig and/cmp into branches.")); static cl::opt<bool> DisableStoreExtract( "disable-cgp-store-extract", cl::Hidden, cl::init(false), cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); static cl::opt<bool> StressStoreExtract( "stress-cgp-store-extract", cl::Hidden, cl::init(false), cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); static cl::opt<bool> DisableExtLdPromotion( "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " "CodeGenPrepare")); static cl::opt<bool> StressExtLdPromotion( "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " "optimization in CodeGenPrepare")); static cl::opt<bool> DisablePreheaderProtect( "disable-preheader-prot", cl::Hidden, cl::init(false), cl::desc("Disable protection against removing loop preheaders")); static cl::opt<bool> ProfileGuidedSectionPrefix( "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, cl::desc("Use profile info to add section prefix for hot/cold functions")); static cl::opt<unsigned> FreqRatioToSkipMerge( "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), cl::desc("Skip merging empty blocks if (frequency of empty block) / " "(frequency of destination block) is greater than this ratio")); static cl::opt<bool> ForceSplitStore( "force-split-store", cl::Hidden, cl::init(false), cl::desc("Force store splitting no matter what the target query says.")); static cl::opt<bool> EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, cl::desc("Enable merging of redundant sexts when one is dominating" " the other."), cl::init(true)); static cl::opt<bool> DisableComplexAddrModes( "disable-complex-addr-modes", cl::Hidden, cl::init(false), cl::desc("Disables combining addressing modes with different parts " "in optimizeMemoryInst.")); static cl::opt<bool> AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), cl::desc("Allow creation of Phis in Address sinking.")); static cl::opt<bool> AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), cl::desc("Allow creation of selects in Address sinking.")); static cl::opt<bool> AddrSinkCombineBaseReg( "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), cl::desc("Allow combining of BaseReg field in Address sinking.")); static cl::opt<bool> AddrSinkCombineBaseGV( "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), cl::desc("Allow combining of BaseGV field in Address sinking.")); static cl::opt<bool> AddrSinkCombineBaseOffs( "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), cl::desc("Allow combining of BaseOffs field in Address sinking.")); static cl::opt<bool> AddrSinkCombineScaledReg( "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), cl::desc("Allow combining of ScaledReg field in Address sinking.")); static cl::opt<bool> EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, cl::init(true), cl::desc("Enable splitting large offset of GEP.")); namespace { enum ExtType { ZeroExtension, // Zero extension has been seen. SignExtension, // Sign extension has been seen. BothExtension // This extension type is used if we saw sext after // ZeroExtension had been set, or if we saw zext after // SignExtension had been set. It makes the type // information of a promoted instruction invalid. }; using SetOfInstrs = SmallPtrSet<Instruction *, 16>; using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; using SExts = SmallVector<Instruction *, 16>; using ValueToSExts = DenseMap<Value *, SExts>; class TypePromotionTransaction; class CodeGenPrepare : public FunctionPass { const TargetMachine *TM = nullptr; const TargetSubtargetInfo *SubtargetInfo; const TargetLowering *TLI = nullptr; const TargetRegisterInfo *TRI; const TargetTransformInfo *TTI = nullptr; const TargetLibraryInfo *TLInfo; const LoopInfo *LI; std::unique_ptr<BlockFrequencyInfo> BFI; std::unique_ptr<BranchProbabilityInfo> BPI; /// As we scan instructions optimizing them, this is the next instruction /// to optimize. Transforms that can invalidate this should update it. BasicBlock::iterator CurInstIterator; /// Keeps track of non-local addresses that have been sunk into a block. /// This allows us to avoid inserting duplicate code for blocks with /// multiple load/stores of the same address. The usage of WeakTrackingVH /// enables SunkAddrs to be treated as a cache whose entries can be /// invalidated if a sunken address computation has been erased. ValueMap<Value*, WeakTrackingVH> SunkAddrs; /// Keeps track of all instructions inserted for the current function. SetOfInstrs InsertedInsts; /// Keeps track of the type of the related instruction before their /// promotion for the current function. InstrToOrigTy PromotedInsts; /// Keep track of instructions removed during promotion. SetOfInstrs RemovedInsts; /// Keep track of sext chains based on their initial value. DenseMap<Value *, Instruction *> SeenChainsForSExt; /// Keep track of GEPs accessing the same data structures such as structs or /// arrays that are candidates to be split later because of their large /// size. DenseMap< AssertingVH<Value>, SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> LargeOffsetGEPMap; /// Keep track of new GEP base after splitting the GEPs having large offset. SmallSet<AssertingVH<Value>, 2> NewGEPBases; /// Map serial numbers to Large offset GEPs. DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; /// Keep track of SExt promoted. ValueToSExts ValToSExtendedUses; /// True if CFG is modified in any way. bool ModifiedDT; /// True if optimizing for size. bool OptSize; /// DataLayout for the Function being processed. const DataLayout *DL = nullptr; public: static char ID; // Pass identification, replacement for typeid CodeGenPrepare() : FunctionPass(ID) { initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; StringRef getPassName() const override { return "CodeGen Prepare"; } void getAnalysisUsage(AnalysisUsage &AU) const override { // FIXME: When we can selectively preserve passes, preserve the domtree. AU.addRequired<ProfileSummaryInfoWrapperPass>(); AU.addRequired<TargetLibraryInfoWrapperPass>(); AU.addRequired<TargetTransformInfoWrapperPass>(); AU.addRequired<LoopInfoWrapperPass>(); } private: bool eliminateFallThrough(Function &F); bool eliminateMostlyEmptyBlocks(Function &F); BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; void eliminateMostlyEmptyBlock(BasicBlock *BB); bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, bool isPreheader); bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); bool optimizeInst(Instruction *I, bool &ModifiedDT); bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, unsigned AddrSpace); bool optimizeInlineAsmInst(CallInst *CS); bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); bool optimizeExt(Instruction *&I); bool optimizeExtUses(Instruction *I); bool optimizeLoadExt(LoadInst *Load); bool optimizeSelectInst(SelectInst *SI); bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); bool optimizeSwitchInst(SwitchInst *SI); bool optimizeExtractElementInst(Instruction *Inst); bool dupRetToEnableTailCallOpts(BasicBlock *BB); bool placeDbgValues(Function &F); bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, Instruction *&Inst, bool HasPromoted); bool tryToPromoteExts(TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, SmallVectorImpl<Instruction *> &ProfitablyMovedExts, unsigned CreatedInstsCost = 0); bool mergeSExts(Function &F); bool splitLargeGEPOffsets(); bool performAddressTypePromotion( Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, bool HasPromoted, TypePromotionTransaction &TPT, SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); bool splitBranchCondition(Function &F); bool simplifyOffsetableRelocate(Instruction &I); }; } // end anonymous namespace char CodeGenPrepare::ID = 0; INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, "Optimize for code generation", false, false) INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, "Optimize for code generation", false, false) FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } bool CodeGenPrepare::runOnFunction(Function &F) { if (skipFunction(F)) return false; DL = &F.getParent()->getDataLayout(); bool EverMadeChange = false; // Clear per function information. InsertedInsts.clear(); PromotedInsts.clear(); ModifiedDT = false; if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { TM = &TPC->getTM<TargetMachine>(); SubtargetInfo = TM->getSubtargetImpl(F); TLI = SubtargetInfo->getTargetLowering(); TRI = SubtargetInfo->getRegisterInfo(); } TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); BPI.reset(new BranchProbabilityInfo(F, *LI)); BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); OptSize = F.optForSize(); ProfileSummaryInfo *PSI = getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); if (ProfileGuidedSectionPrefix) { if (PSI->isFunctionHotInCallGraph(&F, *BFI)) F.setSectionPrefix(".hot"); else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) F.setSectionPrefix(".unlikely"); } /// This optimization identifies DIV instructions that can be /// profitably bypassed and carried out with a shorter, faster divide. if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && TLI->isSlowDivBypassed()) { const DenseMap<unsigned int, unsigned int> &BypassWidths = TLI->getBypassSlowDivWidths(); BasicBlock* BB = &*F.begin(); while (BB != nullptr) { // bypassSlowDivision may create new BBs, but we don't want to reapply the // optimization to those blocks. BasicBlock* Next = BB->getNextNode(); EverMadeChange |= bypassSlowDivision(BB, BypassWidths); BB = Next; } } // Eliminate blocks that contain only PHI nodes and an // unconditional branch. EverMadeChange |= eliminateMostlyEmptyBlocks(F); // llvm.dbg.value is far away from the value then iSel may not be able // handle it properly. iSel will drop llvm.dbg.value if it can not // find a node corresponding to the value. EverMadeChange |= placeDbgValues(F); if (!DisableBranchOpts) EverMadeChange |= splitBranchCondition(F); // Split some critical edges where one of the sources is an indirect branch, // to help generate sane code for PHIs involving such edges. EverMadeChange |= SplitIndirectBrCriticalEdges(F); bool MadeChange = true; while (MadeChange) { MadeChange = false; SeenChainsForSExt.clear(); ValToSExtendedUses.clear(); RemovedInsts.clear(); LargeOffsetGEPMap.clear(); LargeOffsetGEPID.clear(); for (Function::iterator I = F.begin(); I != F.end(); ) { BasicBlock *BB = &*I++; bool ModifiedDTOnIteration = false; MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); // Restart BB iteration if the dominator tree of the Function was changed if (ModifiedDTOnIteration) break; } if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) MadeChange |= mergeSExts(F); if (!LargeOffsetGEPMap.empty()) MadeChange |= splitLargeGEPOffsets(); // Really free removed instructions during promotion. for (Instruction *I : RemovedInsts) I->deleteValue(); EverMadeChange |= MadeChange; } SunkAddrs.clear(); if (!DisableBranchOpts) { MadeChange = false; // Use a set vector to get deterministic iteration order. The order the // blocks are removed may affect whether or not PHI nodes in successors // are removed. SmallSetVector<BasicBlock*, 8> WorkList; for (BasicBlock &BB : F) { SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); MadeChange |= ConstantFoldTerminator(&BB, true); if (!MadeChange) continue; for (SmallVectorImpl<BasicBlock*>::iterator II = Successors.begin(), IE = Successors.end(); II != IE; ++II) if (pred_begin(*II) == pred_end(*II)) WorkList.insert(*II); } // Delete the dead blocks and any of their dead successors. MadeChange |= !WorkList.empty(); while (!WorkList.empty()) { BasicBlock *BB = WorkList.pop_back_val(); SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); DeleteDeadBlock(BB); for (SmallVectorImpl<BasicBlock*>::iterator II = Successors.begin(), IE = Successors.end(); II != IE; ++II) if (pred_begin(*II) == pred_end(*II)) WorkList.insert(*II); } // Merge pairs of basic blocks with unconditional branches, connected by // a single edge. if (EverMadeChange || MadeChange) MadeChange |= eliminateFallThrough(F); EverMadeChange |= MadeChange; } if (!DisableGCOpts) { SmallVector<Instruction *, 2> Statepoints; for (BasicBlock &BB : F) for (Instruction &I : BB) if (isStatepoint(I)) Statepoints.push_back(&I); for (auto &I : Statepoints) EverMadeChange |= simplifyOffsetableRelocate(*I); } return EverMadeChange; } /// Merge basic blocks which are connected by a single edge, where one of the /// basic blocks has a single successor pointing to the other basic block, /// which has a single predecessor. bool CodeGenPrepare::eliminateFallThrough(Function &F) { bool Changed = false; // Scan all of the blocks in the function, except for the entry block. // Use a temporary array to avoid iterator being invalidated when // deleting blocks. SmallVector<WeakTrackingVH, 16> Blocks; for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) Blocks.push_back(&Block); for (auto &Block : Blocks) { auto *BB = cast_or_null<BasicBlock>(Block); if (!BB) continue; // If the destination block has a single pred, then this is a trivial // edge, just collapse it. BasicBlock *SinglePred = BB->getSinglePredecessor(); // Don't merge if BB's address is taken. if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); if (Term && !Term->isConditional()) { Changed = true; LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); // Merge BB into SinglePred and delete it. MergeBlockIntoPredecessor(BB); } } return Changed; } /// Find a destination block from BB if BB is mergeable empty block. BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { // If this block doesn't end with an uncond branch, ignore it. BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); if (!BI || !BI->isUnconditional()) return nullptr; // If the instruction before the branch (skipping debug info) isn't a phi // node, then other stuff is happening here. BasicBlock::iterator BBI = BI->getIterator(); if (BBI != BB->begin()) { --BBI; while (isa<DbgInfoIntrinsic>(BBI)) { if (BBI == BB->begin()) break; --BBI; } if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) return nullptr; } // Do not break infinite loops. BasicBlock *DestBB = BI->getSuccessor(0); if (DestBB == BB) return nullptr; if (!canMergeBlocks(BB, DestBB)) DestBB = nullptr; return DestBB; } /// Eliminate blocks that contain only PHI nodes, debug info directives, and an /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split /// edges in ways that are non-optimal for isel. Start by eliminating these /// blocks so we can split them the way we want them. bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { SmallPtrSet<BasicBlock *, 16> Preheaders; SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); while (!LoopList.empty()) { Loop *L = LoopList.pop_back_val(); LoopList.insert(LoopList.end(), L->begin(), L->end()); if (BasicBlock *Preheader = L->getLoopPreheader()) Preheaders.insert(Preheader); } bool MadeChange = false; // Copy blocks into a temporary array to avoid iterator invalidation issues // as we remove them. // Note that this intentionally skips the entry block. SmallVector<WeakTrackingVH, 16> Blocks; for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) Blocks.push_back(&Block); for (auto &Block : Blocks) { BasicBlock *BB = cast_or_null<BasicBlock>(Block); if (!BB) continue; BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); if (!DestBB || !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) continue; eliminateMostlyEmptyBlock(BB); MadeChange = true; } return MadeChange; } bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, bool isPreheader) { // Do not delete loop preheaders if doing so would create a critical edge. // Loop preheaders can be good locations to spill registers. If the // preheader is deleted and we create a critical edge, registers may be // spilled in the loop body instead. if (!DisablePreheaderProtect && isPreheader && !(BB->getSinglePredecessor() && BB->getSinglePredecessor()->getSingleSuccessor())) return false; // Try to skip merging if the unique predecessor of BB is terminated by a // switch or indirect branch instruction, and BB is used as an incoming block // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to // add COPY instructions in the predecessor of BB instead of BB (if it is not // merged). Note that the critical edge created by merging such blocks wont be // split in MachineSink because the jump table is not analyzable. By keeping // such empty block (BB), ISel will place COPY instructions in BB, not in the // predecessor of BB. BasicBlock *Pred = BB->getUniquePredecessor(); if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) || isa<IndirectBrInst>(Pred->getTerminator()))) return true; if (BB->getTerminator() != BB->getFirstNonPHI()) return true; // We use a simple cost heuristic which determine skipping merging is // profitable if the cost of skipping merging is less than the cost of // merging : Cost(skipping merging) < Cost(merging BB), where the // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and // the Cost(merging BB) is Freq(Pred) * Cost(Copy). // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : // Freq(Pred) / Freq(BB) > 2. // Note that if there are multiple empty blocks sharing the same incoming // value for the PHIs in the DestBB, we consider them together. In such // case, Cost(merging BB) will be the sum of their frequencies. if (!isa<PHINode>(DestBB->begin())) return true; SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; // Find all other incoming blocks from which incoming values of all PHIs in // DestBB are the same as the ones from BB. for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; ++PI) { BasicBlock *DestBBPred = *PI; if (DestBBPred == BB) continue; if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { return DestPN.getIncomingValueForBlock(BB) == DestPN.getIncomingValueForBlock(DestBBPred); })) SameIncomingValueBBs.insert(DestBBPred); } // See if all BB's incoming values are same as the value from Pred. In this // case, no reason to skip merging because COPYs are expected to be place in // Pred already. if (SameIncomingValueBBs.count(Pred)) return true; BlockFrequency PredFreq = BFI->getBlockFreq(Pred); BlockFrequency BBFreq = BFI->getBlockFreq(BB); for (auto SameValueBB : SameIncomingValueBBs) if (SameValueBB->getUniquePredecessor() == Pred && DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) BBFreq += BFI->getBlockFreq(SameValueBB); return PredFreq.getFrequency() <= BBFreq.getFrequency() * FreqRatioToSkipMerge; } /// Return true if we can merge BB into DestBB if there is a single /// unconditional branch between them, and BB contains no other non-phi /// instructions. bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const { // We only want to eliminate blocks whose phi nodes are used by phi nodes in // the successor. If there are more complex condition (e.g. preheaders), // don't mess around with them. for (const PHINode &PN : BB->phis()) { for (const User *U : PN.users()) { const Instruction *UI = cast<Instruction>(U); if (UI->getParent() != DestBB || !isa<PHINode>(UI)) return false; // If User is inside DestBB block and it is a PHINode then check // incoming value. If incoming value is not from BB then this is // a complex condition (e.g. preheaders) we want to avoid here. if (UI->getParent() == DestBB) { if (const PHINode *UPN = dyn_cast<PHINode>(UI)) for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); if (Insn && Insn->getParent() == BB && Insn->getParent() != UPN->getIncomingBlock(I)) return false; } } } } // If BB and DestBB contain any common predecessors, then the phi nodes in BB // and DestBB may have conflicting incoming values for the block. If so, we // can't merge the block. const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); if (!DestBBPN) return true; // no conflict. // Collect the preds of BB. SmallPtrSet<const BasicBlock*, 16> BBPreds; if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { // It is faster to get preds from a PHI than with pred_iterator. for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) BBPreds.insert(BBPN->getIncomingBlock(i)); } else { BBPreds.insert(pred_begin(BB), pred_end(BB)); } // Walk the preds of DestBB. for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { BasicBlock *Pred = DestBBPN->getIncomingBlock(i); if (BBPreds.count(Pred)) { // Common predecessor? for (const PHINode &PN : DestBB->phis()) { const Value *V1 = PN.getIncomingValueForBlock(Pred); const Value *V2 = PN.getIncomingValueForBlock(BB); // If V2 is a phi node in BB, look up what the mapped value will be. if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) if (V2PN->getParent() == BB) V2 = V2PN->getIncomingValueForBlock(Pred); // If there is a conflict, bail out. if (V1 != V2) return false; } } } return true; } /// Eliminate a basic block that has only phi's and an unconditional branch in /// it. void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { BranchInst *BI = cast<BranchInst>(BB->getTerminator()); BasicBlock *DestBB = BI->getSuccessor(0); LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); // If the destination block has a single pred, then this is a trivial edge, // just collapse it. if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { if (SinglePred != DestBB) { assert(SinglePred == BB && "Single predecessor not the same as predecessor"); // Merge DestBB into SinglePred/BB and delete it. MergeBlockIntoPredecessor(DestBB); // Note: BB(=SinglePred) will not be deleted on this path. // DestBB(=its single successor) is the one that was deleted. LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); return; } } // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB // to handle the new incoming edges it is about to have. for (PHINode &PN : DestBB->phis()) { // Remove the incoming value for BB, and remember it. Value *InVal = PN.removeIncomingValue(BB, false); // Two options: either the InVal is a phi node defined in BB or it is some // value that dominates BB. PHINode *InValPhi = dyn_cast<PHINode>(InVal); if (InValPhi && InValPhi->getParent() == BB) { // Add all of the input values of the input PHI as inputs of this phi. for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) PN.addIncoming(InValPhi->getIncomingValue(i), InValPhi->getIncomingBlock(i)); } else { // Otherwise, add one instance of the dominating value for each edge that // we will be adding. if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); } else { for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) PN.addIncoming(InVal, *PI); } } } // The PHIs are now updated, change everything that refers to BB to use // DestBB and remove BB. BB->replaceAllUsesWith(DestBB); BB->eraseFromParent(); ++NumBlocksElim; LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); } // Computes a map of base pointer relocation instructions to corresponding // derived pointer relocation instructions given a vector of all relocate calls static void computeBaseDerivedRelocateMap( const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> &RelocateInstMap) { // Collect information in two maps: one primarily for locating the base object // while filling the second map; the second map is the final structure holding // a mapping between Base and corresponding Derived relocate calls DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; for (auto *ThisRelocate : AllRelocateCalls) { auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), ThisRelocate->getDerivedPtrIndex()); RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); } for (auto &Item : RelocateIdxMap) { std::pair<unsigned, unsigned> Key = Item.first; if (Key.first == Key.second) // Base relocation: nothing to insert continue; GCRelocateInst *I = Item.second; auto BaseKey = std::make_pair(Key.first, Key.first); // We're iterating over RelocateIdxMap so we cannot modify it. auto MaybeBase = RelocateIdxMap.find(BaseKey); if (MaybeBase == RelocateIdxMap.end()) // TODO: We might want to insert a new base object relocate and gep off // that, if there are enough derived object relocates. continue; RelocateInstMap[MaybeBase->second].push_back(I); } } // Accepts a GEP and extracts the operands into a vector provided they're all // small integer constants static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, SmallVectorImpl<Value *> &OffsetV) { for (unsigned i = 1; i < GEP->getNumOperands(); i++) { // Only accept small constant integer operands auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); if (!Op || Op->getZExtValue() > 20) return false; } for (unsigned i = 1; i < GEP->getNumOperands(); i++) OffsetV.push_back(GEP->getOperand(i)); return true; } // Takes a RelocatedBase (base pointer relocation instruction) and Targets to // replace, computes a replacement, and affects it. static bool simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, const SmallVectorImpl<GCRelocateInst *> &Targets) { bool MadeChange = false; // We must ensure the relocation of derived pointer is defined after // relocation of base pointer. If we find a relocation corresponding to base // defined earlier than relocation of base then we move relocation of base // right before found relocation. We consider only relocation in the same // basic block as relocation of base. Relocations from other basic block will // be skipped by optimization and we do not care about them. for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); &*R != RelocatedBase; ++R) if (auto RI = dyn_cast<GCRelocateInst>(R)) if (RI->getStatepoint() == RelocatedBase->getStatepoint()) if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { RelocatedBase->moveBefore(RI); break; } for (GCRelocateInst *ToReplace : Targets) { assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && "Not relocating a derived object of the original base object"); if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { // A duplicate relocate call. TODO: coalesce duplicates. continue; } if (RelocatedBase->getParent() != ToReplace->getParent()) { // Base and derived relocates are in different basic blocks. // In this case transform is only valid when base dominates derived // relocate. However it would be too expensive to check dominance // for each such relocate, so we skip the whole transformation. continue; } Value *Base = ToReplace->getBasePtr(); auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); if (!Derived || Derived->getPointerOperand() != Base) continue; SmallVector<Value *, 2> OffsetV; if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) continue; // Create a Builder and replace the target callsite with a gep assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator"); // Insert after RelocatedBase IRBuilder<> Builder(RelocatedBase->getNextNode()); Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); // If gc_relocate does not match the actual type, cast it to the right type. // In theory, there must be a bitcast after gc_relocate if the type does not // match, and we should reuse it to get the derived pointer. But it could be // cases like this: // bb1: // ... // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) // br label %merge // // bb2: // ... // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) // br label %merge // // merge: // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* // // In this case, we can not find the bitcast any more. So we insert a new bitcast // no matter there is already one or not. In this way, we can handle all cases, and // the extra bitcast should be optimized away in later passes. Value *ActualRelocatedBase = RelocatedBase; if (RelocatedBase->getType() != Base->getType()) { ActualRelocatedBase = Builder.CreateBitCast(RelocatedBase, Base->getType()); } Value *Replacement = Builder.CreateGEP( Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); Replacement->takeName(ToReplace); // If the newly generated derived pointer's type does not match the original derived // pointer's type, cast the new derived pointer to match it. Same reasoning as above. Value *ActualReplacement = Replacement; if (Replacement->getType() != ToReplace->getType()) { ActualReplacement = Builder.CreateBitCast(Replacement, ToReplace->getType()); } ToReplace->replaceAllUsesWith(ActualReplacement); ToReplace->eraseFromParent(); MadeChange = true; } return MadeChange; } // Turns this: // // %base = ... // %ptr = gep %base + 15 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) // %base' = relocate(%tok, i32 4, i32 4) // %ptr' = relocate(%tok, i32 4, i32 5) // %val = load %ptr' // // into this: // // %base = ... // %ptr = gep %base + 15 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) // %base' = gc.relocate(%tok, i32 4, i32 4) // %ptr' = gep %base' + 15 // %val = load %ptr' bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { bool MadeChange = false; SmallVector<GCRelocateInst *, 2> AllRelocateCalls; for (auto *U : I.users()) if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) // Collect all the relocate calls associated with a statepoint AllRelocateCalls.push_back(Relocate); // We need atleast one base pointer relocation + one derived pointer // relocation to mangle if (AllRelocateCalls.size() < 2) return false; // RelocateInstMap is a mapping from the base relocate instruction to the // corresponding derived relocate instructions DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); if (RelocateInstMap.empty()) return false; for (auto &Item : RelocateInstMap) // Item.first is the RelocatedBase to offset against // Item.second is the vector of Targets to replace MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); return MadeChange; } /// SinkCast - Sink the specified cast instruction into its user blocks static bool SinkCast(CastInst *CI) { BasicBlock *DefBB = CI->getParent(); /// InsertedCasts - Only insert a cast in each block once. DenseMap<BasicBlock*, CastInst*> InsertedCasts; bool MadeChange = false; for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); UI != E; ) { Use &TheUse = UI.getUse(); Instruction *User = cast<Instruction>(*UI); // Figure out which BB this cast is used in. For PHI's this is the // appropriate predecessor block. BasicBlock *UserBB = User->getParent(); if (PHINode *PN = dyn_cast<PHINode>(User)) { UserBB = PN->getIncomingBlock(TheUse); } // Preincrement use iterator so we don't invalidate it. ++UI; // The first insertion point of a block containing an EH pad is after the // pad. If the pad is the user, we cannot sink the cast past the pad. if (User->isEHPad()) continue; // If the block selected to receive the cast is an EH pad that does not // allow non-PHI instructions before the terminator, we can't sink the // cast. if (UserBB->getTerminator()->isEHPad()) continue; // If this user is in the same block as the cast, don't change the cast. if (UserBB == DefBB) continue; // If we have already inserted a cast into this block, use it. CastInst *&InsertedCast = InsertedCasts[UserBB]; if (!InsertedCast) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); assert(InsertPt != UserBB->end()); InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", &*InsertPt); InsertedCast->setDebugLoc(CI->getDebugLoc()); } // Replace a use of the cast with a use of the new cast. TheUse = InsertedCast; MadeChange = true; ++NumCastUses; } // If we removed all uses, nuke the cast. if (CI->use_empty()) { salvageDebugInfo(*CI); CI->eraseFromParent(); MadeChange = true; } return MadeChange; } /// If the specified cast instruction is a noop copy (e.g. it's casting from /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to /// reduce the number of virtual registers that must be created and coalesced. /// /// Return true if any changes are made. static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, const DataLayout &DL) { // Sink only "cheap" (or nop) address-space casts. This is a weaker condition // than sinking only nop casts, but is helpful on some platforms. if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), ASC->getDestAddressSpace())) return false; } // If this is a noop copy, EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); EVT DstVT = TLI.getValueType(DL, CI->getType()); // This is an fp<->int conversion? if (SrcVT.isInteger() != DstVT.isInteger()) return false; // If this is an extension, it will be a zero or sign extension, which // isn't a noop. if (SrcVT.bitsLT(DstVT)) return false; // If these values will be promoted, find out what they will be promoted // to. This helps us consider truncates on PPC as noop copies when they // are. if (TLI.getTypeAction(CI->getContext(), SrcVT) == TargetLowering::TypePromoteInteger) SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); if (TLI.getTypeAction(CI->getContext(), DstVT) == TargetLowering::TypePromoteInteger) DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); // If, after promotion, these are the same types, this is a noop copy. if (SrcVT != DstVT) return false; return SinkCast(CI); } /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if /// possible. /// /// Return true if any changes were made. static bool CombineUAddWithOverflow(CmpInst *CI) { Value *A, *B; Instruction *AddI; if (!match(CI, m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) return false; Type *Ty = AddI->getType(); if (!isa<IntegerType>(Ty)) return false; // We don't want to move around uses of condition values this late, so we we // check if it is legal to create the call to the intrinsic in the basic // block containing the icmp: if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) return false; #ifndef NDEBUG // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption // for now: if (AddI->hasOneUse()) assert(*AddI->user_begin() == CI && "expected!"); #endif Module *M = CI->getModule(); Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); auto *InsertPt = AddI->hasOneUse() ? CI : AddI; auto *UAddWithOverflow = CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); auto *Overflow = ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); CI->replaceAllUsesWith(Overflow); AddI->replaceAllUsesWith(UAdd); CI->eraseFromParent(); AddI->eraseFromParent(); return true; } /// Sink the given CmpInst into user blocks to reduce the number of virtual /// registers that must be created and coalesced. This is a clear win except on /// targets with multiple condition code registers (PowerPC), where it might /// lose; some adjustment may be wanted there. /// /// Return true if any changes are made. static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { BasicBlock *DefBB = CI->getParent(); // Avoid sinking soft-FP comparisons, since this can move them into a loop. if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) return false; // Only insert a cmp in each block once. DenseMap<BasicBlock*, CmpInst*> InsertedCmps; bool MadeChange = false; for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); UI != E; ) { Use &TheUse = UI.getUse(); Instruction *User = cast<Instruction>(*UI); // Preincrement use iterator so we don't invalidate it. ++UI; // Don't bother for PHI nodes. if (isa<PHINode>(User)) continue; // Figure out which BB this cmp is used in. BasicBlock *UserBB = User->getParent(); // If this user is in the same block as the cmp, don't change the cmp. if (UserBB == DefBB) continue; // If we have already inserted a cmp into this block, use it. CmpInst *&InsertedCmp = InsertedCmps[UserBB]; if (!InsertedCmp) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); assert(InsertPt != UserBB->end()); InsertedCmp = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); // Propagate the debug info. InsertedCmp->setDebugLoc(CI->getDebugLoc()); } // Replace a use of the cmp with a use of the new cmp. TheUse = InsertedCmp; MadeChange = true; ++NumCmpUses; } // If we removed all uses, nuke the cmp. if (CI->use_empty()) { CI->eraseFromParent(); MadeChange = true; } return MadeChange; } static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { if (SinkCmpExpression(CI, TLI)) return true; if (CombineUAddWithOverflow(CI)) return true; return false; } /// Duplicate and sink the given 'and' instruction into user blocks where it is /// used in a compare to allow isel to generate better code for targets where /// this operation can be combined. /// /// Return true if any changes are made. static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI, SetOfInstrs &InsertedInsts) { // Double-check that we're not trying to optimize an instruction that was // already optimized by some other part of this pass. assert(!InsertedInsts.count(AndI) && "Attempting to optimize already optimized and instruction"); (void) InsertedInsts; // Nothing to do for single use in same basic block. if (AndI->hasOneUse() && AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) return false; // Try to avoid cases where sinking/duplicating is likely to increase register // pressure. if (!isa<ConstantInt>(AndI->getOperand(0)) && !isa<ConstantInt>(AndI->getOperand(1)) && AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) return false; for (auto *U : AndI->users()) { Instruction *User = cast<Instruction>(U); // Only sink for and mask feeding icmp with 0. if (!isa<ICmpInst>(User)) return false; auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); if (!CmpC || !CmpC->isZero()) return false; } if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) return false; LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); LLVM_DEBUG(AndI->getParent()->dump()); // Push the 'and' into the same block as the icmp 0. There should only be // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any // others, so we don't need to keep track of which BBs we insert into. for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); UI != E; ) { Use &TheUse = UI.getUse(); Instruction *User = cast<Instruction>(*UI); // Preincrement use iterator so we don't invalidate it. ++UI; LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); // Keep the 'and' in the same place if the use is already in the same block. Instruction *InsertPt = User->getParent() == AndI->getParent() ? AndI : User; Instruction *InsertedAnd = BinaryOperator::Create(Instruction::And, AndI->getOperand(0), AndI->getOperand(1), "", InsertPt); // Propagate the debug info. InsertedAnd->setDebugLoc(AndI->getDebugLoc()); // Replace a use of the 'and' with a use of the new 'and'. TheUse = InsertedAnd; ++NumAndUses; LLVM_DEBUG(User->getParent()->dump()); } // We removed all uses, nuke the and. AndI->eraseFromParent(); return true; } /// Check if the candidates could be combined with a shift instruction, which /// includes: /// 1. Truncate instruction /// 2. And instruction and the imm is a mask of the low bits: /// imm & (imm+1) == 0 static bool isExtractBitsCandidateUse(Instruction *User) { if (!isa<TruncInst>(User)) { if (User->getOpcode() != Instruction::And || !isa<ConstantInt>(User->getOperand(1))) return false; const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); if ((Cimm & (Cimm + 1)).getBoolValue()) return false; } return true; } /// Sink both shift and truncate instruction to the use of truncate's BB. static bool SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, const TargetLowering &TLI, const DataLayout &DL) { BasicBlock *UserBB = User->getParent(); DenseMap<BasicBlock *, CastInst *> InsertedTruncs; TruncInst *TruncI = dyn_cast<TruncInst>(User); bool MadeChange = false; for (Value::user_iterator TruncUI = TruncI->user_begin(), TruncE = TruncI->user_end(); TruncUI != TruncE;) { Use &TruncTheUse = TruncUI.getUse(); Instruction *TruncUser = cast<Instruction>(*TruncUI); // Preincrement use iterator so we don't invalidate it. ++TruncUI; int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); if (!ISDOpcode) continue; // If the use is actually a legal node, there will not be an // implicit truncate. // FIXME: always querying the result type is just an // approximation; some nodes' legality is determined by the // operand or other means. There's no good way to find out though. if (TLI.isOperationLegalOrCustom( ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) continue; // Don't bother for PHI nodes. if (isa<PHINode>(TruncUser)) continue; BasicBlock *TruncUserBB = TruncUser->getParent(); if (UserBB == TruncUserBB) continue; BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; if (!InsertedShift && !InsertedTrunc) { BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); assert(InsertPt != TruncUserBB->end()); // Sink the shift if (ShiftI->getOpcode() == Instruction::AShr) InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", &*InsertPt); else InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", &*InsertPt); // Sink the trunc BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); TruncInsertPt++; assert(TruncInsertPt != TruncUserBB->end()); InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, TruncI->getType(), "", &*TruncInsertPt); MadeChange = true; TruncTheUse = InsertedTrunc; } } return MadeChange; } /// Sink the shift *right* instruction into user blocks if the uses could /// potentially be combined with this shift instruction and generate BitExtract /// instruction. It will only be applied if the architecture supports BitExtract /// instruction. Here is an example: /// BB1: /// %x.extract.shift = lshr i64 %arg1, 32 /// BB2: /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 /// ==> /// /// BB2: /// %x.extract.shift.1 = lshr i64 %arg1, 32 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 /// /// CodeGen will recognize the pattern in BB2 and generate BitExtract /// instruction. /// Return true if any changes are made. static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, const TargetLowering &TLI, const DataLayout &DL) { BasicBlock *DefBB = ShiftI->getParent(); /// Only insert instructions in each block once. DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); bool MadeChange = false; for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); UI != E;) { Use &TheUse = UI.getUse(); Instruction *User = cast<Instruction>(*UI); // Preincrement use iterator so we don't invalidate it. ++UI; // Don't bother for PHI nodes. if (isa<PHINode>(User)) continue; if (!isExtractBitsCandidateUse(User)) continue; BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) { // If the shift and truncate instruction are in the same BB. The use of // the truncate(TruncUse) may still introduce another truncate if not // legal. In this case, we would like to sink both shift and truncate // instruction to the BB of TruncUse. // for example: // BB1: // i64 shift.result = lshr i64 opnd, imm // trunc.result = trunc shift.result to i16 // // BB2: // ----> We will have an implicit truncate here if the architecture does // not have i16 compare. // cmp i16 trunc.result, opnd2 // if (isa<TruncInst>(User) && shiftIsLegal // If the type of the truncate is legal, no truncate will be // introduced in other basic blocks. && (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) MadeChange = SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); continue; } // If we have already inserted a shift into this block, use it. BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; if (!InsertedShift) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); assert(InsertPt != UserBB->end()); if (ShiftI->getOpcode() == Instruction::AShr) InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", &*InsertPt); else InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", &*InsertPt); MadeChange = true; } // Replace a use of the shift with a use of the new shift. TheUse = InsertedShift; } // If we removed all uses, nuke the shift. if (ShiftI->use_empty()) ShiftI->eraseFromParent(); return MadeChange; } /// If counting leading or trailing zeros is an expensive operation and a zero /// input is defined, add a check for zero to avoid calling the intrinsic. /// /// We want to transform: /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) /// /// into: /// entry: /// %cmpz = icmp eq i64 %A, 0 /// br i1 %cmpz, label %cond.end, label %cond.false /// cond.false: /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) /// br label %cond.end /// cond.end: /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] /// /// If the transform is performed, return true and set ModifiedDT to true. static bool despeculateCountZeros(IntrinsicInst *CountZeros, const TargetLowering *TLI, const DataLayout *DL, bool &ModifiedDT) { if (!TLI || !DL) return false; // If a zero input is undefined, it doesn't make sense to despeculate that. if (match(CountZeros->getOperand(1), m_One())) return false; // If it's cheap to speculate, there's nothing to do. auto IntrinsicID = CountZeros->getIntrinsicID(); if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) return false; // Only handle legal scalar cases. Anything else requires too much work. Type *Ty = CountZeros->getType(); unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) return false; // The intrinsic will be sunk behind a compare against zero and branch. BasicBlock *StartBlock = CountZeros->getParent(); BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); // Create another block after the count zero intrinsic. A PHI will be added // in this block to select the result of the intrinsic or the bit-width // constant if the input to the intrinsic is zero. BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); // Set up a builder to create a compare, conditional branch, and PHI. IRBuilder<> Builder(CountZeros->getContext()); Builder.SetInsertPoint(StartBlock->getTerminator()); Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); // Replace the unconditional branch that was created by the first split with // a compare against zero and a conditional branch. Value *Zero = Constant::getNullValue(Ty); Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); Builder.CreateCondBr(Cmp, EndBlock, CallBlock); StartBlock->getTerminator()->eraseFromParent(); // Create a PHI in the end block to select either the output of the intrinsic // or the bit width of the operand. Builder.SetInsertPoint(&EndBlock->front()); PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); CountZeros->replaceAllUsesWith(PN); Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); PN->addIncoming(BitWidth, StartBlock); PN->addIncoming(CountZeros, CallBlock); // We are explicitly handling the zero case, so we can set the intrinsic's // undefined zero argument to 'true'. This will also prevent reprocessing the // intrinsic; we only despeculate when a zero input is defined. CountZeros->setArgOperand(1, Builder.getTrue()); ModifiedDT = true; return true; } bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { BasicBlock *BB = CI->getParent(); // Lower inline assembly if we can. // If we found an inline asm expession, and if the target knows how to // lower it to normal LLVM code, do so now. if (TLI && isa<InlineAsm>(CI->getCalledValue())) { if (TLI->ExpandInlineAsm(CI)) { // Avoid invalidating the iterator. CurInstIterator = BB->begin(); // Avoid processing instructions out of order, which could cause // reuse before a value is defined. SunkAddrs.clear(); return true; } // Sink address computing for memory operands into the block. if (optimizeInlineAsmInst(CI)) return true; } // Align the pointer arguments to this call if the target thinks it's a good // idea unsigned MinSize, PrefAlign; if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { for (auto &Arg : CI->arg_operands()) { // We want to align both objects whose address is used directly and // objects whose address is used in casts and GEPs, though it only makes // sense for GEPs if the offset is a multiple of the desired alignment and // if size - offset meets the size threshold. if (!Arg->getType()->isPointerTy()) continue; APInt Offset(DL->getIndexSizeInBits( cast<PointerType>(Arg->getType())->getAddressSpace()), 0); Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); uint64_t Offset2 = Offset.getLimitedValue(); if ((Offset2 & (PrefAlign-1)) != 0) continue; AllocaInst *AI; if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) AI->setAlignment(PrefAlign); // Global variables can only be aligned if they are defined in this // object (i.e. they are uniquely initialized in this object), and // over-aligning global variables that have an explicit section is // forbidden. GlobalVariable *GV; if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && GV->getPointerAlignment(*DL) < PrefAlign && DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2) GV->setAlignment(PrefAlign); } // If this is a memcpy (or similar) then we may be able to improve the // alignment if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); if (DestAlign > MI->getDestAlignment()) MI->setDestAlignment(DestAlign); if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); if (SrcAlign > MTI->getSourceAlignment()) MTI->setSourceAlignment(SrcAlign); } } } // If we have a cold call site, try to sink addressing computation into the // cold block. This interacts with our handling for loads and stores to // ensure that we can fold all uses of a potential addressing computation // into their uses. TODO: generalize this to work over profiling data if (!OptSize && CI->hasFnAttr(Attribute::Cold)) for (auto &Arg : CI->arg_operands()) { if (!Arg->getType()->isPointerTy()) continue; unsigned AS = Arg->getType()->getPointerAddressSpace(); return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); } IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); if (II) { switch (II->getIntrinsicID()) { default: break; case Intrinsic::objectsize: { // Lower all uses of llvm.objectsize.* ConstantInt *RetVal = lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); // Substituting this can cause recursive simplifications, which can // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case // this // happens. Value *CurValue = &*CurInstIterator; WeakTrackingVH IterHandle(CurValue); replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); // If the iterator instruction was recursively deleted, start over at the // start of the block. if (IterHandle != CurValue) { CurInstIterator = BB->begin(); SunkAddrs.clear(); } return true; } case Intrinsic::aarch64_stlxr: case Intrinsic::aarch64_stxr: { ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); if (!ExtVal || !ExtVal->hasOneUse() || ExtVal->getParent() == CI->getParent()) return false; // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. ExtVal->moveBefore(CI); // Mark this instruction as "inserted by CGP", so that other // optimizations don't touch it. InsertedInsts.insert(ExtVal); return true; } case Intrinsic::launder_invariant_group: case Intrinsic::strip_invariant_group: II->replaceAllUsesWith(II->getArgOperand(0)); II->eraseFromParent(); return true; case Intrinsic::cttz: case Intrinsic::ctlz: // If counting zeros is expensive, try to avoid it. return despeculateCountZeros(II, TLI, DL, ModifiedDT); } if (TLI) { SmallVector<Value*, 2> PtrOps; Type *AccessTy; if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) while (!PtrOps.empty()) { Value *PtrVal = PtrOps.pop_back_val(); unsigned AS = PtrVal->getType()->getPointerAddressSpace(); if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) return true; } } } // From here on out we're working with named functions. if (!CI->getCalledFunction()) return false; // Lower all default uses of _chk calls. This is very similar // to what InstCombineCalls does, but here we are only lowering calls // to fortified library functions (e.g. __memcpy_chk) that have the default // "don't know" as the objectsize. Anything else should be left alone. FortifiedLibCallSimplifier Simplifier(TLInfo, true); if (Value *V = Simplifier.optimizeCall(CI)) { CI->replaceAllUsesWith(V); CI->eraseFromParent(); return true; } return false; } /// Look for opportunities to duplicate return instructions to the predecessor /// to enable tail call optimizations. The case it is currently looking for is: /// @code /// bb0: /// %tmp0 = tail call i32 @f0() /// br label %return /// bb1: /// %tmp1 = tail call i32 @f1() /// br label %return /// bb2: /// %tmp2 = tail call i32 @f2() /// br label %return /// return: /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] /// ret i32 %retval /// @endcode /// /// => /// /// @code /// bb0: /// %tmp0 = tail call i32 @f0() /// ret i32 %tmp0 /// bb1: /// %tmp1 = tail call i32 @f1() /// ret i32 %tmp1 /// bb2: /// %tmp2 = tail call i32 @f2() /// ret i32 %tmp2 /// @endcode bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { if (!TLI) return false; ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); if (!RetI) return false; PHINode *PN = nullptr; BitCastInst *BCI = nullptr; Value *V = RetI->getReturnValue(); if (V) { BCI = dyn_cast<BitCastInst>(V); if (BCI) V = BCI->getOperand(0); PN = dyn_cast<PHINode>(V); if (!PN) return false; } if (PN && PN->getParent() != BB) return false; // Make sure there are no instructions between the PHI and return, or that the // return is the first instruction in the block. if (PN) { BasicBlock::iterator BI = BB->begin(); do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); if (&*BI == BCI) // Also skip over the bitcast. ++BI; if (&*BI != RetI) return false; } else { BasicBlock::iterator BI = BB->begin(); while (isa<DbgInfoIntrinsic>(BI)) ++BI; if (&*BI != RetI) return false; } /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail /// call. const Function *F = BB->getParent(); SmallVector<CallInst*, 4> TailCalls; if (PN) { for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); // Make sure the phi value is indeed produced by the tail call. if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && TLI->mayBeEmittedAsTailCall(CI) && attributesPermitTailCall(F, CI, RetI, *TLI)) TailCalls.push_back(CI); } } else { SmallPtrSet<BasicBlock*, 4> VisitedBBs; for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { if (!VisitedBBs.insert(*PI).second) continue; BasicBlock::InstListType &InstList = (*PI)->getInstList(); BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); if (RI == RE) continue; CallInst *CI = dyn_cast<CallInst>(&*RI); if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && attributesPermitTailCall(F, CI, RetI, *TLI)) TailCalls.push_back(CI); } } bool Changed = false; for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { CallInst *CI = TailCalls[i]; CallSite CS(CI); // Conservatively require the attributes of the call to match those of the // return. Ignore noalias because it doesn't affect the call sequence. AttributeList CalleeAttrs = CS.getAttributes(); if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) .removeAttribute(Attribute::NoAlias) != AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) .removeAttribute(Attribute::NoAlias)) continue; // Make sure the call instruction is followed by an unconditional branch to // the return block. BasicBlock *CallBB = CI->getParent(); BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) continue; // Duplicate the return into CallBB. (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); ModifiedDT = Changed = true; ++NumRetsDup; } // If we eliminated all predecessors of the block, delete the block now. if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) BB->eraseFromParent(); return Changed; } //===----------------------------------------------------------------------===// // Memory Optimization //===----------------------------------------------------------------------===// namespace { /// This is an extended version of TargetLowering::AddrMode /// which holds actual Value*'s for register values. struct ExtAddrMode : public TargetLowering::AddrMode { Value *BaseReg = nullptr; Value *ScaledReg = nullptr; Value *OriginalValue = nullptr; enum FieldName { NoField = 0x00, BaseRegField = 0x01, BaseGVField = 0x02, BaseOffsField = 0x04, ScaledRegField = 0x08, ScaleField = 0x10, MultipleFields = 0xff }; ExtAddrMode() = default; void print(raw_ostream &OS) const; void dump() const; FieldName compare(const ExtAddrMode &other) { // First check that the types are the same on each field, as differing types // is something we can't cope with later on. if (BaseReg && other.BaseReg && BaseReg->getType() != other.BaseReg->getType()) return MultipleFields; if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType()) return MultipleFields; if (ScaledReg && other.ScaledReg && ScaledReg->getType() != other.ScaledReg->getType()) return MultipleFields; // Check each field to see if it differs. unsigned Result = NoField; if (BaseReg != other.BaseReg) Result |= BaseRegField; if (BaseGV != other.BaseGV) Result |= BaseGVField; if (BaseOffs != other.BaseOffs) Result |= BaseOffsField; if (ScaledReg != other.ScaledReg) Result |= ScaledRegField; // Don't count 0 as being a different scale, because that actually means // unscaled (which will already be counted by having no ScaledReg). if (Scale && other.Scale && Scale != other.Scale) Result |= ScaleField; if (countPopulation(Result) > 1) return MultipleFields; else return static_cast<FieldName>(Result); } // An AddrMode is trivial if it involves no calculation i.e. it is just a base // with no offset. bool isTrivial() { // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is // trivial if at most one of these terms is nonzero, except that BaseGV and // BaseReg both being zero actually means a null pointer value, which we // consider to be 'non-zero' here. return !BaseOffs && !Scale && !(BaseGV && BaseReg); } Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { switch (Field) { default: return nullptr; case BaseRegField: return BaseReg; case BaseGVField: return BaseGV; case ScaledRegField: return ScaledReg; case BaseOffsField: return ConstantInt::get(IntPtrTy, BaseOffs); } } void SetCombinedField(FieldName Field, Value *V, const SmallVectorImpl<ExtAddrMode> &AddrModes) { switch (Field) { default: llvm_unreachable("Unhandled fields are expected to be rejected earlier"); break; case ExtAddrMode::BaseRegField: BaseReg = V; break; case ExtAddrMode::BaseGVField: // A combined BaseGV is an Instruction, not a GlobalValue, so it goes // in the BaseReg field. assert(BaseReg == nullptr); BaseReg = V; BaseGV = nullptr; break; case ExtAddrMode::ScaledRegField: ScaledReg = V; // If we have a mix of scaled and unscaled addrmodes then we want scale // to be the scale and not zero. if (!Scale) for (const ExtAddrMode &AM : AddrModes) if (AM.Scale) { Scale = AM.Scale; break; } break; case ExtAddrMode::BaseOffsField: // The offset is no longer a constant, so it goes in ScaledReg with a // scale of 1. assert(ScaledReg == nullptr); ScaledReg = V; Scale = 1; BaseOffs = 0; break; } } }; } // end anonymous namespace #ifndef NDEBUG static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { AM.print(OS); return OS; } #endif #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void ExtAddrMode::print(raw_ostream &OS) const { bool NeedPlus = false; OS << "["; if (BaseGV) { OS << (NeedPlus ? " + " : "") << "GV:"; BaseGV->printAsOperand(OS, /*PrintType=*/false); NeedPlus = true; } if (BaseOffs) { OS << (NeedPlus ? " + " : "") << BaseOffs; NeedPlus = true; } if (BaseReg) { OS << (NeedPlus ? " + " : "") << "Base:"; BaseReg->printAsOperand(OS, /*PrintType=*/false); NeedPlus = true; } if (Scale) { OS << (NeedPlus ? " + " : "") << Scale << "*"; ScaledReg->printAsOperand(OS, /*PrintType=*/false); } OS << ']'; } LLVM_DUMP_METHOD void ExtAddrMode::dump() const { print(dbgs()); dbgs() << '\n'; } #endif namespace { /// This class provides transaction based operation on the IR. /// Every change made through this class is recorded in the internal state and /// can be undone (rollback) until commit is called. class TypePromotionTransaction { /// This represents the common interface of the individual transaction. /// Each class implements the logic for doing one specific modification on /// the IR via the TypePromotionTransaction. class TypePromotionAction { protected: /// The Instruction modified. Instruction *Inst; public: /// Constructor of the action. /// The constructor performs the related action on the IR. TypePromotionAction(Instruction *Inst) : Inst(Inst) {} virtual ~TypePromotionAction() = default; /// Undo the modification done by this action. /// When this method is called, the IR must be in the same state as it was /// before this action was applied. /// \pre Undoing the action works if and only if the IR is in the exact same /// state as it was directly after this action was applied. virtual void undo() = 0; /// Advocate every change made by this action. /// When the results on the IR of the action are to be kept, it is important /// to call this function, otherwise hidden information may be kept forever. virtual void commit() { // Nothing to be done, this action is not doing anything. } }; /// Utility to remember the position of an instruction. class InsertionHandler { /// Position of an instruction. /// Either an instruction: /// - Is the first in a basic block: BB is used. /// - Has a previous instruction: PrevInst is used. union { Instruction *PrevInst; BasicBlock *BB; } Point; /// Remember whether or not the instruction had a previous instruction. bool HasPrevInstruction; public: /// Record the position of \p Inst. InsertionHandler(Instruction *Inst) { BasicBlock::iterator It = Inst->getIterator(); HasPrevInstruction = (It != (Inst->getParent()->begin())); if (HasPrevInstruction) Point.PrevInst = &*--It; else Point.BB = Inst->getParent(); } /// Insert \p Inst at the recorded position. void insert(Instruction *Inst) { if (HasPrevInstruction) { if (Inst->getParent()) Inst->removeFromParent(); Inst->insertAfter(Point.PrevInst); } else { Instruction *Position = &*Point.BB->getFirstInsertionPt(); if (Inst->getParent()) Inst->moveBefore(Position); else Inst->insertBefore(Position); } } }; /// Move an instruction before another. class InstructionMoveBefore : public TypePromotionAction { /// Original position of the instruction. InsertionHandler Position; public: /// Move \p Inst before \p Before. InstructionMoveBefore(Instruction *Inst, Instruction *Before) : TypePromotionAction(Inst), Position(Inst) { LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); Inst->moveBefore(Before); } /// Move the instruction back to its original position. void undo() override { LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); Position.insert(Inst); } }; /// Set the operand of an instruction with a new value. class OperandSetter : public TypePromotionAction { /// Original operand of the instruction. Value *Origin; /// Index of the modified instruction. unsigned Idx; public: /// Set \p Idx operand of \p Inst with \p NewVal. OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) : TypePromotionAction(Inst), Idx(Idx) { LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" << "for:" << *Inst << "\n" << "with:" << *NewVal << "\n"); Origin = Inst->getOperand(Idx); Inst->setOperand(Idx, NewVal); } /// Restore the original value of the instruction. void undo() override { LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" << "for: " << *Inst << "\n" << "with: " << *Origin << "\n"); Inst->setOperand(Idx, Origin); } }; /// Hide the operands of an instruction. /// Do as if this instruction was not using any of its operands. class OperandsHider : public TypePromotionAction { /// The list of original operands. SmallVector<Value *, 4> OriginalValues; public: /// Remove \p Inst from the uses of the operands of \p Inst. OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); unsigned NumOpnds = Inst->getNumOperands(); OriginalValues.reserve(NumOpnds); for (unsigned It = 0; It < NumOpnds; ++It) { // Save the current operand. Value *Val = Inst->getOperand(It); OriginalValues.push_back(Val); // Set a dummy one. // We could use OperandSetter here, but that would imply an overhead // that we are not willing to pay. Inst->setOperand(It, UndefValue::get(Val->getType())); } } /// Restore the original list of uses. void undo() override { LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) Inst->setOperand(It, OriginalValues[It]); } }; /// Build a truncate instruction. class TruncBuilder : public TypePromotionAction { Value *Val; public: /// Build a truncate instruction of \p Opnd producing a \p Ty /// result. /// trunc Opnd to Ty. TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { IRBuilder<> Builder(Opnd); Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); } /// Get the built value. Value *getBuiltValue() { return Val; } /// Remove the built instruction. void undo() override { LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); if (Instruction *IVal = dyn_cast<Instruction>(Val)) IVal->eraseFromParent(); } }; /// Build a sign extension instruction. class SExtBuilder : public TypePromotionAction { Value *Val; public: /// Build a sign extension instruction of \p Opnd producing a \p Ty /// result. /// sext Opnd to Ty. SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) : TypePromotionAction(InsertPt) { IRBuilder<> Builder(InsertPt); Val = Builder.CreateSExt(Opnd, Ty, "promoted"); LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); } /// Get the built value. Value *getBuiltValue() { return Val; } /// Remove the built instruction. void undo() override { LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); if (Instruction *IVal = dyn_cast<Instruction>(Val)) IVal->eraseFromParent(); } }; /// Build a zero extension instruction. class ZExtBuilder : public TypePromotionAction { Value *Val; public: /// Build a zero extension instruction of \p Opnd producing a \p Ty /// result. /// zext Opnd to Ty. ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) : TypePromotionAction(InsertPt) { IRBuilder<> Builder(InsertPt); Val = Builder.CreateZExt(Opnd, Ty, "promoted"); LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); } /// Get the built value. Value *getBuiltValue() { return Val; } /// Remove the built instruction. void undo() override { LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); if (Instruction *IVal = dyn_cast<Instruction>(Val)) IVal->eraseFromParent(); } }; /// Mutate an instruction to another type. class TypeMutator : public TypePromotionAction { /// Record the original type. Type *OrigTy; public: /// Mutate the type of \p Inst into \p NewTy. TypeMutator(Instruction *Inst, Type *NewTy) : TypePromotionAction(Inst), OrigTy(Inst->getType()) { LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy << "\n"); Inst->mutateType(NewTy); } /// Mutate the instruction back to its original type. void undo() override { LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy << "\n"); Inst->mutateType(OrigTy); } }; /// Replace the uses of an instruction by another instruction. class UsesReplacer : public TypePromotionAction { /// Helper structure to keep track of the replaced uses. struct InstructionAndIdx { /// The instruction using the instruction. Instruction *Inst; /// The index where this instruction is used for Inst. unsigned Idx; InstructionAndIdx(Instruction *Inst, unsigned Idx) : Inst(Inst), Idx(Idx) {} }; /// Keep track of the original uses (pair Instruction, Index). SmallVector<InstructionAndIdx, 4> OriginalUses; using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; public: /// Replace all the use of \p Inst by \p New. UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New << "\n"); // Record the original uses. for (Use &U : Inst->uses()) { Instruction *UserI = cast<Instruction>(U.getUser()); OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); } // Now, we can replace the uses. Inst->replaceAllUsesWith(New); } /// Reassign the original uses of Inst to Inst. void undo() override { LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); for (use_iterator UseIt = OriginalUses.begin(), EndIt = OriginalUses.end(); UseIt != EndIt; ++UseIt) { UseIt->Inst->setOperand(UseIt->Idx, Inst); } } }; /// Remove an instruction from the IR. class InstructionRemover : public TypePromotionAction { /// Original position of the instruction. InsertionHandler Inserter; /// Helper structure to hide all the link to the instruction. In other /// words, this helps to do as if the instruction was removed. OperandsHider Hider; /// Keep track of the uses replaced, if any. UsesReplacer *Replacer = nullptr; /// Keep track of instructions removed. SetOfInstrs &RemovedInsts; public: /// Remove all reference of \p Inst and optionally replace all its /// uses with New. /// \p RemovedInsts Keep track of the instructions removed by this Action. /// \pre If !Inst->use_empty(), then New != nullptr InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, Value *New = nullptr) : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), RemovedInsts(RemovedInsts) { if (New) Replacer = new UsesReplacer(Inst, New); LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); RemovedInsts.insert(Inst); /// The instructions removed here will be freed after completing /// optimizeBlock() for all blocks as we need to keep track of the /// removed instructions during promotion. Inst->removeFromParent(); } ~InstructionRemover() override { delete Replacer; } /// Resurrect the instruction and reassign it to the proper uses if /// new value was provided when build this action. void undo() override { LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); Inserter.insert(Inst); if (Replacer) Replacer->undo(); Hider.undo(); RemovedInsts.erase(Inst); } }; public: /// Restoration point. /// The restoration point is a pointer to an action instead of an iterator /// because the iterator may be invalidated but not the pointer. using ConstRestorationPt = const TypePromotionAction *; TypePromotionTransaction(SetOfInstrs &RemovedInsts) : RemovedInsts(RemovedInsts) {} /// Advocate every changes made in that transaction. void commit(); /// Undo all the changes made after the given point. void rollback(ConstRestorationPt Point); /// Get the current restoration point. ConstRestorationPt getRestorationPoint() const; /// \name API for IR modification with state keeping to support rollback. /// @{ /// Same as Instruction::setOperand. void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); /// Same as Instruction::eraseFromParent. void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); /// Same as Value::replaceAllUsesWith. void replaceAllUsesWith(Instruction *Inst, Value *New); /// Same as Value::mutateType. void mutateType(Instruction *Inst, Type *NewTy); /// Same as IRBuilder::createTrunc. Value *createTrunc(Instruction *Opnd, Type *Ty); /// Same as IRBuilder::createSExt. Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); /// Same as IRBuilder::createZExt. Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); /// Same as Instruction::moveBefore. void moveBefore(Instruction *Inst, Instruction *Before); /// @} private: /// The ordered list of actions made so far. SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; SetOfInstrs &RemovedInsts; }; } // end anonymous namespace void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, Value *NewVal) { Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( Inst, Idx, NewVal)); } void TypePromotionTransaction::eraseInstruction(Instruction *Inst, Value *NewVal) { Actions.push_back( llvm::make_unique<TypePromotionTransaction::InstructionRemover>( Inst, RemovedInsts, NewVal)); } void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, Value *New) { Actions.push_back( llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); } void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { Actions.push_back( llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); } Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) { std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); Value *Val = Ptr->getBuiltValue(); Actions.push_back(std::move(Ptr)); return Val; } Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd, Type *Ty) { std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); Value *Val = Ptr->getBuiltValue(); Actions.push_back(std::move(Ptr)); return Val; } Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd, Type *Ty) { std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); Value *Val = Ptr->getBuiltValue(); Actions.push_back(std::move(Ptr)); return Val; } void TypePromotionTransaction::moveBefore(Instruction *Inst, Instruction *Before) { Actions.push_back( llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( Inst, Before)); } TypePromotionTransaction::ConstRestorationPt TypePromotionTransaction::getRestorationPoint() const { return !Actions.empty() ? Actions.back().get() : nullptr; } void TypePromotionTransaction::commit() { for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; ++It) (*It)->commit(); Actions.clear(); } void TypePromotionTransaction::rollback( TypePromotionTransaction::ConstRestorationPt Point) { while (!Actions.empty() && Point != Actions.back().get()) { std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); Curr->undo(); } } namespace { /// A helper class for matching addressing modes. /// /// This encapsulates the logic for matching the target-legal addressing modes. class AddressingModeMatcher { SmallVectorImpl<Instruction*> &AddrModeInsts; const TargetLowering &TLI; const TargetRegisterInfo &TRI; const DataLayout &DL; /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and /// the memory instruction that we're computing this address for. Type *AccessTy; unsigned AddrSpace; Instruction *MemoryInst; /// This is the addressing mode that we're building up. This is /// part of the return value of this addressing mode matching stuff. ExtAddrMode &AddrMode; /// The instructions inserted by other CodeGenPrepare optimizations. const SetOfInstrs &InsertedInsts; /// A map from the instructions to their type before promotion. InstrToOrigTy &PromotedInsts; /// The ongoing transaction where every action should be registered. TypePromotionTransaction &TPT; // A GEP which has too large offset to be folded into the addressing mode. std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; /// This is set to true when we should not do profitability checks. /// When true, IsProfitableToFoldIntoAddressingMode always returns true. bool IgnoreProfitability; AddressingModeMatcher( SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { IgnoreProfitability = false; } public: /// Find the maximal addressing mode that a load/store of V can fold, /// give an access type of AccessTy. This returns a list of involved /// instructions in AddrModeInsts. /// \p InsertedInsts The instructions inserted by other CodeGenPrepare /// optimizations. /// \p PromotedInsts maps the instructions to their type before promotion. /// \p The ongoing transaction where every action should be registered. static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, SmallVectorImpl<Instruction *> &AddrModeInsts, const TargetLowering &TLI, const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { ExtAddrMode Result; bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, MemoryInst, Result, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP) .matchAddr(V, 0); (void)Success; assert(Success && "Couldn't select *anything*?"); return Result; } private: bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); bool matchAddr(Value *Addr, unsigned Depth); bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, bool *MovedAway = nullptr); bool isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter); bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const; }; /// Keep track of simplification of Phi nodes. /// Accept the set of all phi nodes and erase phi node from this set /// if it is simplified. class SimplificationTracker { DenseMap<Value *, Value *> Storage; const SimplifyQuery &SQ; // Tracks newly created Phi nodes. We use a SetVector to get deterministic // order when iterating over the set in MatchPhiSet. SmallSetVector<PHINode *, 32> AllPhiNodes; // Tracks newly created Select nodes. SmallPtrSet<SelectInst *, 32> AllSelectNodes; public: SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {} Value *Get(Value *V) { do { auto SV = Storage.find(V); if (SV == Storage.end()) return V; V = SV->second; } while (true); } Value *Simplify(Value *Val) { SmallVector<Value *, 32> WorkList; SmallPtrSet<Value *, 32> Visited; WorkList.push_back(Val); while (!WorkList.empty()) { auto P = WorkList.pop_back_val(); if (!Visited.insert(P).second) continue; if (auto *PI = dyn_cast<Instruction>(P)) if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { for (auto *U : PI->users()) WorkList.push_back(cast<Value>(U)); Put(PI, V); PI->replaceAllUsesWith(V); if (auto *PHI = dyn_cast<PHINode>(PI)) AllPhiNodes.remove(PHI); if (auto *Select = dyn_cast<SelectInst>(PI)) AllSelectNodes.erase(Select); PI->eraseFromParent(); } } return Get(Val); } void Put(Value *From, Value *To) { Storage.insert({ From, To }); } void ReplacePhi(PHINode *From, PHINode *To) { Value* OldReplacement = Get(From); while (OldReplacement != From) { From = To; To = dyn_cast<PHINode>(OldReplacement); OldReplacement = Get(From); } assert(Get(To) == To && "Replacement PHI node is already replaced."); Put(From, To); From->replaceAllUsesWith(To); AllPhiNodes.remove(From); From->eraseFromParent(); } SmallSetVector<PHINode *, 32>& newPhiNodes() { return AllPhiNodes; } void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } void destroyNewNodes(Type *CommonType) { // For safe erasing, replace the uses with dummy value first. auto Dummy = UndefValue::get(CommonType); for (auto I : AllPhiNodes) { I->replaceAllUsesWith(Dummy); I->eraseFromParent(); } AllPhiNodes.clear(); for (auto I : AllSelectNodes) { I->replaceAllUsesWith(Dummy); I->eraseFromParent(); } AllSelectNodes.clear(); } }; /// A helper class for combining addressing modes. class AddressingModeCombiner { typedef std::pair<Value *, BasicBlock *> ValueInBB; typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping; typedef std::pair<PHINode *, PHINode *> PHIPair; private: /// The addressing modes we've collected. SmallVector<ExtAddrMode, 16> AddrModes; /// The field in which the AddrModes differ, when we have more than one. ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; /// Are the AddrModes that we have all just equal to their original values? bool AllAddrModesTrivial = true; /// Common Type for all different fields in addressing modes. Type *CommonType; /// SimplifyQuery for simplifyInstruction utility. const SimplifyQuery &SQ; /// Original Address. ValueInBB Original; public: AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue) : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} /// Get the combined AddrMode const ExtAddrMode &getAddrMode() const { return AddrModes[0]; } /// Add a new AddrMode if it's compatible with the AddrModes we already /// have. /// \return True iff we succeeded in doing so. bool addNewAddrMode(ExtAddrMode &NewAddrMode) { // Take note of if we have any non-trivial AddrModes, as we need to detect // when all AddrModes are trivial as then we would introduce a phi or select // which just duplicates what's already there. AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); // If this is the first addrmode then everything is fine. if (AddrModes.empty()) { AddrModes.emplace_back(NewAddrMode); return true; } // Figure out how different this is from the other address modes, which we // can do just by comparing against the first one given that we only care // about the cumulative difference. ExtAddrMode::FieldName ThisDifferentField = AddrModes[0].compare(NewAddrMode); if (DifferentField == ExtAddrMode::NoField) DifferentField = ThisDifferentField; else if (DifferentField != ThisDifferentField) DifferentField = ExtAddrMode::MultipleFields; // If NewAddrMode differs in more than one dimension we cannot handle it. bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; // If Scale Field is different then we reject. CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; // We also must reject the case when base offset is different and // scale reg is not null, we cannot handle this case due to merge of // different offsets will be used as ScaleReg. CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || !NewAddrMode.ScaledReg); // We also must reject the case when GV is different and BaseReg installed // due to we want to use base reg as a merge of GV values. CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || !NewAddrMode.HasBaseReg); // Even if NewAddMode is the same we still need to collect it due to // original value is different. And later we will need all original values // as anchors during finding the common Phi node. if (CanHandle) AddrModes.emplace_back(NewAddrMode); else AddrModes.clear(); return CanHandle; } /// Combine the addressing modes we've collected into a single /// addressing mode. /// \return True iff we successfully combined them or we only had one so /// didn't need to combine them anyway. bool combineAddrModes() { // If we have no AddrModes then they can't be combined. if (AddrModes.size() == 0) return false; // A single AddrMode can trivially be combined. if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) return true; // If the AddrModes we collected are all just equal to the value they are // derived from then combining them wouldn't do anything useful. if (AllAddrModesTrivial) return false; if (!addrModeCombiningAllowed()) return false; // Build a map between <original value, basic block where we saw it> to // value of base register. // Bail out if there is no common type. FoldAddrToValueMapping Map; if (!initializeMap(Map)) return false; Value *CommonValue = findCommon(Map); if (CommonValue) AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); return CommonValue != nullptr; } private: /// Initialize Map with anchor values. For address seen in some BB /// we set the value of different field saw in this address. /// If address is not an instruction than basic block is set to null. /// At the same time we find a common type for different field we will /// use to create new Phi/Select nodes. Keep it in CommonType field. /// Return false if there is no common type found. bool initializeMap(FoldAddrToValueMapping &Map) { // Keep track of keys where the value is null. We will need to replace it // with constant null when we know the common type. SmallVector<ValueInBB, 2> NullValue; Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); for (auto &AM : AddrModes) { BasicBlock *BB = nullptr; if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue)) BB = I->getParent(); Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); if (DV) { auto *Type = DV->getType(); if (CommonType && CommonType != Type) return false; CommonType = Type; Map[{ AM.OriginalValue, BB }] = DV; } else { NullValue.push_back({ AM.OriginalValue, BB }); } } assert(CommonType && "At least one non-null value must be!"); for (auto VIBB : NullValue) Map[VIBB] = Constant::getNullValue(CommonType); return true; } /// We have mapping between value A and basic block where value A /// seen to other value B where B was a field in addressing mode represented /// by A. Also we have an original value C representing an address in some /// basic block. Traversing from C through phi and selects we ended up with /// A's in a map. This utility function tries to find a value V which is a /// field in addressing mode C and traversing through phi nodes and selects /// we will end up in corresponded values B in a map. /// The utility will create a new Phi/Selects if needed. // The simple example looks as follows: // BB1: // p1 = b1 + 40 // br cond BB2, BB3 // BB2: // p2 = b2 + 40 // br BB3 // BB3: // p = phi [p1, BB1], [p2, BB2] // v = load p // Map is // <p1, BB1> -> b1 // <p2, BB2> -> b2 // Request is // <p, BB3> -> ? // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3 Value *findCommon(FoldAddrToValueMapping &Map) { // Tracks the simplification of newly created phi nodes. The reason we use // this mapping is because we will add new created Phi nodes in AddrToBase. // Simplification of Phi nodes is recursive, so some Phi node may // be simplified after we added it to AddrToBase. // Using this mapping we can find the current value in AddrToBase. SimplificationTracker ST(SQ); // First step, DFS to create PHI nodes for all intermediate blocks. // Also fill traverse order for the second step. SmallVector<ValueInBB, 32> TraverseOrder; InsertPlaceholders(Map, TraverseOrder, ST); // Second Step, fill new nodes by merged values and simplify if possible. FillPlaceholders(Map, TraverseOrder, ST); if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { ST.destroyNewNodes(CommonType); return nullptr; } // Now we'd like to match New Phi nodes to existed ones. unsigned PhiNotMatchedCount = 0; if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { ST.destroyNewNodes(CommonType); return nullptr; } auto *Result = ST.Get(Map.find(Original)->second); if (Result) { NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); } return Result; } /// Try to match PHI node to Candidate. /// Matcher tracks the matched Phi nodes. bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, SmallSetVector<PHIPair, 8> &Matcher, SmallSetVector<PHINode *, 32> &PhiNodesToMatch) { SmallVector<PHIPair, 8> WorkList; Matcher.insert({ PHI, Candidate }); WorkList.push_back({ PHI, Candidate }); SmallSet<PHIPair, 8> Visited; while (!WorkList.empty()) { auto Item = WorkList.pop_back_val(); if (!Visited.insert(Item).second) continue; // We iterate over all incoming values to Phi to compare them. // If values are different and both of them Phi and the first one is a // Phi we added (subject to match) and both of them is in the same basic // block then we can match our pair if values match. So we state that // these values match and add it to work list to verify that. for (auto B : Item.first->blocks()) { Value *FirstValue = Item.first->getIncomingValueForBlock(B); Value *SecondValue = Item.second->getIncomingValueForBlock(B); if (FirstValue == SecondValue) continue; PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); // One of them is not Phi or // The first one is not Phi node from the set we'd like to match or // Phi nodes from different basic blocks then // we will not be able to match. if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || FirstPhi->getParent() != SecondPhi->getParent()) return false; // If we already matched them then continue. if (Matcher.count({ FirstPhi, SecondPhi })) continue; // So the values are different and does not match. So we need them to // match. Matcher.insert({ FirstPhi, SecondPhi }); // But me must check it. WorkList.push_back({ FirstPhi, SecondPhi }); } } return true; } /// For the given set of PHI nodes (in the SimplificationTracker) try /// to find their equivalents. /// Returns false if this matching fails and creation of new Phi is disabled. bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, unsigned &PhiNotMatchedCount) { // Use a SetVector for Matched to make sure we do replacements (ReplacePhi) // in a deterministic order below. SmallSetVector<PHIPair, 8> Matched; SmallPtrSet<PHINode *, 8> WillNotMatch; SmallSetVector<PHINode *, 32> &PhiNodesToMatch = ST.newPhiNodes(); while (PhiNodesToMatch.size()) { PHINode *PHI = *PhiNodesToMatch.begin(); // Add us, if no Phi nodes in the basic block we do not match. WillNotMatch.clear(); WillNotMatch.insert(PHI); // Traverse all Phis until we found equivalent or fail to do that. bool IsMatched = false; for (auto &P : PHI->getParent()->phis()) { if (&P == PHI) continue; if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) break; // If it does not match, collect all Phi nodes from matcher. // if we end up with no match, them all these Phi nodes will not match // later. for (auto M : Matched) WillNotMatch.insert(M.first); Matched.clear(); } if (IsMatched) { // Replace all matched values and erase them. for (auto MV : Matched) ST.ReplacePhi(MV.first, MV.second); Matched.clear(); continue; } // If we are not allowed to create new nodes then bail out. if (!AllowNewPhiNodes) return false; // Just remove all seen values in matcher. They will not match anything. PhiNotMatchedCount += WillNotMatch.size(); for (auto *P : WillNotMatch) PhiNodesToMatch.remove(P); } return true; } /// Fill the placeholder with values from predecessors and simplify it. void FillPlaceholders(FoldAddrToValueMapping &Map, SmallVectorImpl<ValueInBB> &TraverseOrder, SimplificationTracker &ST) { while (!TraverseOrder.empty()) { auto Current = TraverseOrder.pop_back_val(); assert(Map.find(Current) != Map.end() && "No node to fill!!!"); Value *CurrentValue = Current.first; BasicBlock *CurrentBlock = Current.second; Value *V = Map[Current]; if (SelectInst *Select = dyn_cast<SelectInst>(V)) { // CurrentValue also must be Select. auto *CurrentSelect = cast<SelectInst>(CurrentValue); auto *TrueValue = CurrentSelect->getTrueValue(); ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue) ? CurrentBlock : nullptr }; assert(Map.find(TrueItem) != Map.end() && "No True Value!"); Select->setTrueValue(ST.Get(Map[TrueItem])); auto *FalseValue = CurrentSelect->getFalseValue(); ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue) ? CurrentBlock : nullptr }; assert(Map.find(FalseItem) != Map.end() && "No False Value!"); Select->setFalseValue(ST.Get(Map[FalseItem])); } else { // Must be a Phi node then. PHINode *PHI = cast<PHINode>(V); // Fill the Phi node with values from predecessors. bool IsDefinedInThisBB = cast<Instruction>(CurrentValue)->getParent() == CurrentBlock; auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue); for (auto B : predecessors(CurrentBlock)) { Value *PV = IsDefinedInThisBB ? CurrentPhi->getIncomingValueForBlock(B) : CurrentValue; ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr }; assert(Map.find(item) != Map.end() && "No predecessor Value!"); PHI->addIncoming(ST.Get(Map[item]), B); } } // Simplify if possible. Map[Current] = ST.Simplify(V); } } /// Starting from value recursively iterates over predecessors up to known /// ending values represented in a map. For each traversed block inserts /// a placeholder Phi or Select. /// Reports all new created Phi/Select nodes by adding them to set. /// Also reports and order in what basic blocks have been traversed. void InsertPlaceholders(FoldAddrToValueMapping &Map, SmallVectorImpl<ValueInBB> &TraverseOrder, SimplificationTracker &ST) { SmallVector<ValueInBB, 32> Worklist; assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) && "Address must be a Phi or Select node"); auto *Dummy = UndefValue::get(CommonType); Worklist.push_back(Original); while (!Worklist.empty()) { auto Current = Worklist.pop_back_val(); // If value is not an instruction it is something global, constant, // parameter and we can say that this value is observable in any block. // Set block to null to denote it. // Also please take into account that it is how we build anchors. if (!isa<Instruction>(Current.first)) Current.second = nullptr; // if it is already visited or it is an ending value then skip it. if (Map.find(Current) != Map.end()) continue; TraverseOrder.push_back(Current); Value *CurrentValue = Current.first; BasicBlock *CurrentBlock = Current.second; // CurrentValue must be a Phi node or select. All others must be covered // by anchors. Instruction *CurrentI = cast<Instruction>(CurrentValue); bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock; unsigned PredCount = pred_size(CurrentBlock); // if Current Value is not defined in this basic block we are interested // in values in predecessors. if (!IsDefinedInThisBB) { assert(PredCount && "Unreachable block?!"); PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", &CurrentBlock->front()); Map[Current] = PHI; ST.insertNewPhi(PHI); // Add all predecessors in work list. for (auto B : predecessors(CurrentBlock)) Worklist.push_back({ CurrentValue, B }); continue; } // Value is defined in this basic block. if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) { // Is it OK to get metadata from OrigSelect?! // Create a Select placeholder with dummy value. SelectInst *Select = SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy, OrigSelect->getName(), OrigSelect, OrigSelect); Map[Current] = Select; ST.insertNewSelect(Select); // We are interested in True and False value in this basic block. Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock }); Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock }); } else { // It must be a Phi node then. auto *CurrentPhi = cast<PHINode>(CurrentI); // Create new Phi node for merge of bases. assert(PredCount && "Unreachable block?!"); PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", &CurrentBlock->front()); Map[Current] = PHI; ST.insertNewPhi(PHI); // Add all predecessors in work list. for (auto B : predecessors(CurrentBlock)) Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B }); } } } bool addrModeCombiningAllowed() { if (DisableComplexAddrModes) return false; switch (DifferentField) { default: return false; case ExtAddrMode::BaseRegField: return AddrSinkCombineBaseReg; case ExtAddrMode::BaseGVField: return AddrSinkCombineBaseGV; case ExtAddrMode::BaseOffsField: return AddrSinkCombineBaseOffs; case ExtAddrMode::ScaledRegField: return AddrSinkCombineScaledReg; } } }; } // end anonymous namespace /// Try adding ScaleReg*Scale to the current addressing mode. /// Return true and update AddrMode if this addr mode is legal for the target, /// false if not. bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth) { // If Scale is 1, then this is the same as adding ScaleReg to the addressing // mode. Just process that directly. if (Scale == 1) return matchAddr(ScaleReg, Depth); // If the scale is 0, it takes nothing to add this. if (Scale == 0) return true; // If we already have a scale of this value, we can add to it, otherwise, we // need an available scale field. if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) return false; ExtAddrMode TestAddrMode = AddrMode; // Add scale to turn X*4+X*3 -> X*7. This could also do things like // [A+B + A*7] -> [B+A*8]. TestAddrMode.Scale += Scale; TestAddrMode.ScaledReg = ScaleReg; // If the new address isn't legal, bail out. if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) return false; // It was legal, so commit it. AddrMode = TestAddrMode; // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now // to see if ScaleReg is actually X+C. If so, we can turn this into adding // X*Scale + C*Scale to addr mode. ConstantInt *CI = nullptr; Value *AddLHS = nullptr; if (isa<Instruction>(ScaleReg) && // not a constant expr. match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { TestAddrMode.ScaledReg = AddLHS; TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; // If this addressing mode is legal, commit it and remember that we folded // this instruction. if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); AddrMode = TestAddrMode; return true; } } // Otherwise, not (x+c)*scale, just return what we have. return true; } /// This is a little filter, which returns true if an addressing computation /// involving I might be folded into a load/store accessing it. /// This doesn't need to be perfect, but needs to accept at least /// the set of instructions that MatchOperationAddr can. static bool MightBeFoldableInst(Instruction *I) { switch (I->getOpcode()) { case Instruction::BitCast: case Instruction::AddrSpaceCast: // Don't touch identity bitcasts. if (I->getType() == I->getOperand(0)->getType()) return false; return I->getType()->isIntOrPtrTy(); case Instruction::PtrToInt: // PtrToInt is always a noop, as we know that the int type is pointer sized. return true; case Instruction::IntToPtr: // We know the input is intptr_t, so this is foldable. return true; case Instruction::Add: return true; case Instruction::Mul: case Instruction::Shl: // Can only handle X*C and X << C. return isa<ConstantInt>(I->getOperand(1)); case Instruction::GetElementPtr: return true; default: return false; } } /// Check whether or not \p Val is a legal instruction for \p TLI. /// \note \p Val is assumed to be the product of some type promotion. /// Therefore if \p Val has an undefined state in \p TLI, this is assumed /// to be legal, as the non-promoted value would have had the same state. static bool isPromotedInstructionLegal(const TargetLowering &TLI, const DataLayout &DL, Value *Val) { Instruction *PromotedInst = dyn_cast<Instruction>(Val); if (!PromotedInst) return false; int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); // If the ISDOpcode is undefined, it was undefined before the promotion. if (!ISDOpcode) return true; // Otherwise, check if the promoted instruction is legal or not. return TLI.isOperationLegalOrCustom( ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); } namespace { /// Hepler class to perform type promotion. class TypePromotionHelper { /// Utility function to add a promoted instruction \p ExtOpnd to /// \p PromotedInsts and record the type of extension we have seen. static void addPromotedInst(InstrToOrigTy &PromotedInsts, Instruction *ExtOpnd, bool IsSExt) { ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); if (It != PromotedInsts.end()) { // If the new extension is same as original, the information in // PromotedInsts[ExtOpnd] is still correct. if (It->second.getInt() == ExtTy) return; // Now the new extension is different from old extension, we make // the type information invalid by setting extension type to // BothExtension. ExtTy = BothExtension; } PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); } /// Utility function to query the original type of instruction \p Opnd /// with a matched extension type. If the extension doesn't match, we /// cannot use the information we had on the original type. /// BothExtension doesn't match any extension type. static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, Instruction *Opnd, bool IsSExt) { ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) return It->second.getPointer(); return nullptr; } /// Utility function to check whether or not a sign or zero extension /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by /// either using the operands of \p Inst or promoting \p Inst. /// The type of the extension is defined by \p IsSExt. /// In other words, check if: /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. /// #1 Promotion applies: /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). /// #2 Operand reuses: /// ext opnd1 to ConsideredExtType. /// \p PromotedInsts maps the instructions to their type before promotion. static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, const InstrToOrigTy &PromotedInsts, bool IsSExt); /// Utility function to determine if \p OpIdx should be promoted when /// promoting \p Inst. static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { return !(isa<SelectInst>(Inst) && OpIdx == 0); } /// Utility function to promote the operand of \p Ext when this /// operand is a promotable trunc or sext or zext. /// \p PromotedInsts maps the instructions to their type before promotion. /// \p CreatedInstsCost[out] contains the cost of all instructions /// created to promote the operand of Ext. /// Newly added extensions are inserted in \p Exts. /// Newly added truncates are inserted in \p Truncs. /// Should never be called directly. /// \return The promoted value which is used instead of Ext. static Value *promoteOperandForTruncAndAnyExt( Instruction *Ext, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, SmallVectorImpl<Instruction *> *Exts, SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); /// Utility function to promote the operand of \p Ext when this /// operand is promotable and is not a supported trunc or sext. /// \p PromotedInsts maps the instructions to their type before promotion. /// \p CreatedInstsCost[out] contains the cost of all the instructions /// created to promote the operand of Ext. /// Newly added extensions are inserted in \p Exts. /// Newly added truncates are inserted in \p Truncs. /// Should never be called directly. /// \return The promoted value which is used instead of Ext. static Value *promoteOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, SmallVectorImpl<Instruction *> *Exts, SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, bool IsSExt); /// \see promoteOperandForOther. static Value *signExtendOperandForOther( Instruction *Ext, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, SmallVectorImpl<Instruction *> *Exts, SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, Exts, Truncs, TLI, true); } /// \see promoteOperandForOther. static Value *zeroExtendOperandForOther( Instruction *Ext, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, SmallVectorImpl<Instruction *> *Exts, SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, Exts, Truncs, TLI, false); } public: /// Type for the utility function that promotes the operand of Ext. using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, SmallVectorImpl<Instruction *> *Exts, SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); /// Given a sign/zero extend instruction \p Ext, return the appropriate /// action to promote the operand of \p Ext instead of using Ext. /// \return NULL if no promotable action is possible with the current /// sign extension. /// \p InsertedInsts keeps track of all the instructions inserted by the /// other CodeGenPrepare optimizations. This information is important /// because we do not want to promote these instructions as CodeGenPrepare /// will reinsert them later. Thus creating an infinite loop: create/remove. /// \p PromotedInsts maps the instructions to their type before promotion. static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts); }; } // end anonymous namespace bool TypePromotionHelper::canGetThrough(const Instruction *Inst, Type *ConsideredExtType, const InstrToOrigTy &PromotedInsts, bool IsSExt) { // The promotion helper does not know how to deal with vector types yet. // To be able to fix that, we would need to fix the places where we // statically extend, e.g., constants and such. if (Inst->getType()->isVectorTy()) return false; // We can always get through zext. if (isa<ZExtInst>(Inst)) return true; // sext(sext) is ok too. if (IsSExt && isa<SExtInst>(Inst)) return true; // We can get through binary operator, if it is legal. In other words, the // binary operator must have a nuw or nsw flag. const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && ((!IsSExt && BinOp->hasNoUnsignedWrap()) || (IsSExt && BinOp->hasNoSignedWrap()))) return true; // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) if ((Inst->getOpcode() == Instruction::And || Inst->getOpcode() == Instruction::Or)) return true; // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) if (Inst->getOpcode() == Instruction::Xor) { const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); // Make sure it is not a NOT. if (Cst && !Cst->getValue().isAllOnesValue()) return true; } // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) // It may change a poisoned value into a regular value, like // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 // poisoned value regular value // It should be OK since undef covers valid value. if (Inst->getOpcode() == Instruction::LShr && !IsSExt) return true; // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) // It may change a poisoned value into a regular value, like // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 // poisoned value regular value // It should be OK since undef covers valid value. if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { const Instruction *ExtInst = dyn_cast<const Instruction>(*Inst->user_begin()); if (ExtInst->hasOneUse()) { const Instruction *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); if (AndInst && AndInst->getOpcode() == Instruction::And) { const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); if (Cst && Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) return true; } } } // Check if we can do the following simplification. // ext(trunc(opnd)) --> ext(opnd) if (!isa<TruncInst>(Inst)) return false; Value *OpndVal = Inst->getOperand(0); // Check if we can use this operand in the extension. // If the type is larger than the result type of the extension, we cannot. if (!OpndVal->getType()->isIntegerTy() || OpndVal->getType()->getIntegerBitWidth() > ConsideredExtType->getIntegerBitWidth()) return false; // If the operand of the truncate is not an instruction, we will not have // any information on the dropped bits. // (Actually we could for constant but it is not worth the extra logic). Instruction *Opnd = dyn_cast<Instruction>(OpndVal); if (!Opnd) return false; // Check if the source of the type is narrow enough. // I.e., check that trunc just drops extended bits of the same kind of // the extension. // #1 get the type of the operand and check the kind of the extended bits. const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); if (OpndType) ; else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) OpndType = Opnd->getOperand(0)->getType(); else return false; // #2 check that the truncate just drops extended bits. return Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth(); } TypePromotionHelper::Action TypePromotionHelper::getAction( Instruction *Ext, const SetOfInstrs &InsertedInsts, const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && "Unexpected instruction type"); Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); Type *ExtTy = Ext->getType(); bool IsSExt = isa<SExtInst>(Ext); // If the operand of the extension is not an instruction, we cannot // get through. // If it, check we can get through. if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) return nullptr; // Do not promote if the operand has been added by codegenprepare. // Otherwise, it means we are undoing an optimization that is likely to be // redone, thus causing potential infinite loop. if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) return nullptr; // SExt or Trunc instructions. // Return the related handler. if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || isa<ZExtInst>(ExtOpnd)) return promoteOperandForTruncAndAnyExt; // Regular instruction. // Abort early if we will have to insert non-free instructions. if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) return nullptr; return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; } Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( Instruction *SExt, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, SmallVectorImpl<Instruction *> *Exts, SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { // By construction, the operand of SExt is an instruction. Otherwise we cannot // get through it and this method should not be called. Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); Value *ExtVal = SExt; bool HasMergedNonFreeExt = false; if (isa<ZExtInst>(SExtOpnd)) { // Replace s|zext(zext(opnd)) // => zext(opnd). HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); Value *ZExt = TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); TPT.replaceAllUsesWith(SExt, ZExt); TPT.eraseInstruction(SExt); ExtVal = ZExt; } else { // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) // => z|sext(opnd). TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); } CreatedInstsCost = 0; // Remove dead code. if (SExtOpnd->use_empty()) TPT.eraseInstruction(SExtOpnd); // Check if the extension is still needed. Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { if (ExtInst) { if (Exts) Exts->push_back(ExtInst); CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; } return ExtVal; } // At this point we have: ext ty opnd to ty. // Reassign the uses of ExtInst to the opnd and remove ExtInst. Value *NextVal = ExtInst->getOperand(0); TPT.eraseInstruction(ExtInst, NextVal); return NextVal; } Value *TypePromotionHelper::promoteOperandForOther( Instruction *Ext, TypePromotionTransaction &TPT, InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, SmallVectorImpl<Instruction *> *Exts, SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, bool IsSExt) { // By construction, the operand of Ext is an instruction. Otherwise we cannot // get through it and this method should not be called. Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); CreatedInstsCost = 0; if (!ExtOpnd->hasOneUse()) { // ExtOpnd will be promoted. // All its uses, but Ext, will need to use a truncated value of the // promoted version. // Create the truncate now. Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { // Insert it just after the definition. ITrunc->moveAfter(ExtOpnd); if (Truncs) Truncs->push_back(ITrunc); } TPT.replaceAllUsesWith(ExtOpnd, Trunc); // Restore the operand of Ext (which has been replaced by the previous call // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. TPT.setOperand(Ext, 0, ExtOpnd); } // Get through the Instruction: // 1. Update its type. // 2. Replace the uses of Ext by Inst. // 3. Extend each operand that needs to be extended. // Remember the original type of the instruction before promotion. // This is useful to know that the high bits are sign extended bits. addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); // Step #1. TPT.mutateType(ExtOpnd, Ext->getType()); // Step #2. TPT.replaceAllUsesWith(Ext, ExtOpnd); // Step #3. Instruction *ExtForOpnd = Ext; LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; ++OpIdx) { LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || !shouldExtOperand(ExtOpnd, OpIdx)) { LLVM_DEBUG(dbgs() << "No need to propagate\n"); continue; } // Check if we can statically extend the operand. Value *Opnd = ExtOpnd->getOperand(OpIdx); if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { LLVM_DEBUG(dbgs() << "Statically extend\n"); unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) : Cst->getValue().zext(BitWidth); TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); continue; } // UndefValue are typed, so we have to statically sign extend them. if (isa<UndefValue>(Opnd)) { LLVM_DEBUG(dbgs() << "Statically extend\n"); TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); continue; } // Otherwise we have to explicitly sign extend the operand. // Check if Ext was reused to extend an operand. if (!ExtForOpnd) { // If yes, create a new one. LLVM_DEBUG(dbgs() << "More operands to ext\n"); Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) : TPT.createZExt(Ext, Opnd, Ext->getType()); if (!isa<Instruction>(ValForExtOpnd)) { TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); continue; } ExtForOpnd = cast<Instruction>(ValForExtOpnd); } if (Exts) Exts->push_back(ExtForOpnd); TPT.setOperand(ExtForOpnd, 0, Opnd); // Move the sign extension before the insertion point. TPT.moveBefore(ExtForOpnd, ExtOpnd); TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); // If more sext are required, new instructions will have to be created. ExtForOpnd = nullptr; } if (ExtForOpnd == Ext) { LLVM_DEBUG(dbgs() << "Extension is useless now\n"); TPT.eraseInstruction(Ext); } return ExtOpnd; } /// Check whether or not promoting an instruction to a wider type is profitable. /// \p NewCost gives the cost of extension instructions created by the /// promotion. /// \p OldCost gives the cost of extension instructions before the promotion /// plus the number of instructions that have been /// matched in the addressing mode the promotion. /// \p PromotedOperand is the value that has been promoted. /// \return True if the promotion is profitable, false otherwise. bool AddressingModeMatcher::isPromotionProfitable( unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); // The cost of the new extensions is greater than the cost of the // old extension plus what we folded. // This is not profitable. if (NewCost > OldCost) return false; if (NewCost < OldCost) return true; // The promotion is neutral but it may help folding the sign extension in // loads for instance. // Check that we did not create an illegal instruction. return isPromotedInstructionLegal(TLI, DL, PromotedOperand); } /// Given an instruction or constant expr, see if we can fold the operation /// into the addressing mode. If so, update the addressing mode and return /// true, otherwise return false without modifying AddrMode. /// If \p MovedAway is not NULL, it contains the information of whether or /// not AddrInst has to be folded into the addressing mode on success. /// If \p MovedAway == true, \p AddrInst will not be part of the addressing /// because it has been moved away. /// Thus AddrInst must not be added in the matched instructions. /// This state can happen when AddrInst is a sext, since it may be moved away. /// Therefore, AddrInst may not be valid when MovedAway is true and it must /// not be referenced anymore. bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, bool *MovedAway) { // Avoid exponential behavior on extremely deep expression trees. if (Depth >= 5) return false; // By default, all matched instructions stay in place. if (MovedAway) *MovedAway = false; switch (Opcode) { case Instruction::PtrToInt: // PtrToInt is always a noop, as we know that the int type is pointer sized. return matchAddr(AddrInst->getOperand(0), Depth); case Instruction::IntToPtr: { auto AS = AddrInst->getType()->getPointerAddressSpace(); auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); // This inttoptr is a no-op if the integer type is pointer sized. if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) return matchAddr(AddrInst->getOperand(0), Depth); return false; } case Instruction::BitCast: // BitCast is always a noop, and we can handle it as long as it is // int->int or pointer->pointer (we don't want int<->fp or something). if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && // Don't touch identity bitcasts. These were probably put here by LSR, // and we don't want to mess around with them. Assume it knows what it // is doing. AddrInst->getOperand(0)->getType() != AddrInst->getType()) return matchAddr(AddrInst->getOperand(0), Depth); return false; case Instruction::AddrSpaceCast: { unsigned SrcAS = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) return matchAddr(AddrInst->getOperand(0), Depth); return false; } case Instruction::Add: { // Check to see if we can merge in the RHS then the LHS. If so, we win. ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); // Start a transaction at this point. // The LHS may match but not the RHS. // Therefore, we need a higher level restoration point to undo partially // matched operation. TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); if (matchAddr(AddrInst->getOperand(1), Depth+1) && matchAddr(AddrInst->getOperand(0), Depth+1)) return true; // Restore the old addr mode info. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); TPT.rollback(LastKnownGood); // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. if (matchAddr(AddrInst->getOperand(0), Depth+1) && matchAddr(AddrInst->getOperand(1), Depth+1)) return true; // Otherwise we definitely can't merge the ADD in. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); TPT.rollback(LastKnownGood); break; } //case Instruction::Or: // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. //break; case Instruction::Mul: case Instruction::Shl: { // Can only handle X*C and X << C. ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); if (!RHS || RHS->getBitWidth() > 64) return false; int64_t Scale = RHS->getSExtValue(); if (Opcode == Instruction::Shl) Scale = 1LL << Scale; return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); } case Instruction::GetElementPtr: { // Scan the GEP. We check it if it contains constant offsets and at most // one variable offset. int VariableOperand = -1; unsigned VariableScale = 0; int64_t ConstantOffset = 0; gep_type_iterator GTI = gep_type_begin(AddrInst); for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { if (StructType *STy = GTI.getStructTypeOrNull()) { const StructLayout *SL = DL.getStructLayout(STy); unsigned Idx = cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); ConstantOffset += SL->getElementOffset(Idx); } else { uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { ConstantOffset += CI->getSExtValue() * TypeSize; } else if (TypeSize) { // Scales of zero don't do anything. // We only allow one variable index at the moment. if (VariableOperand != -1) return false; // Remember the variable index. VariableOperand = i; VariableScale = TypeSize; } } } // A common case is for the GEP to only do a constant offset. In this case, // just add it to the disp field and check validity. if (VariableOperand == -1) { AddrMode.BaseOffs += ConstantOffset; if (ConstantOffset == 0 || TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { // Check to see if we can fold the base pointer in too. if (matchAddr(AddrInst->getOperand(0), Depth+1)) return true; } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && ConstantOffset > 0) { // Record GEPs with non-zero offsets as candidates for splitting in the // event that the offset cannot fit into the r+i addressing mode. // Simple and common case that only one GEP is used in calculating the // address for the memory access. Value *Base = AddrInst->getOperand(0); auto *BaseI = dyn_cast<Instruction>(Base); auto *GEP = cast<GetElementPtrInst>(AddrInst); if (isa<Argument>(Base) || isa<GlobalValue>(Base) || (BaseI && !isa<CastInst>(BaseI) && !isa<GetElementPtrInst>(BaseI))) { // If the base is an instruction, make sure the GEP is not in the same // basic block as the base. If the base is an argument or global // value, make sure the GEP is not in the entry block. Otherwise, // instruction selection can undo the split. Also make sure the // parent block allows inserting non-PHI instructions before the // terminator. BasicBlock *Parent = BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); } } AddrMode.BaseOffs -= ConstantOffset; return false; } // Save the valid addressing mode in case we can't match. ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); // See if the scale and offset amount is valid for this target. AddrMode.BaseOffs += ConstantOffset; // Match the base operand of the GEP. if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { // If it couldn't be matched, just stuff the value in a register. if (AddrMode.HasBaseReg) { AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); return false; } AddrMode.HasBaseReg = true; AddrMode.BaseReg = AddrInst->getOperand(0); } // Match the remaining variable portion of the GEP. if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, Depth)) { // If it couldn't be matched, try stuffing the base into a register // instead of matching it, and retrying the match of the scale. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); if (AddrMode.HasBaseReg) return false; AddrMode.HasBaseReg = true; AddrMode.BaseReg = AddrInst->getOperand(0); AddrMode.BaseOffs += ConstantOffset; if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, Depth)) { // If even that didn't work, bail. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); return false; } } return true; } case Instruction::SExt: case Instruction::ZExt: { Instruction *Ext = dyn_cast<Instruction>(AddrInst); if (!Ext) return false; // Try to move this ext out of the way of the addressing mode. // Ask for a method for doing so. TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); if (!TPH) return false; TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); unsigned CreatedInstsCost = 0; unsigned ExtCost = !TLI.isExtFree(Ext); Value *PromotedOperand = TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); // SExt has been moved away. // Thus either it will be rematched later in the recursive calls or it is // gone. Anyway, we must not fold it into the addressing mode at this point. // E.g., // op = add opnd, 1 // idx = ext op // addr = gep base, idx // is now: // promotedOpnd = ext opnd <- no match here // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) // addr = gep base, op <- match if (MovedAway) *MovedAway = true; assert(PromotedOperand && "TypePromotionHelper should have filtered out those cases"); ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); if (!matchAddr(PromotedOperand, Depth) || // The total of the new cost is equal to the cost of the created // instructions. // The total of the old cost is equal to the cost of the extension plus // what we have saved in the addressing mode. !isPromotionProfitable(CreatedInstsCost, ExtCost + (AddrModeInsts.size() - OldSize), PromotedOperand)) { AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); TPT.rollback(LastKnownGood); return false; } return true; } } return false; } /// If we can, try to add the value of 'Addr' into the current addressing mode. /// If Addr can't be added to AddrMode this returns false and leaves AddrMode /// unmodified. This assumes that Addr is either a pointer type or intptr_t /// for the target. /// bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { // Start a transaction at this point that we will rollback if the matching // fails. TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { // Fold in immediates if legal for the target. AddrMode.BaseOffs += CI->getSExtValue(); if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) return true; AddrMode.BaseOffs -= CI->getSExtValue(); } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { // If this is a global variable, try to fold it into the addressing mode. if (!AddrMode.BaseGV) { AddrMode.BaseGV = GV; if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) return true; AddrMode.BaseGV = nullptr; } } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); // Check to see if it is possible to fold this operation. bool MovedAway = false; if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { // This instruction may have been moved away. If so, there is nothing // to check here. if (MovedAway) return true; // Okay, it's possible to fold this. Check to see if it is actually // *profitable* to do so. We use a simple cost model to avoid increasing // register pressure too much. if (I->hasOneUse() || isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { AddrModeInsts.push_back(I); return true; } // It isn't profitable to do this, roll back. //cerr << "NOT FOLDING: " << *I; AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); TPT.rollback(LastKnownGood); } } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { if (matchOperationAddr(CE, CE->getOpcode(), Depth)) return true; TPT.rollback(LastKnownGood); } else if (isa<ConstantPointerNull>(Addr)) { // Null pointer gets folded without affecting the addressing mode. return true; } // Worse case, the target should support [reg] addressing modes. :) if (!AddrMode.HasBaseReg) { AddrMode.HasBaseReg = true; AddrMode.BaseReg = Addr; // Still check for legality in case the target supports [imm] but not [i+r]. if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) return true; AddrMode.HasBaseReg = false; AddrMode.BaseReg = nullptr; } // If the base register is already taken, see if we can do [r+r]. if (AddrMode.Scale == 0) { AddrMode.Scale = 1; AddrMode.ScaledReg = Addr; if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) return true; AddrMode.Scale = 0; AddrMode.ScaledReg = nullptr; } // Couldn't match. TPT.rollback(LastKnownGood); return false; } /// Check to see if all uses of OpVal by the specified inline asm call are due /// to memory operands. If so, return true, otherwise return false. static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, const TargetLowering &TLI, const TargetRegisterInfo &TRI) { const Function *F = CI->getFunction(); TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, ImmutableCallSite(CI)); for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; // Compute the constraint code and ConstraintType to use. TLI.ComputeConstraintToUse(OpInfo, SDValue()); // If this asm operand is our Value*, and if it isn't an indirect memory // operand, we can't fold it! if (OpInfo.CallOperandVal == OpVal && (OpInfo.ConstraintType != TargetLowering::C_Memory || !OpInfo.isIndirect)) return false; } return true; } // Max number of memory uses to look at before aborting the search to conserve // compile time. static constexpr int MaxMemoryUsesToScan = 20; /// Recursively walk all the uses of I until we find a memory use. /// If we find an obviously non-foldable instruction, return true. /// Add the ultimately found memory instructions to MemoryUses. static bool FindAllMemoryUses( Instruction *I, SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, const TargetRegisterInfo &TRI, int SeenInsts = 0) { // If we already considered this instruction, we're done. if (!ConsideredInsts.insert(I).second) return false; // If this is an obviously unfoldable instruction, bail out. if (!MightBeFoldableInst(I)) return true; const bool OptSize = I->getFunction()->optForSize(); // Loop over all the uses, recursively processing them. for (Use &U : I->uses()) { // Conservatively return true if we're seeing a large number or a deep chain // of users. This avoids excessive compilation times in pathological cases. if (SeenInsts++ >= MaxMemoryUsesToScan) return true; Instruction *UserI = cast<Instruction>(U.getUser()); if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); continue; } if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { unsigned opNo = U.getOperandNo(); if (opNo != StoreInst::getPointerOperandIndex()) return true; // Storing addr, not into addr. MemoryUses.push_back(std::make_pair(SI, opNo)); continue; } if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { unsigned opNo = U.getOperandNo(); if (opNo != AtomicRMWInst::getPointerOperandIndex()) return true; // Storing addr, not into addr. MemoryUses.push_back(std::make_pair(RMW, opNo)); continue; } if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { unsigned opNo = U.getOperandNo(); if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) return true; // Storing addr, not into addr. MemoryUses.push_back(std::make_pair(CmpX, opNo)); continue; } if (CallInst *CI = dyn_cast<CallInst>(UserI)) { // If this is a cold call, we can sink the addressing calculation into // the cold path. See optimizeCallInst if (!OptSize && CI->hasFnAttr(Attribute::Cold)) continue; InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); if (!IA) return true; // If this is a memory operand, we're cool, otherwise bail out. if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) return true; continue; } if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, SeenInsts)) return true; } return false; } /// Return true if Val is already known to be live at the use site that we're /// folding it into. If so, there is no cost to include it in the addressing /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the /// instruction already. bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, Value *KnownLive2) { // If Val is either of the known-live values, we know it is live! if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) return true; // All values other than instructions and arguments (e.g. constants) are live. if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; // If Val is a constant sized alloca in the entry block, it is live, this is // true because it is just a reference to the stack/frame pointer, which is // live for the whole function. if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) if (AI->isStaticAlloca()) return true; // Check to see if this value is already used in the memory instruction's // block. If so, it's already live into the block at the very least, so we // can reasonably fold it. return Val->isUsedInBasicBlock(MemoryInst->getParent()); } /// It is possible for the addressing mode of the machine to fold the specified /// instruction into a load or store that ultimately uses it. /// However, the specified instruction has multiple uses. /// Given this, it may actually increase register pressure to fold it /// into the load. For example, consider this code: /// /// X = ... /// Y = X+1 /// use(Y) -> nonload/store /// Z = Y+1 /// load Z /// /// In this case, Y has multiple uses, and can be folded into the load of Z /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to /// be live at the use(Y) line. If we don't fold Y into load Z, we use one /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the /// number of computations either. /// /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If /// X was live across 'load Z' for other reasons, we actually *would* want to /// fold the addressing mode in the Z case. This would make Y die earlier. bool AddressingModeMatcher:: isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { if (IgnoreProfitability) return true; // AMBefore is the addressing mode before this instruction was folded into it, // and AMAfter is the addressing mode after the instruction was folded. Get // the set of registers referenced by AMAfter and subtract out those // referenced by AMBefore: this is the set of values which folding in this // address extends the lifetime of. // // Note that there are only two potential values being referenced here, // BaseReg and ScaleReg (global addresses are always available, as are any // folded immediates). Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; // If the BaseReg or ScaledReg was referenced by the previous addrmode, their // lifetime wasn't extended by adding this instruction. if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) BaseReg = nullptr; if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) ScaledReg = nullptr; // If folding this instruction (and it's subexprs) didn't extend any live // ranges, we're ok with it. if (!BaseReg && !ScaledReg) return true; // If all uses of this instruction can have the address mode sunk into them, // we can remove the addressing mode and effectively trade one live register // for another (at worst.) In this context, folding an addressing mode into // the use is just a particularly nice way of sinking it. SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; SmallPtrSet<Instruction*, 16> ConsideredInsts; if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) return false; // Has a non-memory, non-foldable use! // Now that we know that all uses of this instruction are part of a chain of // computation involving only operations that could theoretically be folded // into a memory use, loop over each of these memory operation uses and see // if they could *actually* fold the instruction. The assumption is that // addressing modes are cheap and that duplicating the computation involved // many times is worthwhile, even on a fastpath. For sinking candidates // (i.e. cold call sites), this serves as a way to prevent excessive code // growth since most architectures have some reasonable small and fast way to // compute an effective address. (i.e LEA on x86) SmallVector<Instruction*, 32> MatchedAddrModeInsts; for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { Instruction *User = MemoryUses[i].first; unsigned OpNo = MemoryUses[i].second; // Get the access type of this use. If the use isn't a pointer, we don't // know what it accesses. Value *Address = User->getOperand(OpNo); PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); if (!AddrTy) return false; Type *AddressAccessTy = AddrTy->getElementType(); unsigned AS = AddrTy->getAddressSpace(); // Do a match against the root of this address, ignoring profitability. This // will tell us if the addressing mode for the memory operation will // *actually* cover the shared instruction. ExtAddrMode Result; std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 0); TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); AddressingModeMatcher Matcher( MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); Matcher.IgnoreProfitability = true; bool Success = Matcher.matchAddr(Address, 0); (void)Success; assert(Success && "Couldn't select *anything*?"); // The match was to check the profitability, the changes made are not // part of the original matcher. Therefore, they should be dropped // otherwise the original matcher will not present the right state. TPT.rollback(LastKnownGood); // If the match didn't cover I, then it won't be shared by it. if (!is_contained(MatchedAddrModeInsts, I)) return false; MatchedAddrModeInsts.clear(); } return true; } /// Return true if the specified values are defined in a /// different basic block than BB. static bool IsNonLocalValue(Value *V, BasicBlock *BB) { if (Instruction *I = dyn_cast<Instruction>(V)) return I->getParent() != BB; return false; } /// Sink addressing mode computation immediate before MemoryInst if doing so /// can be done without increasing register pressure. The need for the /// register pressure constraint means this can end up being an all or nothing /// decision for all uses of the same addressing computation. /// /// Load and Store Instructions often have addressing modes that can do /// significant amounts of computation. As such, instruction selection will try /// to get the load or store to do as much computation as possible for the /// program. The problem is that isel can only see within a single block. As /// such, we sink as much legal addressing mode work into the block as possible. /// /// This method is used to optimize both load/store and inline asms with memory /// operands. It's also used to sink addressing computations feeding into cold /// call sites into their (cold) basic block. /// /// The motivation for handling sinking into cold blocks is that doing so can /// both enable other address mode sinking (by satisfying the register pressure /// constraint above), and reduce register pressure globally (by removing the /// addressing mode computation from the fast path entirely.). bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy, unsigned AddrSpace) { Value *Repl = Addr; // Try to collapse single-value PHI nodes. This is necessary to undo // unprofitable PRE transformations. SmallVector<Value*, 8> worklist; SmallPtrSet<Value*, 16> Visited; worklist.push_back(Addr); // Use a worklist to iteratively look through PHI and select nodes, and // ensure that the addressing mode obtained from the non-PHI/select roots of // the graph are compatible. bool PhiOrSelectSeen = false; SmallVector<Instruction*, 16> AddrModeInsts; const SimplifyQuery SQ(*DL, TLInfo); AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() }); TypePromotionTransaction TPT(RemovedInsts); TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); while (!worklist.empty()) { Value *V = worklist.back(); worklist.pop_back(); // We allow traversing cyclic Phi nodes. // In case of success after this loop we ensure that traversing through // Phi nodes ends up with all cases to compute address of the form // BaseGV + Base + Scale * Index + Offset // where Scale and Offset are constans and BaseGV, Base and Index // are exactly the same Values in all cases. // It means that BaseGV, Scale and Offset dominate our memory instruction // and have the same value as they had in address computation represented // as Phi. So we can safely sink address computation to memory instruction. if (!Visited.insert(V).second) continue; // For a PHI node, push all of its incoming values. if (PHINode *P = dyn_cast<PHINode>(V)) { for (Value *IncValue : P->incoming_values()) worklist.push_back(IncValue); PhiOrSelectSeen = true; continue; } // Similar for select. if (SelectInst *SI = dyn_cast<SelectInst>(V)) { worklist.push_back(SI->getFalseValue()); worklist.push_back(SI->getTrueValue()); PhiOrSelectSeen = true; continue; } // For non-PHIs, determine the addressing mode being computed. Note that // the result may differ depending on what other uses our candidate // addressing instructions might have. AddrModeInsts.clear(); std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 0); ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); GetElementPtrInst *GEP = LargeOffsetGEP.first; if (GEP && GEP->getParent() != MemoryInst->getParent() && !NewGEPBases.count(GEP)) { // If splitting the underlying data structure can reduce the offset of a // GEP, collect the GEP. Skip the GEPs that are the new bases of // previously split data structures. LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); } NewAddrMode.OriginalValue = V; if (!AddrModes.addNewAddrMode(NewAddrMode)) break; } // Try to combine the AddrModes we've collected. If we couldn't collect any, // or we have multiple but either couldn't combine them or combining them // wouldn't do anything useful, bail out now. if (!AddrModes.combineAddrModes()) { TPT.rollback(LastKnownGood); return false; } TPT.commit(); // Get the combined AddrMode (or the only AddrMode, if we only had one). ExtAddrMode AddrMode = AddrModes.getAddrMode(); // If all the instructions matched are already in this BB, don't do anything. // If we saw a Phi node then it is not local definitely, and if we saw a select // then we want to push the address calculation past it even if it's already // in this BB. if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { return IsNonLocalValue(V, MemoryInst->getParent()); })) { LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); return false; } // Insert this computation right after this user. Since our caller is // scanning from the top of the BB to the bottom, reuse of the expr are // guaranteed to happen later. IRBuilder<> Builder(MemoryInst); // Now that we determined the addressing expression we want to use and know // that we have to sink it into this block. Check to see if we have already // done this for some other load/store instr in this block. If so, reuse // the computation. Before attempting reuse, check if the address is valid // as it may have been erased. WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; if (SunkAddr) { LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"); if (SunkAddr->getType() != Addr->getType()) SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { // By default, we use the GEP-based method when AA is used later. This // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"); Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); Value *ResultPtr = nullptr, *ResultIndex = nullptr; // First, find the pointer. if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { ResultPtr = AddrMode.BaseReg; AddrMode.BaseReg = nullptr; } if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { // We can't add more than one pointer together, nor can we scale a // pointer (both of which seem meaningless). if (ResultPtr || AddrMode.Scale != 1) return false; ResultPtr = AddrMode.ScaledReg; AddrMode.Scale = 0; } // It is only safe to sign extend the BaseReg if we know that the math // required to create it did not overflow before we extend it. Since // the original IR value was tossed in favor of a constant back when // the AddrMode was created we need to bail out gracefully if widths // do not match instead of extending it. // // (See below for code to add the scale.) if (AddrMode.Scale) { Type *ScaledRegTy = AddrMode.ScaledReg->getType(); if (cast<IntegerType>(IntPtrTy)->getBitWidth() > cast<IntegerType>(ScaledRegTy)->getBitWidth()) return false; } if (AddrMode.BaseGV) { if (ResultPtr) return false; ResultPtr = AddrMode.BaseGV; } // If the real base value actually came from an inttoptr, then the matcher // will look through it and provide only the integer value. In that case, // use it here. if (!DL->isNonIntegralPointerType(Addr->getType())) { if (!ResultPtr && AddrMode.BaseReg) { ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); AddrMode.BaseReg = nullptr; } else if (!ResultPtr && AddrMode.Scale == 1) { ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); AddrMode.Scale = 0; } } if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { SunkAddr = Constant::getNullValue(Addr->getType()); } else if (!ResultPtr) { return false; } else { Type *I8PtrTy = Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); Type *I8Ty = Builder.getInt8Ty(); // Start with the base register. Do this first so that subsequent address // matching finds it last, which will prevent it from trying to match it // as the scaled value in case it happens to be a mul. That would be // problematic if we've sunk a different mul for the scale, because then // we'd end up sinking both muls. if (AddrMode.BaseReg) { Value *V = AddrMode.BaseReg; if (V->getType() != IntPtrTy) V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); ResultIndex = V; } // Add the scale value. if (AddrMode.Scale) { Value *V = AddrMode.ScaledReg; if (V->getType() == IntPtrTy) { // done. } else { assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < cast<IntegerType>(V->getType())->getBitWidth() && "We can't transform if ScaledReg is too narrow"); V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); } if (AddrMode.Scale != 1) V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), "sunkaddr"); if (ResultIndex) ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); else ResultIndex = V; } // Add in the Base Offset if present. if (AddrMode.BaseOffs) { Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); if (ResultIndex) { // We need to add this separately from the scale above to help with // SDAG consecutive load/store merging. if (ResultPtr->getType() != I8PtrTy) ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); } ResultIndex = V; } if (!ResultIndex) { SunkAddr = ResultPtr; } else { if (ResultPtr->getType() != I8PtrTy) ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); } if (SunkAddr->getType() != Addr->getType()) SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); } } else { // We'd require a ptrtoint/inttoptr down the line, which we can't do for // non-integral pointers, so in that case bail out now. Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); if (DL->isNonIntegralPointerType(Addr->getType()) || (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || (AddrMode.BaseGV && DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) return false; LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst << "\n"); Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); Value *Result = nullptr; // Start with the base register. Do this first so that subsequent address // matching finds it last, which will prevent it from trying to match it // as the scaled value in case it happens to be a mul. That would be // problematic if we've sunk a different mul for the scale, because then // we'd end up sinking both muls. if (AddrMode.BaseReg) { Value *V = AddrMode.BaseReg; if (V->getType()->isPointerTy()) V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); if (V->getType() != IntPtrTy) V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); Result = V; } // Add the scale value. if (AddrMode.Scale) { Value *V = AddrMode.ScaledReg; if (V->getType() == IntPtrTy) { // done. } else if (V->getType()->isPointerTy()) { V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < cast<IntegerType>(V->getType())->getBitWidth()) { V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); } else { // It is only safe to sign extend the BaseReg if we know that the math // required to create it did not overflow before we extend it. Since // the original IR value was tossed in favor of a constant back when // the AddrMode was created we need to bail out gracefully if widths // do not match instead of extending it. Instruction *I = dyn_cast_or_null<Instruction>(Result); if (I && (Result != AddrMode.BaseReg)) I->eraseFromParent(); return false; } if (AddrMode.Scale != 1) V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), "sunkaddr"); if (Result) Result = Builder.CreateAdd(Result, V, "sunkaddr"); else Result = V; } // Add in the BaseGV if present. if (AddrMode.BaseGV) { Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); if (Result) Result = Builder.CreateAdd(Result, V, "sunkaddr"); else Result = V; } // Add in the Base Offset if present. if (AddrMode.BaseOffs) { Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); if (Result) Result = Builder.CreateAdd(Result, V, "sunkaddr"); else Result = V; } if (!Result) SunkAddr = Constant::getNullValue(Addr->getType()); else SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); } MemoryInst->replaceUsesOfWith(Repl, SunkAddr); // Store the newly computed address into the cache. In the case we reused a // value, this should be idempotent. SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); // If we have no uses, recursively delete the value and all dead instructions // using it. if (Repl->use_empty()) { // This can cause recursive deletion, which can invalidate our iterator. // Use a WeakTrackingVH to hold onto it in case this happens. Value *CurValue = &*CurInstIterator; WeakTrackingVH IterHandle(CurValue); BasicBlock *BB = CurInstIterator->getParent(); RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); if (IterHandle != CurValue) { // If the iterator instruction was recursively deleted, start over at the // start of the block. CurInstIterator = BB->begin(); SunkAddrs.clear(); } } ++NumMemoryInsts; return true; } /// If there are any memory operands, use OptimizeMemoryInst to sink their /// address computing into the block when possible / profitable. bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { bool MadeChange = false; const TargetRegisterInfo *TRI = TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); TargetLowering::AsmOperandInfoVector TargetConstraints = TLI->ParseConstraints(*DL, TRI, CS); unsigned ArgNo = 0; for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; // Compute the constraint code and ConstraintType to use. TLI->ComputeConstraintToUse(OpInfo, SDValue()); if (OpInfo.ConstraintType == TargetLowering::C_Memory && OpInfo.isIndirect) { Value *OpVal = CS->getArgOperand(ArgNo++); MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); } else if (OpInfo.Type == InlineAsm::isInput) ArgNo++; } return MadeChange; } /// Check if all the uses of \p Val are equivalent (or free) zero or /// sign extensions. static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { assert(!Val->use_empty() && "Input must have at least one use"); const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); bool IsSExt = isa<SExtInst>(FirstUser); Type *ExtTy = FirstUser->getType(); for (const User *U : Val->users()) { const Instruction *UI = cast<Instruction>(U); if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) return false; Type *CurTy = UI->getType(); // Same input and output types: Same instruction after CSE. if (CurTy == ExtTy) continue; // If IsSExt is true, we are in this situation: // a = Val // b = sext ty1 a to ty2 // c = sext ty1 a to ty3 // Assuming ty2 is shorter than ty3, this could be turned into: // a = Val // b = sext ty1 a to ty2 // c = sext ty2 b to ty3 // However, the last sext is not free. if (IsSExt) return false; // This is a ZExt, maybe this is free to extend from one type to another. // In that case, we would not account for a different use. Type *NarrowTy; Type *LargeTy; if (ExtTy->getScalarType()->getIntegerBitWidth() > CurTy->getScalarType()->getIntegerBitWidth()) { NarrowTy = CurTy; LargeTy = ExtTy; } else { NarrowTy = ExtTy; LargeTy = CurTy; } if (!TLI.isZExtFree(NarrowTy, LargeTy)) return false; } // All uses are the same or can be derived from one another for free. return true; } /// Try to speculatively promote extensions in \p Exts and continue /// promoting through newly promoted operands recursively as far as doing so is /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. /// When some promotion happened, \p TPT contains the proper state to revert /// them. /// /// \return true if some promotion happened, false otherwise. bool CodeGenPrepare::tryToPromoteExts( TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, SmallVectorImpl<Instruction *> &ProfitablyMovedExts, unsigned CreatedInstsCost) { bool Promoted = false; // Iterate over all the extensions to try to promote them. for (auto I : Exts) { // Early check if we directly have ext(load). if (isa<LoadInst>(I->getOperand(0))) { ProfitablyMovedExts.push_back(I); continue; } // Check whether or not we want to do any promotion. The reason we have // this check inside the for loop is to catch the case where an extension // is directly fed by a load because in such case the extension can be moved // up without any promotion on its operands. if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) return false; // Get the action to perform the promotion. TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); // Check if we can promote. if (!TPH) { // Save the current extension as we cannot move up through its operand. ProfitablyMovedExts.push_back(I); continue; } // Save the current state. TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); SmallVector<Instruction *, 4> NewExts; unsigned NewCreatedInstsCost = 0; unsigned ExtCost = !TLI->isExtFree(I); // Promote. Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, &NewExts, nullptr, *TLI); assert(PromotedVal && "TypePromotionHelper should have filtered out those cases"); // We would be able to merge only one extension in a load. // Therefore, if we have more than 1 new extension we heuristically // cut this search path, because it means we degrade the code quality. // With exactly 2, the transformation is neutral, because we will merge // one extension but leave one. However, we optimistically keep going, // because the new extension may be removed too. long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; // FIXME: It would be possible to propagate a negative value instead of // conservatively ceiling it to 0. TotalCreatedInstsCost = std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); if (!StressExtLdPromotion && (TotalCreatedInstsCost > 1 || !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { // This promotion is not profitable, rollback to the previous state, and // save the current extension in ProfitablyMovedExts as the latest // speculative promotion turned out to be unprofitable. TPT.rollback(LastKnownGood); ProfitablyMovedExts.push_back(I); continue; } // Continue promoting NewExts as far as doing so is profitable. SmallVector<Instruction *, 2> NewlyMovedExts; (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); bool NewPromoted = false; for (auto ExtInst : NewlyMovedExts) { Instruction *MovedExt = cast<Instruction>(ExtInst); Value *ExtOperand = MovedExt->getOperand(0); // If we have reached to a load, we need this extra profitability check // as it could potentially be merged into an ext(load). if (isa<LoadInst>(ExtOperand) && !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) continue; ProfitablyMovedExts.push_back(MovedExt); NewPromoted = true; } // If none of speculative promotions for NewExts is profitable, rollback // and save the current extension (I) as the last profitable extension. if (!NewPromoted) { TPT.rollback(LastKnownGood); ProfitablyMovedExts.push_back(I); continue; } // The promotion is profitable. Promoted = true; } return Promoted; } /// Merging redundant sexts when one is dominating the other. bool CodeGenPrepare::mergeSExts(Function &F) { DominatorTree DT(F); bool Changed = false; for (auto &Entry : ValToSExtendedUses) { SExts &Insts = Entry.second; SExts CurPts; for (Instruction *Inst : Insts) { if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || Inst->getOperand(0) != Entry.first) continue; bool inserted = false; for (auto &Pt : CurPts) { if (DT.dominates(Inst, Pt)) { Pt->replaceAllUsesWith(Inst); RemovedInsts.insert(Pt); Pt->removeFromParent(); Pt = Inst; inserted = true; Changed = true; break; } if (!DT.dominates(Pt, Inst)) // Give up if we need to merge in a common dominator as the // experiments show it is not profitable. continue; Inst->replaceAllUsesWith(Pt); RemovedInsts.insert(Inst); Inst->removeFromParent(); inserted = true; Changed = true; break; } if (!inserted) CurPts.push_back(Inst); } } return Changed; } // Spliting large data structures so that the GEPs accessing them can have // smaller offsets so that they can be sunk to the same blocks as their users. // For example, a large struct starting from %base is splitted into two parts // where the second part starts from %new_base. // // Before: // BB0: // %base = // // BB1: // %gep0 = gep %base, off0 // %gep1 = gep %base, off1 // %gep2 = gep %base, off2 // // BB2: // %load1 = load %gep0 // %load2 = load %gep1 // %load3 = load %gep2 // // After: // BB0: // %base = // %new_base = gep %base, off0 // // BB1: // %new_gep0 = %new_base // %new_gep1 = gep %new_base, off1 - off0 // %new_gep2 = gep %new_base, off2 - off0 // // BB2: // %load1 = load i32, i32* %new_gep0 // %load2 = load i32, i32* %new_gep1 // %load3 = load i32, i32* %new_gep2 // // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because // their offsets are smaller enough to fit into the addressing mode. bool CodeGenPrepare::splitLargeGEPOffsets() { bool Changed = false; for (auto &Entry : LargeOffsetGEPMap) { Value *OldBase = Entry.first; SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> &LargeOffsetGEPs = Entry.second; auto compareGEPOffset = [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, const std::pair<GetElementPtrInst *, int64_t> &RHS) { if (LHS.first == RHS.first) return false; if (LHS.second != RHS.second) return LHS.second < RHS.second; return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; }; // Sorting all the GEPs of the same data structures based on the offsets. llvm::sort(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end(), compareGEPOffset); LargeOffsetGEPs.erase( std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), LargeOffsetGEPs.end()); // Skip if all the GEPs have the same offsets. if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) continue; GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; int64_t BaseOffset = LargeOffsetGEPs.begin()->second; Value *NewBaseGEP = nullptr; auto LargeOffsetGEP = LargeOffsetGEPs.begin(); while (LargeOffsetGEP != LargeOffsetGEPs.end()) { GetElementPtrInst *GEP = LargeOffsetGEP->first; int64_t Offset = LargeOffsetGEP->second; if (Offset != BaseOffset) { TargetLowering::AddrMode AddrMode; AddrMode.BaseOffs = Offset - BaseOffset; // The result type of the GEP might not be the type of the memory // access. if (!TLI->isLegalAddressingMode(*DL, AddrMode, GEP->getResultElementType(), GEP->getAddressSpace())) { // We need to create a new base if the offset to the current base is // too large to fit into the addressing mode. So, a very large struct // may be splitted into several parts. BaseGEP = GEP; BaseOffset = Offset; NewBaseGEP = nullptr; } } // Generate a new GEP to replace the current one. IRBuilder<> Builder(GEP); Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); Type *I8PtrTy = Builder.getInt8PtrTy(GEP->getType()->getPointerAddressSpace()); Type *I8Ty = Builder.getInt8Ty(); if (!NewBaseGEP) { // Create a new base if we don't have one yet. Find the insertion // pointer for the new base first. BasicBlock::iterator NewBaseInsertPt; BasicBlock *NewBaseInsertBB; if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { // If the base of the struct is an instruction, the new base will be // inserted close to it. NewBaseInsertBB = BaseI->getParent(); if (isa<PHINode>(BaseI)) NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { NewBaseInsertBB = SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); } else NewBaseInsertPt = std::next(BaseI->getIterator()); } else { // If the current base is an argument or global value, the new base // will be inserted to the entry block. NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); } IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); // Create a new base. Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); NewBaseGEP = OldBase; if (NewBaseGEP->getType() != I8PtrTy) NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); NewBaseGEP = NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); NewGEPBases.insert(NewBaseGEP); } Value *NewGEP = NewBaseGEP; if (Offset == BaseOffset) { if (GEP->getType() != I8PtrTy) NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); } else { // Calculate the new offset for the new GEP. Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); if (GEP->getType() != I8PtrTy) NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); } GEP->replaceAllUsesWith(NewGEP); LargeOffsetGEPID.erase(GEP); LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); GEP->eraseFromParent(); Changed = true; } } return Changed; } /// Return true, if an ext(load) can be formed from an extension in /// \p MovedExts. bool CodeGenPrepare::canFormExtLd( const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, Instruction *&Inst, bool HasPromoted) { for (auto *MovedExtInst : MovedExts) { if (isa<LoadInst>(MovedExtInst->getOperand(0))) { LI = cast<LoadInst>(MovedExtInst->getOperand(0)); Inst = MovedExtInst; break; } } if (!LI) return false; // If they're already in the same block, there's nothing to do. // Make the cheap checks first if we did not promote. // If we promoted, we need to check if it is indeed profitable. if (!HasPromoted && LI->getParent() == Inst->getParent()) return false; return TLI->isExtLoad(LI, Inst, *DL); } /// Move a zext or sext fed by a load into the same basic block as the load, /// unless conditions are unfavorable. This allows SelectionDAG to fold the /// extend into the load. /// /// E.g., /// \code /// %ld = load i32* %addr /// %add = add nuw i32 %ld, 4 /// %zext = zext i32 %add to i64 // \endcode /// => /// \code /// %ld = load i32* %addr /// %zext = zext i32 %ld to i64 /// %add = add nuw i64 %zext, 4 /// \encode /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which /// allow us to match zext(load i32*) to i64. /// /// Also, try to promote the computations used to obtain a sign extended /// value used into memory accesses. /// E.g., /// \code /// a = add nsw i32 b, 3 /// d = sext i32 a to i64 /// e = getelementptr ..., i64 d /// \endcode /// => /// \code /// f = sext i32 b to i64 /// a = add nsw i64 f, 3 /// e = getelementptr ..., i64 a /// \endcode /// /// \p Inst[in/out] the extension may be modified during the process if some /// promotions apply. bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { // ExtLoad formation and address type promotion infrastructure requires TLI to // be effective. if (!TLI) return false; bool AllowPromotionWithoutCommonHeader = false; /// See if it is an interesting sext operations for the address type /// promotion before trying to promote it, e.g., the ones with the right /// type and used in memory accesses. bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( *Inst, AllowPromotionWithoutCommonHeader); TypePromotionTransaction TPT(RemovedInsts); TypePromotionTransaction::ConstRestorationPt LastKnownGood = TPT.getRestorationPoint(); SmallVector<Instruction *, 1> Exts; SmallVector<Instruction *, 2> SpeculativelyMovedExts; Exts.push_back(Inst); bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); // Look for a load being extended. LoadInst *LI = nullptr; Instruction *ExtFedByLoad; // Try to promote a chain of computation if it allows to form an extended // load. if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { assert(LI && ExtFedByLoad && "Expect a valid load and extension"); TPT.commit(); // Move the extend into the same block as the load ExtFedByLoad->moveAfter(LI); // CGP does not check if the zext would be speculatively executed when moved // to the same basic block as the load. Preserving its original location // would pessimize the debugging experience, as well as negatively impact // the quality of sample pgo. We don't want to use "line 0" as that has a // size cost in the line-table section and logically the zext can be seen as // part of the load. Therefore we conservatively reuse the same debug // location for the load and the zext. ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); ++NumExtsMoved; Inst = ExtFedByLoad; return true; } // Continue promoting SExts if known as considerable depending on targets. if (ATPConsiderable && performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, HasPromoted, TPT, SpeculativelyMovedExts)) return true; TPT.rollback(LastKnownGood); return false; } // Perform address type promotion if doing so is profitable. // If AllowPromotionWithoutCommonHeader == false, we should find other sext // instructions that sign extended the same initial value. However, if // AllowPromotionWithoutCommonHeader == true, we expect promoting the // extension is just profitable. bool CodeGenPrepare::performAddressTypePromotion( Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, bool HasPromoted, TypePromotionTransaction &TPT, SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { bool Promoted = false; SmallPtrSet<Instruction *, 1> UnhandledExts; bool AllSeenFirst = true; for (auto I : SpeculativelyMovedExts) { Value *HeadOfChain = I->getOperand(0); DenseMap<Value *, Instruction *>::iterator AlreadySeen = SeenChainsForSExt.find(HeadOfChain); // If there is an unhandled SExt which has the same header, try to promote // it as well. if (AlreadySeen != SeenChainsForSExt.end()) { if (AlreadySeen->second != nullptr) UnhandledExts.insert(AlreadySeen->second); AllSeenFirst = false; } } if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && SpeculativelyMovedExts.size() == 1)) { TPT.commit(); if (HasPromoted) Promoted = true; for (auto I : SpeculativelyMovedExts) { Value *HeadOfChain = I->getOperand(0); SeenChainsForSExt[HeadOfChain] = nullptr; ValToSExtendedUses[HeadOfChain].push_back(I); } // Update Inst as promotion happen. Inst = SpeculativelyMovedExts.pop_back_val(); } else { // This is the first chain visited from the header, keep the current chain // as unhandled. Defer to promote this until we encounter another SExt // chain derived from the same header. for (auto I : SpeculativelyMovedExts) { Value *HeadOfChain = I->getOperand(0); SeenChainsForSExt[HeadOfChain] = Inst; } return false; } if (!AllSeenFirst && !UnhandledExts.empty()) for (auto VisitedSExt : UnhandledExts) { if (RemovedInsts.count(VisitedSExt)) continue; TypePromotionTransaction TPT(RemovedInsts); SmallVector<Instruction *, 1> Exts; SmallVector<Instruction *, 2> Chains; Exts.push_back(VisitedSExt); bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); TPT.commit(); if (HasPromoted) Promoted = true; for (auto I : Chains) { Value *HeadOfChain = I->getOperand(0); // Mark this as handled. SeenChainsForSExt[HeadOfChain] = nullptr; ValToSExtendedUses[HeadOfChain].push_back(I); } } return Promoted; } bool CodeGenPrepare::optimizeExtUses(Instruction *I) { BasicBlock *DefBB = I->getParent(); // If the result of a {s|z}ext and its source are both live out, rewrite all // other uses of the source with result of extension. Value *Src = I->getOperand(0); if (Src->hasOneUse()) return false; // Only do this xform if truncating is free. if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) return false; // Only safe to perform the optimization if the source is also defined in // this block. if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) return false; bool DefIsLiveOut = false; for (User *U : I->users()) { Instruction *UI = cast<Instruction>(U); // Figure out which BB this ext is used in. BasicBlock *UserBB = UI->getParent(); if (UserBB == DefBB) continue; DefIsLiveOut = true; break; } if (!DefIsLiveOut) return false; // Make sure none of the uses are PHI nodes. for (User *U : Src->users()) { Instruction *UI = cast<Instruction>(U); BasicBlock *UserBB = UI->getParent(); if (UserBB == DefBB) continue; // Be conservative. We don't want this xform to end up introducing // reloads just before load / store instructions. if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) return false; } // InsertedTruncs - Only insert one trunc in each block once. DenseMap<BasicBlock*, Instruction*> InsertedTruncs; bool MadeChange = false; for (Use &U : Src->uses()) { Instruction *User = cast<Instruction>(U.getUser()); // Figure out which BB this ext is used in. BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; // Both src and def are live in this block. Rewrite the use. Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; if (!InsertedTrunc) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); assert(InsertPt != UserBB->end()); InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); InsertedInsts.insert(InsertedTrunc); } // Replace a use of the {s|z}ext source with a use of the result. U = InsertedTrunc; ++NumExtUses; MadeChange = true; } return MadeChange; } // Find loads whose uses only use some of the loaded value's bits. Add an "and" // just after the load if the target can fold this into one extload instruction, // with the hope of eliminating some of the other later "and" instructions using // the loaded value. "and"s that are made trivially redundant by the insertion // of the new "and" are removed by this function, while others (e.g. those whose // path from the load goes through a phi) are left for isel to potentially // remove. // // For example: // // b0: // x = load i32 // ... // b1: // y = and x, 0xff // z = use y // // becomes: // // b0: // x = load i32 // x' = and x, 0xff // ... // b1: // z = use x' // // whereas: // // b0: // x1 = load i32 // ... // b1: // x2 = load i32 // ... // b2: // x = phi x1, x2 // y = and x, 0xff // // becomes (after a call to optimizeLoadExt for each load): // // b0: // x1 = load i32 // x1' = and x1, 0xff // ... // b1: // x2 = load i32 // x2' = and x2, 0xff // ... // b2: // x = phi x1', x2' // y = and x, 0xff bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) return false; // Skip loads we've already transformed. if (Load->hasOneUse() && InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) return false; // Look at all uses of Load, looking through phis, to determine how many bits // of the loaded value are needed. SmallVector<Instruction *, 8> WorkList; SmallPtrSet<Instruction *, 16> Visited; SmallVector<Instruction *, 8> AndsToMaybeRemove; for (auto *U : Load->users()) WorkList.push_back(cast<Instruction>(U)); EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); unsigned BitWidth = LoadResultVT.getSizeInBits(); APInt DemandBits(BitWidth, 0); APInt WidestAndBits(BitWidth, 0); while (!WorkList.empty()) { Instruction *I = WorkList.back(); WorkList.pop_back(); // Break use-def graph loops. if (!Visited.insert(I).second) continue; // For a PHI node, push all of its users. if (auto *Phi = dyn_cast<PHINode>(I)) { for (auto *U : Phi->users()) WorkList.push_back(cast<Instruction>(U)); continue; } switch (I->getOpcode()) { case Instruction::And: { auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); if (!AndC) return false; APInt AndBits = AndC->getValue(); DemandBits |= AndBits; // Keep track of the widest and mask we see. if (AndBits.ugt(WidestAndBits)) WidestAndBits = AndBits; if (AndBits == WidestAndBits && I->getOperand(0) == Load) AndsToMaybeRemove.push_back(I); break; } case Instruction::Shl: { auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); if (!ShlC) return false; uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); DemandBits.setLowBits(BitWidth - ShiftAmt); break; } case Instruction::Trunc: { EVT TruncVT = TLI->getValueType(*DL, I->getType()); unsigned TruncBitWidth = TruncVT.getSizeInBits(); DemandBits.setLowBits(TruncBitWidth); break; } default: return false; } } uint32_t ActiveBits = DemandBits.getActiveBits(); // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but // (and (load x) 1) is not matched as a single instruction, rather as a LDR // followed by an AND. // TODO: Look into removing this restriction by fixing backends to either // return false for isLoadExtLegal for i1 or have them select this pattern to // a single instruction. // // Also avoid hoisting if we didn't see any ands with the exact DemandBits // mask, since these are the only ands that will be removed by isel. if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || WidestAndBits != DemandBits) return false; LLVMContext &Ctx = Load->getType()->getContext(); Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); EVT TruncVT = TLI->getValueType(*DL, TruncTy); // Reject cases that won't be matched as extloads. if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) return false; IRBuilder<> Builder(Load->getNextNode()); auto *NewAnd = dyn_cast<Instruction>( Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); // Mark this instruction as "inserted by CGP", so that other // optimizations don't touch it. InsertedInsts.insert(NewAnd); // Replace all uses of load with new and (except for the use of load in the // new and itself). Load->replaceAllUsesWith(NewAnd); NewAnd->setOperand(0, Load); // Remove any and instructions that are now redundant. for (auto *And : AndsToMaybeRemove) // Check that the and mask is the same as the one we decided to put on the // new and. if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { And->replaceAllUsesWith(NewAnd); if (&*CurInstIterator == And) CurInstIterator = std::next(And->getIterator()); And->eraseFromParent(); ++NumAndUses; } ++NumAndsAdded; return true; } /// Check if V (an operand of a select instruction) is an expensive instruction /// that is only used once. static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { auto *I = dyn_cast<Instruction>(V); // If it's safe to speculatively execute, then it should not have side // effects; therefore, it's safe to sink and possibly *not* execute. return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; } /// Returns true if a SelectInst should be turned into an explicit branch. static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, const TargetLowering *TLI, SelectInst *SI) { // If even a predictable select is cheap, then a branch can't be cheaper. if (!TLI->isPredictableSelectExpensive()) return false; // FIXME: This should use the same heuristics as IfConversion to determine // whether a select is better represented as a branch. // If metadata tells us that the select condition is obviously predictable, // then we want to replace the select with a branch. uint64_t TrueWeight, FalseWeight; if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { uint64_t Max = std::max(TrueWeight, FalseWeight); uint64_t Sum = TrueWeight + FalseWeight; if (Sum != 0) { auto Probability = BranchProbability::getBranchProbability(Max, Sum); if (Probability > TLI->getPredictableBranchThreshold()) return true; } } CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); // If a branch is predictable, an out-of-order CPU can avoid blocking on its // comparison condition. If the compare has more than one use, there's // probably another cmov or setcc around, so it's not worth emitting a branch. if (!Cmp || !Cmp->hasOneUse()) return false; // If either operand of the select is expensive and only needed on one side // of the select, we should form a branch. if (sinkSelectOperand(TTI, SI->getTrueValue()) || sinkSelectOperand(TTI, SI->getFalseValue())) return true; return false; } /// If \p isTrue is true, return the true value of \p SI, otherwise return /// false value of \p SI. If the true/false value of \p SI is defined by any /// select instructions in \p Selects, look through the defining select /// instruction until the true/false value is not defined in \p Selects. static Value *getTrueOrFalseValue( SelectInst *SI, bool isTrue, const SmallPtrSet<const Instruction *, 2> &Selects) { Value *V; for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); DefSI = dyn_cast<SelectInst>(V)) { assert(DefSI->getCondition() == SI->getCondition() && "The condition of DefSI does not match with SI"); V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); } return V; } /// If we have a SelectInst that will likely profit from branch prediction, /// turn it into a branch. bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { // Find all consecutive select instructions that share the same condition. SmallVector<SelectInst *, 2> ASI; ASI.push_back(SI); for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); It != SI->getParent()->end(); ++It) { SelectInst *I = dyn_cast<SelectInst>(&*It); if (I && SI->getCondition() == I->getCondition()) { ASI.push_back(I); } else { break; } } SelectInst *LastSI = ASI.back(); // Increment the current iterator to skip all the rest of select instructions // because they will be either "not lowered" or "all lowered" to branch. CurInstIterator = std::next(LastSI->getIterator()); bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); // Can we convert the 'select' to CF ? if (DisableSelectToBranch || OptSize || !TLI || VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) return false; TargetLowering::SelectSupportKind SelectKind; if (VectorCond) SelectKind = TargetLowering::VectorMaskSelect; else if (SI->getType()->isVectorTy()) SelectKind = TargetLowering::ScalarCondVectorVal; else SelectKind = TargetLowering::ScalarValSelect; if (TLI->isSelectSupported(SelectKind) && !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) return false; ModifiedDT = true; // Transform a sequence like this: // start: // %cmp = cmp uge i32 %a, %b // %sel = select i1 %cmp, i32 %c, i32 %d // // Into: // start: // %cmp = cmp uge i32 %a, %b // br i1 %cmp, label %select.true, label %select.false // select.true: // br label %select.end // select.false: // br label %select.end // select.end: // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] // // In addition, we may sink instructions that produce %c or %d from // the entry block into the destination(s) of the new branch. // If the true or false blocks do not contain a sunken instruction, that // block and its branch may be optimized away. In that case, one side of the // first branch will point directly to select.end, and the corresponding PHI // predecessor block will be the start block. // First, we split the block containing the select into 2 blocks. BasicBlock *StartBlock = SI->getParent(); BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); // Delete the unconditional branch that was just created by the split. StartBlock->getTerminator()->eraseFromParent(); // These are the new basic blocks for the conditional branch. // At least one will become an actual new basic block. BasicBlock *TrueBlock = nullptr; BasicBlock *FalseBlock = nullptr; BranchInst *TrueBranch = nullptr; BranchInst *FalseBranch = nullptr; // Sink expensive instructions into the conditional blocks to avoid executing // them speculatively. for (SelectInst *SI : ASI) { if (sinkSelectOperand(TTI, SI->getTrueValue())) { if (TrueBlock == nullptr) { TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", EndBlock->getParent(), EndBlock); TrueBranch = BranchInst::Create(EndBlock, TrueBlock); } auto *TrueInst = cast<Instruction>(SI->getTrueValue()); TrueInst->moveBefore(TrueBranch); } if (sinkSelectOperand(TTI, SI->getFalseValue())) { if (FalseBlock == nullptr) { FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", EndBlock->getParent(), EndBlock); FalseBranch = BranchInst::Create(EndBlock, FalseBlock); } auto *FalseInst = cast<Instruction>(SI->getFalseValue()); FalseInst->moveBefore(FalseBranch); } } // If there was nothing to sink, then arbitrarily choose the 'false' side // for a new input value to the PHI. if (TrueBlock == FalseBlock) { assert(TrueBlock == nullptr && "Unexpected basic block transform while optimizing select"); FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", EndBlock->getParent(), EndBlock); BranchInst::Create(EndBlock, FalseBlock); } // Insert the real conditional branch based on the original condition. // If we did not create a new block for one of the 'true' or 'false' paths // of the condition, it means that side of the branch goes to the end block // directly and the path originates from the start block from the point of // view of the new PHI. BasicBlock *TT, *FT; if (TrueBlock == nullptr) { TT = EndBlock; FT = FalseBlock; TrueBlock = StartBlock; } else if (FalseBlock == nullptr) { TT = TrueBlock; FT = EndBlock; FalseBlock = StartBlock; } else { TT = TrueBlock; FT = FalseBlock; } IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); SmallPtrSet<const Instruction *, 2> INS; INS.insert(ASI.begin(), ASI.end()); // Use reverse iterator because later select may use the value of the // earlier select, and we need to propagate value through earlier select // to get the PHI operand. for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { SelectInst *SI = *It; // The select itself is replaced with a PHI Node. PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); PN->takeName(SI); PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); SI->replaceAllUsesWith(PN); SI->eraseFromParent(); INS.erase(SI); ++NumSelectsExpanded; } // Instruct OptimizeBlock to skip to the next block. CurInstIterator = StartBlock->end(); return true; } static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { SmallVector<int, 16> Mask(SVI->getShuffleMask()); int SplatElem = -1; for (unsigned i = 0; i < Mask.size(); ++i) { if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) return false; SplatElem = Mask[i]; } return true; } /// Some targets have expensive vector shifts if the lanes aren't all the same /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases /// it's often worth sinking a shufflevector splat down to its use so that /// codegen can spot all lanes are identical. bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { BasicBlock *DefBB = SVI->getParent(); // Only do this xform if variable vector shifts are particularly expensive. if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) return false; // We only expect better codegen by sinking a shuffle if we can recognise a // constant splat. if (!isBroadcastShuffle(SVI)) return false; // InsertedShuffles - Only insert a shuffle in each block once. DenseMap<BasicBlock*, Instruction*> InsertedShuffles; bool MadeChange = false; for (User *U : SVI->users()) { Instruction *UI = cast<Instruction>(U); // Figure out which BB this ext is used in. BasicBlock *UserBB = UI->getParent(); if (UserBB == DefBB) continue; // For now only apply this when the splat is used by a shift instruction. if (!UI->isShift()) continue; // Everything checks out, sink the shuffle if the user's block doesn't // already have a copy. Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; if (!InsertedShuffle) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); assert(InsertPt != UserBB->end()); InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), SVI->getOperand(2), "", &*InsertPt); } UI->replaceUsesOfWith(SVI, InsertedShuffle); MadeChange = true; } // If we removed all uses, nuke the shuffle. if (SVI->use_empty()) { SVI->eraseFromParent(); MadeChange = true; } return MadeChange; } bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { if (!TLI || !DL) return false; Value *Cond = SI->getCondition(); Type *OldType = Cond->getType(); LLVMContext &Context = Cond->getContext(); MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); unsigned RegWidth = RegType.getSizeInBits(); if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) return false; // If the register width is greater than the type width, expand the condition // of the switch instruction and each case constant to the width of the // register. By widening the type of the switch condition, subsequent // comparisons (for case comparisons) will not need to be extended to the // preferred register width, so we will potentially eliminate N-1 extends, // where N is the number of cases in the switch. auto *NewType = Type::getIntNTy(Context, RegWidth); // Zero-extend the switch condition and case constants unless the switch // condition is a function argument that is already being sign-extended. // In that case, we can avoid an unnecessary mask/extension by sign-extending // everything instead. Instruction::CastOps ExtType = Instruction::ZExt; if (auto *Arg = dyn_cast<Argument>(Cond)) if (Arg->hasSExtAttr()) ExtType = Instruction::SExt; auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); ExtInst->insertBefore(SI); SI->setCondition(ExtInst); for (auto Case : SI->cases()) { APInt NarrowConst = Case.getCaseValue()->getValue(); APInt WideConst = (ExtType == Instruction::ZExt) ? NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); Case.setValue(ConstantInt::get(Context, WideConst)); } return true; } namespace { /// Helper class to promote a scalar operation to a vector one. /// This class is used to move downward extractelement transition. /// E.g., /// a = vector_op <2 x i32> /// b = extractelement <2 x i32> a, i32 0 /// c = scalar_op b /// store c /// /// => /// a = vector_op <2 x i32> /// c = vector_op a (equivalent to scalar_op on the related lane) /// * d = extractelement <2 x i32> c, i32 0 /// * store d /// Assuming both extractelement and store can be combine, we get rid of the /// transition. class VectorPromoteHelper { /// DataLayout associated with the current module. const DataLayout &DL; /// Used to perform some checks on the legality of vector operations. const TargetLowering &TLI; /// Used to estimated the cost of the promoted chain. const TargetTransformInfo &TTI; /// The transition being moved downwards. Instruction *Transition; /// The sequence of instructions to be promoted. SmallVector<Instruction *, 4> InstsToBePromoted; /// Cost of combining a store and an extract. unsigned StoreExtractCombineCost; /// Instruction that will be combined with the transition. Instruction *CombineInst = nullptr; /// The instruction that represents the current end of the transition. /// Since we are faking the promotion until we reach the end of the chain /// of computation, we need a way to get the current end of the transition. Instruction *getEndOfTransition() const { if (InstsToBePromoted.empty()) return Transition; return InstsToBePromoted.back(); } /// Return the index of the original value in the transition. /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, /// c, is at index 0. unsigned getTransitionOriginalValueIdx() const { assert(isa<ExtractElementInst>(Transition) && "Other kind of transitions are not supported yet"); return 0; } /// Return the index of the index in the transition. /// E.g., for "extractelement <2 x i32> c, i32 0" the index /// is at index 1. unsigned getTransitionIdx() const { assert(isa<ExtractElementInst>(Transition) && "Other kind of transitions are not supported yet"); return 1; } /// Get the type of the transition. /// This is the type of the original value. /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the /// transition is <2 x i32>. Type *getTransitionType() const { return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); } /// Promote \p ToBePromoted by moving \p Def downward through. /// I.e., we have the following sequence: /// Def = Transition <ty1> a to <ty2> /// b = ToBePromoted <ty2> Def, ... /// => /// b = ToBePromoted <ty1> a, ... /// Def = Transition <ty1> ToBePromoted to <ty2> void promoteImpl(Instruction *ToBePromoted); /// Check whether or not it is profitable to promote all the /// instructions enqueued to be promoted. bool isProfitableToPromote() { Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); unsigned Index = isa<ConstantInt>(ValIdx) ? cast<ConstantInt>(ValIdx)->getZExtValue() : -1; Type *PromotedType = getTransitionType(); StoreInst *ST = cast<StoreInst>(CombineInst); unsigned AS = ST->getPointerAddressSpace(); unsigned Align = ST->getAlignment(); // Check if this store is supported. if (!TLI.allowsMisalignedMemoryAccesses( TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, Align)) { // If this is not supported, there is no way we can combine // the extract with the store. return false; } // The scalar chain of computation has to pay for the transition // scalar to vector. // The vector chain has to account for the combining cost. uint64_t ScalarCost = TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); uint64_t VectorCost = StoreExtractCombineCost; for (const auto &Inst : InstsToBePromoted) { // Compute the cost. // By construction, all instructions being promoted are arithmetic ones. // Moreover, one argument is a constant that can be viewed as a splat // constant. Value *Arg0 = Inst->getOperand(0); bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || isa<ConstantFP>(Arg0); TargetTransformInfo::OperandValueKind Arg0OVK = IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue : TargetTransformInfo::OK_AnyValue; TargetTransformInfo::OperandValueKind Arg1OVK = !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue : TargetTransformInfo::OK_AnyValue; ScalarCost += TTI.getArithmeticInstrCost( Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, Arg0OVK, Arg1OVK); } LLVM_DEBUG( dbgs() << "Estimated cost of computation to be promoted:\nScalar: " << ScalarCost << "\nVector: " << VectorCost << '\n'); return ScalarCost > VectorCost; } /// Generate a constant vector with \p Val with the same /// number of elements as the transition. /// \p UseSplat defines whether or not \p Val should be replicated /// across the whole vector. /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, /// otherwise we generate a vector with as many undef as possible: /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only /// used at the index of the extract. Value *getConstantVector(Constant *Val, bool UseSplat) const { unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); if (!UseSplat) { // If we cannot determine where the constant must be, we have to // use a splat constant. Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) ExtractIdx = CstVal->getSExtValue(); else UseSplat = true; } unsigned End = getTransitionType()->getVectorNumElements(); if (UseSplat) return ConstantVector::getSplat(End, Val); SmallVector<Constant *, 4> ConstVec; UndefValue *UndefVal = UndefValue::get(Val->getType()); for (unsigned Idx = 0; Idx != End; ++Idx) { if (Idx == ExtractIdx) ConstVec.push_back(Val); else ConstVec.push_back(UndefVal); } return ConstantVector::get(ConstVec); } /// Check if promoting to a vector type an operand at \p OperandIdx /// in \p Use can trigger undefined behavior. static bool canCauseUndefinedBehavior(const Instruction *Use, unsigned OperandIdx) { // This is not safe to introduce undef when the operand is on // the right hand side of a division-like instruction. if (OperandIdx != 1) return false; switch (Use->getOpcode()) { default: return false; case Instruction::SDiv: case Instruction::UDiv: case Instruction::SRem: case Instruction::URem: return true; case Instruction::FDiv: case Instruction::FRem: return !Use->hasNoNaNs(); } llvm_unreachable(nullptr); } public: VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, const TargetTransformInfo &TTI, Instruction *Transition, unsigned CombineCost) : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), StoreExtractCombineCost(CombineCost) { assert(Transition && "Do not know how to promote null"); } /// Check if we can promote \p ToBePromoted to \p Type. bool canPromote(const Instruction *ToBePromoted) const { // We could support CastInst too. return isa<BinaryOperator>(ToBePromoted); } /// Check if it is profitable to promote \p ToBePromoted /// by moving downward the transition through. bool shouldPromote(const Instruction *ToBePromoted) const { // Promote only if all the operands can be statically expanded. // Indeed, we do not want to introduce any new kind of transitions. for (const Use &U : ToBePromoted->operands()) { const Value *Val = U.get(); if (Val == getEndOfTransition()) { // If the use is a division and the transition is on the rhs, // we cannot promote the operation, otherwise we may create a // division by zero. if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) return false; continue; } if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && !isa<ConstantFP>(Val)) return false; } // Check that the resulting operation is legal. int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); if (!ISDOpcode) return false; return StressStoreExtract || TLI.isOperationLegalOrCustom( ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); } /// Check whether or not \p Use can be combined /// with the transition. /// I.e., is it possible to do Use(Transition) => AnotherUse? bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } /// Record \p ToBePromoted as part of the chain to be promoted. void enqueueForPromotion(Instruction *ToBePromoted) { InstsToBePromoted.push_back(ToBePromoted); } /// Set the instruction that will be combined with the transition. void recordCombineInstruction(Instruction *ToBeCombined) { assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); CombineInst = ToBeCombined; } /// Promote all the instructions enqueued for promotion if it is /// is profitable. /// \return True if the promotion happened, false otherwise. bool promote() { // Check if there is something to promote. // Right now, if we do not have anything to combine with, // we assume the promotion is not profitable. if (InstsToBePromoted.empty() || !CombineInst) return false; // Check cost. if (!StressStoreExtract && !isProfitableToPromote()) return false; // Promote. for (auto &ToBePromoted : InstsToBePromoted) promoteImpl(ToBePromoted); InstsToBePromoted.clear(); return true; } }; } // end anonymous namespace void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { // At this point, we know that all the operands of ToBePromoted but Def // can be statically promoted. // For Def, we need to use its parameter in ToBePromoted: // b = ToBePromoted ty1 a // Def = Transition ty1 b to ty2 // Move the transition down. // 1. Replace all uses of the promoted operation by the transition. // = ... b => = ... Def. assert(ToBePromoted->getType() == Transition->getType() && "The type of the result of the transition does not match " "the final type"); ToBePromoted->replaceAllUsesWith(Transition); // 2. Update the type of the uses. // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. Type *TransitionTy = getTransitionType(); ToBePromoted->mutateType(TransitionTy); // 3. Update all the operands of the promoted operation with promoted // operands. // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. for (Use &U : ToBePromoted->operands()) { Value *Val = U.get(); Value *NewVal = nullptr; if (Val == Transition) NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || isa<ConstantFP>(Val)) { // Use a splat constant if it is not safe to use undef. NewVal = getConstantVector( cast<Constant>(Val), isa<UndefValue>(Val) || canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); } else llvm_unreachable("Did you modified shouldPromote and forgot to update " "this?"); ToBePromoted->setOperand(U.getOperandNo(), NewVal); } Transition->moveAfter(ToBePromoted); Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); } /// Some targets can do store(extractelement) with one instruction. /// Try to push the extractelement towards the stores when the target /// has this feature and this is profitable. bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { unsigned CombineCost = std::numeric_limits<unsigned>::max(); if (DisableStoreExtract || !TLI || (!StressStoreExtract && !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), Inst->getOperand(1), CombineCost))) return false; // At this point we know that Inst is a vector to scalar transition. // Try to move it down the def-use chain, until: // - We can combine the transition with its single use // => we got rid of the transition. // - We escape the current basic block // => we would need to check that we are moving it at a cheaper place and // we do not do that for now. BasicBlock *Parent = Inst->getParent(); LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); // If the transition has more than one use, assume this is not going to be // beneficial. while (Inst->hasOneUse()) { Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); if (ToBePromoted->getParent() != Parent) { LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" << ToBePromoted->getParent()->getName() << ") than the transition (" << Parent->getName() << ").\n"); return false; } if (VPH.canCombine(ToBePromoted)) { LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' << "will be combined with: " << *ToBePromoted << '\n'); VPH.recordCombineInstruction(ToBePromoted); bool Changed = VPH.promote(); NumStoreExtractExposed += Changed; return Changed; } LLVM_DEBUG(dbgs() << "Try promoting.\n"); if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) return false; LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); VPH.enqueueForPromotion(ToBePromoted); Inst = ToBePromoted; } return false; } /// For the instruction sequence of store below, F and I values /// are bundled together as an i64 value before being stored into memory. /// Sometimes it is more efficient to generate separate stores for F and I, /// which can remove the bitwise instructions or sink them to colder places. /// /// (store (or (zext (bitcast F to i32) to i64), /// (shl (zext I to i64), 32)), addr) --> /// (store F, addr) and (store I, addr+4) /// /// Similarly, splitting for other merged store can also be beneficial, like: /// For pair of {i32, i32}, i64 store --> two i32 stores. /// For pair of {i32, i16}, i64 store --> two i32 stores. /// For pair of {i16, i16}, i32 store --> two i16 stores. /// For pair of {i16, i8}, i32 store --> two i16 stores. /// For pair of {i8, i8}, i16 store --> two i8 stores. /// /// We allow each target to determine specifically which kind of splitting is /// supported. /// /// The store patterns are commonly seen from the simple code snippet below /// if only std::make_pair(...) is sroa transformed before inlined into hoo. /// void goo(const std::pair<int, float> &); /// hoo() { /// ... /// goo(std::make_pair(tmp, ftmp)); /// ... /// } /// /// Although we already have similar splitting in DAG Combine, we duplicate /// it in CodeGenPrepare to catch the case in which pattern is across /// multiple BBs. The logic in DAG Combine is kept to catch case generated /// during code expansion. static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, const TargetLowering &TLI) { // Handle simple but common cases only. Type *StoreType = SI.getValueOperand()->getType(); if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || DL.getTypeSizeInBits(StoreType) == 0) return false; unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); if (DL.getTypeStoreSizeInBits(SplitStoreType) != DL.getTypeSizeInBits(SplitStoreType)) return false; // Match the following patterns: // (store (or (zext LValue to i64), // (shl (zext HValue to i64), 32)), HalfValBitSize) // or // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) // (zext LValue to i64), // Expect both operands of OR and the first operand of SHL have only // one use. Value *LValue, *HValue; if (!match(SI.getValueOperand(), m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), m_SpecificInt(HalfValBitSize)))))) return false; // Check LValue and HValue are int with size less or equal than 32. if (!LValue->getType()->isIntegerTy() || DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || !HValue->getType()->isIntegerTy() || DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) return false; // If LValue/HValue is a bitcast instruction, use the EVT before bitcast // as the input of target query. auto *LBC = dyn_cast<BitCastInst>(LValue); auto *HBC = dyn_cast<BitCastInst>(HValue); EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) : EVT::getEVT(LValue->getType()); EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) : EVT::getEVT(HValue->getType()); if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) return false; // Start to split store. IRBuilder<> Builder(SI.getContext()); Builder.SetInsertPoint(&SI); // If LValue/HValue is a bitcast in another BB, create a new one in current // BB so it may be merged with the splitted stores by dag combiner. if (LBC && LBC->getParent() != SI.getParent()) LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); if (HBC && HBC->getParent() != SI.getParent()) HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); auto CreateSplitStore = [&](Value *V, bool Upper) { V = Builder.CreateZExtOrBitCast(V, SplitStoreType); Value *Addr = Builder.CreateBitCast( SI.getOperand(1), SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); if ((IsLE && Upper) || (!IsLE && !Upper)) Addr = Builder.CreateGEP( SplitStoreType, Addr, ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); Builder.CreateAlignedStore( V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); }; CreateSplitStore(LValue, false); CreateSplitStore(HValue, true); // Delete the old store. SI.eraseFromParent(); return true; } // Return true if the GEP has two operands, the first operand is of a sequential // type, and the second operand is a constant. static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { gep_type_iterator I = gep_type_begin(*GEP); return GEP->getNumOperands() == 2 && I.isSequential() && isa<ConstantInt>(GEP->getOperand(1)); } // Try unmerging GEPs to reduce liveness interference (register pressure) across // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, // reducing liveness interference across those edges benefits global register // allocation. Currently handles only certain cases. // // For example, unmerge %GEPI and %UGEPI as below. // // ---------- BEFORE ---------- // SrcBlock: // ... // %GEPIOp = ... // ... // %GEPI = gep %GEPIOp, Idx // ... // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] // (* %GEPI is alive on the indirectbr edges due to other uses ahead) // (* %GEPIOp is alive on the indirectbr edges only because of it's used by // %UGEPI) // // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) // ... // // DstBi: // ... // %UGEPI = gep %GEPIOp, UIdx // ... // --------------------------- // // ---------- AFTER ---------- // SrcBlock: // ... (same as above) // (* %GEPI is still alive on the indirectbr edges) // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the // unmerging) // ... // // DstBi: // ... // %UGEPI = gep %GEPI, (UIdx-Idx) // ... // --------------------------- // // The register pressure on the IndirectBr edges is reduced because %GEPIOp is // no longer alive on them. // // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as // not to disable further simplications and optimizations as a result of GEP // merging. // // Note this unmerging may increase the length of the data flow critical path // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff // between the register pressure and the length of data-flow critical // path. Restricting this to the uncommon IndirectBr case would minimize the // impact of potentially longer critical path, if any, and the impact on compile // time. static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, const TargetTransformInfo *TTI) { BasicBlock *SrcBlock = GEPI->getParent(); // Check that SrcBlock ends with an IndirectBr. If not, give up. The common // (non-IndirectBr) cases exit early here. if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) return false; // Check that GEPI is a simple gep with a single constant index. if (!GEPSequentialConstIndexed(GEPI)) return false; ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); // Check that GEPI is a cheap one. if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) > TargetTransformInfo::TCC_Basic) return false; Value *GEPIOp = GEPI->getOperand(0); // Check that GEPIOp is an instruction that's also defined in SrcBlock. if (!isa<Instruction>(GEPIOp)) return false; auto *GEPIOpI = cast<Instruction>(GEPIOp); if (GEPIOpI->getParent() != SrcBlock) return false; // Check that GEP is used outside the block, meaning it's alive on the // IndirectBr edge(s). if (find_if(GEPI->users(), [&](User *Usr) { if (auto *I = dyn_cast<Instruction>(Usr)) { if (I->getParent() != SrcBlock) { return true; } } return false; }) == GEPI->users().end()) return false; // The second elements of the GEP chains to be unmerged. std::vector<GetElementPtrInst *> UGEPIs; // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive // on IndirectBr edges. for (User *Usr : GEPIOp->users()) { if (Usr == GEPI) continue; // Check if Usr is an Instruction. If not, give up. if (!isa<Instruction>(Usr)) return false; auto *UI = cast<Instruction>(Usr); // Check if Usr in the same block as GEPIOp, which is fine, skip. if (UI->getParent() == SrcBlock) continue; // Check if Usr is a GEP. If not, give up. if (!isa<GetElementPtrInst>(Usr)) return false; auto *UGEPI = cast<GetElementPtrInst>(Usr); // Check if UGEPI is a simple gep with a single constant index and GEPIOp is // the pointer operand to it. If so, record it in the vector. If not, give // up. if (!GEPSequentialConstIndexed(UGEPI)) return false; if (UGEPI->getOperand(0) != GEPIOp) return false; if (GEPIIdx->getType() != cast<ConstantInt>(UGEPI->getOperand(1))->getType()) return false; ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) > TargetTransformInfo::TCC_Basic) return false; UGEPIs.push_back(UGEPI); } if (UGEPIs.size() == 0) return false; // Check the materializing cost of (Uidx-Idx). for (GetElementPtrInst *UGEPI : UGEPIs) { ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); if (ImmCost > TargetTransformInfo::TCC_Basic) return false; } // Now unmerge between GEPI and UGEPIs. for (GetElementPtrInst *UGEPI : UGEPIs) { UGEPI->setOperand(0, GEPI); ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); Constant *NewUGEPIIdx = ConstantInt::get(GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue()); UGEPI->setOperand(1, NewUGEPIIdx); // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not // inbounds to avoid UB. if (!GEPI->isInBounds()) { UGEPI->setIsInBounds(false); } } // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not // alive on IndirectBr edges). assert(find_if(GEPIOp->users(), [&](User *Usr) { return cast<Instruction>(Usr)->getParent() != SrcBlock; }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); return true; } bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { // Bail out if we inserted the instruction to prevent optimizations from // stepping on each other's toes. if (InsertedInsts.count(I)) return false; if (PHINode *P = dyn_cast<PHINode>(I)) { // It is possible for very late stage optimizations (such as SimplifyCFG) // to introduce PHI nodes too late to be cleaned up. If we detect such a // trivial PHI, go ahead and zap it here. if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { P->replaceAllUsesWith(V); P->eraseFromParent(); ++NumPHIsElim; return true; } return false; } if (CastInst *CI = dyn_cast<CastInst>(I)) { // If the source of the cast is a constant, then this should have // already been constant folded. The only reason NOT to constant fold // it is if something (e.g. LSR) was careful to place the constant // evaluation in a block other than then one that uses it (e.g. to hoist // the address of globals out of a loop). If this is the case, we don't // want to forward-subst the cast. if (isa<Constant>(CI->getOperand(0))) return false; if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) return true; if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { /// Sink a zext or sext into its user blocks if the target type doesn't /// fit in one register if (TLI && TLI->getTypeAction(CI->getContext(), TLI->getValueType(*DL, CI->getType())) == TargetLowering::TypeExpandInteger) { return SinkCast(CI); } else { bool MadeChange = optimizeExt(I); return MadeChange | optimizeExtUses(I); } } return false; } if (CmpInst *CI = dyn_cast<CmpInst>(I)) if (!TLI || !TLI->hasMultipleConditionRegisters()) return OptimizeCmpExpression(CI, TLI); if (LoadInst *LI = dyn_cast<LoadInst>(I)) { LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); if (TLI) { bool Modified = optimizeLoadExt(LI); unsigned AS = LI->getPointerAddressSpace(); Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); return Modified; } return false; } if (StoreInst *SI = dyn_cast<StoreInst>(I)) { if (TLI && splitMergedValStore(*SI, *DL, *TLI)) return true; SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); if (TLI) { unsigned AS = SI->getPointerAddressSpace(); return optimizeMemoryInst(I, SI->getOperand(1), SI->getOperand(0)->getType(), AS); } return false; } if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { unsigned AS = RMW->getPointerAddressSpace(); return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS); } if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { unsigned AS = CmpX->getPointerAddressSpace(); return optimizeMemoryInst(I, CmpX->getPointerOperand(), CmpX->getCompareOperand()->getType(), AS); } BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking && TLI) return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); if (BinOp && (BinOp->getOpcode() == Instruction::AShr || BinOp->getOpcode() == Instruction::LShr)) { ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); if (TLI && CI && TLI->hasExtractBitsInsn()) return OptimizeExtractBits(BinOp, CI, *TLI, *DL); return false; } if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { if (GEPI->hasAllZeroIndices()) { /// The GEP operand must be a pointer, so must its result -> BitCast Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), GEPI->getName(), GEPI); NC->setDebugLoc(GEPI->getDebugLoc()); GEPI->replaceAllUsesWith(NC); GEPI->eraseFromParent(); ++NumGEPsElim; optimizeInst(NC, ModifiedDT); return true; } if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { return true; } return false; } if (CallInst *CI = dyn_cast<CallInst>(I)) return optimizeCallInst(CI, ModifiedDT); if (SelectInst *SI = dyn_cast<SelectInst>(I)) return optimizeSelectInst(SI); if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) return optimizeShuffleVectorInst(SVI); if (auto *Switch = dyn_cast<SwitchInst>(I)) return optimizeSwitchInst(Switch); if (isa<ExtractElementInst>(I)) return optimizeExtractElementInst(I); return false; } /// Given an OR instruction, check to see if this is a bitreverse /// idiom. If so, insert the new intrinsic and return true. static bool makeBitReverse(Instruction &I, const DataLayout &DL, const TargetLowering &TLI) { if (!I.getType()->isIntegerTy() || !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, TLI.getValueType(DL, I.getType(), true))) return false; SmallVector<Instruction*, 4> Insts; if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) return false; Instruction *LastInst = Insts.back(); I.replaceAllUsesWith(LastInst); RecursivelyDeleteTriviallyDeadInstructions(&I); return true; } // In this pass we look for GEP and cast instructions that are used // across basic blocks and rewrite them to improve basic-block-at-a-time // selection. bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { SunkAddrs.clear(); bool MadeChange = false; CurInstIterator = BB.begin(); while (CurInstIterator != BB.end()) { MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); if (ModifiedDT) return true; } bool MadeBitReverse = true; while (TLI && MadeBitReverse) { MadeBitReverse = false; for (auto &I : reverse(BB)) { if (makeBitReverse(I, *DL, *TLI)) { MadeBitReverse = MadeChange = true; ModifiedDT = true; break; } } } MadeChange |= dupRetToEnableTailCallOpts(&BB); return MadeChange; } // llvm.dbg.value is far away from the value then iSel may not be able // handle it properly. iSel will drop llvm.dbg.value if it can not // find a node corresponding to the value. bool CodeGenPrepare::placeDbgValues(Function &F) { bool MadeChange = false; for (BasicBlock &BB : F) { Instruction *PrevNonDbgInst = nullptr; for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { Instruction *Insn = &*BI++; DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); // Leave dbg.values that refer to an alloca alone. These // intrinsics describe the address of a variable (= the alloca) // being taken. They should not be moved next to the alloca // (and to the beginning of the scope), but rather stay close to // where said address is used. if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { PrevNonDbgInst = Insn; continue; } Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { // If VI is a phi in a block with an EHPad terminator, we can't insert // after it. if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) continue; LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); DVI->removeFromParent(); if (isa<PHINode>(VI)) DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); else DVI->insertAfter(VI); MadeChange = true; ++NumDbgValueMoved; } } } return MadeChange; } /// Scale down both weights to fit into uint32_t. static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; NewTrue = NewTrue / Scale; NewFalse = NewFalse / Scale; } /// Some targets prefer to split a conditional branch like: /// \code /// %0 = icmp ne i32 %a, 0 /// %1 = icmp ne i32 %b, 0 /// %or.cond = or i1 %0, %1 /// br i1 %or.cond, label %TrueBB, label %FalseBB /// \endcode /// into multiple branch instructions like: /// \code /// bb1: /// %0 = icmp ne i32 %a, 0 /// br i1 %0, label %TrueBB, label %bb2 /// bb2: /// %1 = icmp ne i32 %b, 0 /// br i1 %1, label %TrueBB, label %FalseBB /// \endcode /// This usually allows instruction selection to do even further optimizations /// and combine the compare with the branch instruction. Currently this is /// applied for targets which have "cheap" jump instructions. /// /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. /// bool CodeGenPrepare::splitBranchCondition(Function &F) { if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) return false; bool MadeChange = false; for (auto &BB : F) { // Does this BB end with the following? // %cond1 = icmp|fcmp|binary instruction ... // %cond2 = icmp|fcmp|binary instruction ... // %cond.or = or|and i1 %cond1, cond2 // br i1 %cond.or label %dest1, label %dest2" BinaryOperator *LogicOp; BasicBlock *TBB, *FBB; if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) continue; auto *Br1 = cast<BranchInst>(BB.getTerminator()); if (Br1->getMetadata(LLVMContext::MD_unpredictable)) continue; unsigned Opc; Value *Cond1, *Cond2; if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) Opc = Instruction::And; else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) Opc = Instruction::Or; else continue; if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) continue; LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); // Create a new BB. auto TmpBB = BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", BB.getParent(), BB.getNextNode()); // Update original basic block by using the first condition directly by the // branch instruction and removing the no longer needed and/or instruction. Br1->setCondition(Cond1); LogicOp->eraseFromParent(); // Depending on the condition we have to either replace the true or the // false successor of the original branch instruction. if (Opc == Instruction::And) Br1->setSuccessor(0, TmpBB); else Br1->setSuccessor(1, TmpBB); // Fill in the new basic block. auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); if (auto *I = dyn_cast<Instruction>(Cond2)) { I->removeFromParent(); I->insertBefore(Br2); } // Update PHI nodes in both successors. The original BB needs to be // replaced in one successor's PHI nodes, because the branch comes now from // the newly generated BB (NewBB). In the other successor we need to add one // incoming edge to the PHI nodes, because both branch instructions target // now the same successor. Depending on the original branch condition // (and/or) we have to swap the successors (TrueDest, FalseDest), so that // we perform the correct update for the PHI nodes. // This doesn't change the successor order of the just created branch // instruction (or any other instruction). if (Opc == Instruction::Or) std::swap(TBB, FBB); // Replace the old BB with the new BB. for (PHINode &PN : TBB->phis()) { int i; while ((i = PN.getBasicBlockIndex(&BB)) >= 0) PN.setIncomingBlock(i, TmpBB); } // Add another incoming edge form the new BB. for (PHINode &PN : FBB->phis()) { auto *Val = PN.getIncomingValueForBlock(&BB); PN.addIncoming(Val, TmpBB); } // Update the branch weights (from SelectionDAGBuilder:: // FindMergedConditions). if (Opc == Instruction::Or) { // Codegen X | Y as: // BB1: // jmp_if_X TBB // jmp TmpBB // TmpBB: // jmp_if_Y TBB // jmp FBB // // We have flexibility in setting Prob for BB1 and Prob for NewBB. // The requirement is that // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) // = TrueProb for original BB. // Assuming the original weights are A and B, one choice is to set BB1's // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice // assumes that // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. // Another choice is to assume TrueProb for BB1 equals to TrueProb for // TmpBB, but the math is more complicated. uint64_t TrueWeight, FalseWeight; if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { uint64_t NewTrueWeight = TrueWeight; uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; scaleWeights(NewTrueWeight, NewFalseWeight); Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) .createBranchWeights(TrueWeight, FalseWeight)); NewTrueWeight = TrueWeight; NewFalseWeight = 2 * FalseWeight; scaleWeights(NewTrueWeight, NewFalseWeight); Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) .createBranchWeights(TrueWeight, FalseWeight)); } } else { // Codegen X & Y as: // BB1: // jmp_if_X TmpBB // jmp FBB // TmpBB: // jmp_if_Y TBB // jmp FBB // // This requires creation of TmpBB after CurBB. // We have flexibility in setting Prob for BB1 and Prob for TmpBB. // The requirement is that // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) // = FalseProb for original BB. // Assuming the original weights are A and B, one choice is to set BB1's // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice // assumes that // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. uint64_t TrueWeight, FalseWeight; if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; uint64_t NewFalseWeight = FalseWeight; scaleWeights(NewTrueWeight, NewFalseWeight); Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) .createBranchWeights(TrueWeight, FalseWeight)); NewTrueWeight = 2 * TrueWeight; NewFalseWeight = FalseWeight; scaleWeights(NewTrueWeight, NewFalseWeight); Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) .createBranchWeights(TrueWeight, FalseWeight)); } } // Note: No point in getting fancy here, since the DT info is never // available to CodeGenPrepare. ModifiedDT = true; MadeChange = true; LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); TmpBB->dump()); } return MadeChange; }