//===- ExecutionDomainFix.cpp - Fix execution domain issues ----*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/ExecutionDomainFix.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" using namespace llvm; #define DEBUG_TYPE "execution-deps-fix" iterator_range<SmallVectorImpl<int>::const_iterator> ExecutionDomainFix::regIndices(unsigned Reg) const { assert(Reg < AliasMap.size() && "Invalid register"); const auto &Entry = AliasMap[Reg]; return make_range(Entry.begin(), Entry.end()); } DomainValue *ExecutionDomainFix::alloc(int domain) { DomainValue *dv = Avail.empty() ? new (Allocator.Allocate()) DomainValue : Avail.pop_back_val(); if (domain >= 0) dv->addDomain(domain); assert(dv->Refs == 0 && "Reference count wasn't cleared"); assert(!dv->Next && "Chained DomainValue shouldn't have been recycled"); return dv; } void ExecutionDomainFix::release(DomainValue *DV) { while (DV) { assert(DV->Refs && "Bad DomainValue"); if (--DV->Refs) return; // There are no more DV references. Collapse any contained instructions. if (DV->AvailableDomains && !DV->isCollapsed()) collapse(DV, DV->getFirstDomain()); DomainValue *Next = DV->Next; DV->clear(); Avail.push_back(DV); // Also release the next DomainValue in the chain. DV = Next; } } DomainValue *ExecutionDomainFix::resolve(DomainValue *&DVRef) { DomainValue *DV = DVRef; if (!DV || !DV->Next) return DV; // DV has a chain. Find the end. do DV = DV->Next; while (DV->Next); // Update DVRef to point to DV. retain(DV); release(DVRef); DVRef = DV; return DV; } void ExecutionDomainFix::setLiveReg(int rx, DomainValue *dv) { assert(unsigned(rx) < NumRegs && "Invalid index"); assert(!LiveRegs.empty() && "Must enter basic block first."); if (LiveRegs[rx] == dv) return; if (LiveRegs[rx]) release(LiveRegs[rx]); LiveRegs[rx] = retain(dv); } void ExecutionDomainFix::kill(int rx) { assert(unsigned(rx) < NumRegs && "Invalid index"); assert(!LiveRegs.empty() && "Must enter basic block first."); if (!LiveRegs[rx]) return; release(LiveRegs[rx]); LiveRegs[rx] = nullptr; } void ExecutionDomainFix::force(int rx, unsigned domain) { assert(unsigned(rx) < NumRegs && "Invalid index"); assert(!LiveRegs.empty() && "Must enter basic block first."); if (DomainValue *dv = LiveRegs[rx]) { if (dv->isCollapsed()) dv->addDomain(domain); else if (dv->hasDomain(domain)) collapse(dv, domain); else { // This is an incompatible open DomainValue. Collapse it to whatever and // force the new value into domain. This costs a domain crossing. collapse(dv, dv->getFirstDomain()); assert(LiveRegs[rx] && "Not live after collapse?"); LiveRegs[rx]->addDomain(domain); } } else { // Set up basic collapsed DomainValue. setLiveReg(rx, alloc(domain)); } } void ExecutionDomainFix::collapse(DomainValue *dv, unsigned domain) { assert(dv->hasDomain(domain) && "Cannot collapse"); // Collapse all the instructions. while (!dv->Instrs.empty()) TII->setExecutionDomain(*dv->Instrs.pop_back_val(), domain); dv->setSingleDomain(domain); // If there are multiple users, give them new, unique DomainValues. if (!LiveRegs.empty() && dv->Refs > 1) for (unsigned rx = 0; rx != NumRegs; ++rx) if (LiveRegs[rx] == dv) setLiveReg(rx, alloc(domain)); } bool ExecutionDomainFix::merge(DomainValue *A, DomainValue *B) { assert(!A->isCollapsed() && "Cannot merge into collapsed"); assert(!B->isCollapsed() && "Cannot merge from collapsed"); if (A == B) return true; // Restrict to the domains that A and B have in common. unsigned common = A->getCommonDomains(B->AvailableDomains); if (!common) return false; A->AvailableDomains = common; A->Instrs.append(B->Instrs.begin(), B->Instrs.end()); // Clear the old DomainValue so we won't try to swizzle instructions twice. B->clear(); // All uses of B are referred to A. B->Next = retain(A); for (unsigned rx = 0; rx != NumRegs; ++rx) { assert(!LiveRegs.empty() && "no space allocated for live registers"); if (LiveRegs[rx] == B) setLiveReg(rx, A); } return true; } void ExecutionDomainFix::enterBasicBlock( const LoopTraversal::TraversedMBBInfo &TraversedMBB) { MachineBasicBlock *MBB = TraversedMBB.MBB; // Set up LiveRegs to represent registers entering MBB. // Set default domain values to 'no domain' (nullptr) if (LiveRegs.empty()) LiveRegs.assign(NumRegs, nullptr); // This is the entry block. if (MBB->pred_empty()) { LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n"); return; } // Try to coalesce live-out registers from predecessors. for (MachineBasicBlock *pred : MBB->predecessors()) { assert(unsigned(pred->getNumber()) < MBBOutRegsInfos.size() && "Should have pre-allocated MBBInfos for all MBBs"); LiveRegsDVInfo &Incoming = MBBOutRegsInfos[pred->getNumber()]; // Incoming is null if this is a backedge from a BB // we haven't processed yet if (Incoming.empty()) continue; for (unsigned rx = 0; rx != NumRegs; ++rx) { DomainValue *pdv = resolve(Incoming[rx]); if (!pdv) continue; if (!LiveRegs[rx]) { setLiveReg(rx, pdv); continue; } // We have a live DomainValue from more than one predecessor. if (LiveRegs[rx]->isCollapsed()) { // We are already collapsed, but predecessor is not. Force it. unsigned Domain = LiveRegs[rx]->getFirstDomain(); if (!pdv->isCollapsed() && pdv->hasDomain(Domain)) collapse(pdv, Domain); continue; } // Currently open, merge in predecessor. if (!pdv->isCollapsed()) merge(LiveRegs[rx], pdv); else force(rx, pdv->getFirstDomain()); } } LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << (!TraversedMBB.IsDone ? ": incomplete\n" : ": all preds known\n")); } void ExecutionDomainFix::leaveBasicBlock( const LoopTraversal::TraversedMBBInfo &TraversedMBB) { assert(!LiveRegs.empty() && "Must enter basic block first."); unsigned MBBNumber = TraversedMBB.MBB->getNumber(); assert(MBBNumber < MBBOutRegsInfos.size() && "Unexpected basic block number."); // Save register clearances at end of MBB - used by enterBasicBlock(). for (DomainValue *OldLiveReg : MBBOutRegsInfos[MBBNumber]) { release(OldLiveReg); } MBBOutRegsInfos[MBBNumber] = LiveRegs; LiveRegs.clear(); } bool ExecutionDomainFix::visitInstr(MachineInstr *MI) { // Update instructions with explicit execution domains. std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(*MI); if (DomP.first) { if (DomP.second) visitSoftInstr(MI, DomP.second); else visitHardInstr(MI, DomP.first); } return !DomP.first; } void ExecutionDomainFix::processDefs(MachineInstr *MI, bool Kill) { assert(!MI->isDebugInstr() && "Won't process debug values"); const MCInstrDesc &MCID = MI->getDesc(); for (unsigned i = 0, e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; if (MO.isUse()) continue; for (int rx : regIndices(MO.getReg())) { // This instruction explicitly defines rx. LLVM_DEBUG(dbgs() << printReg(RC->getRegister(rx), TRI) << ":\t" << *MI); // Kill off domains redefined by generic instructions. if (Kill) kill(rx); } } } void ExecutionDomainFix::visitHardInstr(MachineInstr *mi, unsigned domain) { // Collapse all uses. for (unsigned i = mi->getDesc().getNumDefs(), e = mi->getDesc().getNumOperands(); i != e; ++i) { MachineOperand &mo = mi->getOperand(i); if (!mo.isReg()) continue; for (int rx : regIndices(mo.getReg())) { force(rx, domain); } } // Kill all defs and force them. for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) { MachineOperand &mo = mi->getOperand(i); if (!mo.isReg()) continue; for (int rx : regIndices(mo.getReg())) { kill(rx); force(rx, domain); } } } void ExecutionDomainFix::visitSoftInstr(MachineInstr *mi, unsigned mask) { // Bitmask of available domains for this instruction after taking collapsed // operands into account. unsigned available = mask; // Scan the explicit use operands for incoming domains. SmallVector<int, 4> used; if (!LiveRegs.empty()) for (unsigned i = mi->getDesc().getNumDefs(), e = mi->getDesc().getNumOperands(); i != e; ++i) { MachineOperand &mo = mi->getOperand(i); if (!mo.isReg()) continue; for (int rx : regIndices(mo.getReg())) { DomainValue *dv = LiveRegs[rx]; if (dv == nullptr) continue; // Bitmask of domains that dv and available have in common. unsigned common = dv->getCommonDomains(available); // Is it possible to use this collapsed register for free? if (dv->isCollapsed()) { // Restrict available domains to the ones in common with the operand. // If there are no common domains, we must pay the cross-domain // penalty for this operand. if (common) available = common; } else if (common) // Open DomainValue is compatible, save it for merging. used.push_back(rx); else // Open DomainValue is not compatible with instruction. It is useless // now. kill(rx); } } // If the collapsed operands force a single domain, propagate the collapse. if (isPowerOf2_32(available)) { unsigned domain = countTrailingZeros(available); TII->setExecutionDomain(*mi, domain); visitHardInstr(mi, domain); return; } // Kill off any remaining uses that don't match available, and build a list of // incoming DomainValues that we want to merge. SmallVector<int, 4> Regs; for (int rx : used) { assert(!LiveRegs.empty() && "no space allocated for live registers"); DomainValue *&LR = LiveRegs[rx]; // This useless DomainValue could have been missed above. if (!LR->getCommonDomains(available)) { kill(rx); continue; } // Sorted insertion. // Enables giving priority to the latest domains during merging. auto I = std::upper_bound( Regs.begin(), Regs.end(), rx, [&](int LHS, const int RHS) { return RDA->getReachingDef(mi, RC->getRegister(LHS)) < RDA->getReachingDef(mi, RC->getRegister(RHS)); }); Regs.insert(I, rx); } // doms are now sorted in order of appearance. Try to merge them all, giving // priority to the latest ones. DomainValue *dv = nullptr; while (!Regs.empty()) { if (!dv) { dv = LiveRegs[Regs.pop_back_val()]; // Force the first dv to match the current instruction. dv->AvailableDomains = dv->getCommonDomains(available); assert(dv->AvailableDomains && "Domain should have been filtered"); continue; } DomainValue *Latest = LiveRegs[Regs.pop_back_val()]; // Skip already merged values. if (Latest == dv || Latest->Next) continue; if (merge(dv, Latest)) continue; // If latest didn't merge, it is useless now. Kill all registers using it. for (int i : used) { assert(!LiveRegs.empty() && "no space allocated for live registers"); if (LiveRegs[i] == Latest) kill(i); } } // dv is the DomainValue we are going to use for this instruction. if (!dv) { dv = alloc(); dv->AvailableDomains = available; } dv->Instrs.push_back(mi); // Finally set all defs and non-collapsed uses to dv. We must iterate through // all the operators, including imp-def ones. for (MachineOperand &mo : mi->operands()) { if (!mo.isReg()) continue; for (int rx : regIndices(mo.getReg())) { if (!LiveRegs[rx] || (mo.isDef() && LiveRegs[rx] != dv)) { kill(rx); setLiveReg(rx, dv); } } } } void ExecutionDomainFix::processBasicBlock( const LoopTraversal::TraversedMBBInfo &TraversedMBB) { enterBasicBlock(TraversedMBB); // If this block is not done, it makes little sense to make any decisions // based on clearance information. We need to make a second pass anyway, // and by then we'll have better information, so we can avoid doing the work // to try and break dependencies now. for (MachineInstr &MI : *TraversedMBB.MBB) { if (!MI.isDebugInstr()) { bool Kill = false; if (TraversedMBB.PrimaryPass) Kill = visitInstr(&MI); processDefs(&MI, Kill); } } leaveBasicBlock(TraversedMBB); } bool ExecutionDomainFix::runOnMachineFunction(MachineFunction &mf) { if (skipFunction(mf.getFunction())) return false; MF = &mf; TII = MF->getSubtarget().getInstrInfo(); TRI = MF->getSubtarget().getRegisterInfo(); LiveRegs.clear(); assert(NumRegs == RC->getNumRegs() && "Bad regclass"); LLVM_DEBUG(dbgs() << "********** FIX EXECUTION DOMAIN: " << TRI->getRegClassName(RC) << " **********\n"); // If no relevant registers are used in the function, we can skip it // completely. bool anyregs = false; const MachineRegisterInfo &MRI = mf.getRegInfo(); for (unsigned Reg : *RC) { if (MRI.isPhysRegUsed(Reg)) { anyregs = true; break; } } if (!anyregs) return false; RDA = &getAnalysis<ReachingDefAnalysis>(); // Initialize the AliasMap on the first use. if (AliasMap.empty()) { // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and // therefore the LiveRegs array. AliasMap.resize(TRI->getNumRegs()); for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i) for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true); AI.isValid(); ++AI) AliasMap[*AI].push_back(i); } // Initialize the MBBOutRegsInfos MBBOutRegsInfos.resize(mf.getNumBlockIDs()); // Traverse the basic blocks. LoopTraversal Traversal; LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf); for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) { processBasicBlock(TraversedMBB); } for (LiveRegsDVInfo OutLiveRegs : MBBOutRegsInfos) { for (DomainValue *OutLiveReg : OutLiveRegs) { if (OutLiveReg) release(OutLiveReg); } } MBBOutRegsInfos.clear(); Avail.clear(); Allocator.DestroyAll(); return false; }