//===- LiveRangeShrink.cpp - Move instructions to shrink live range -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // ///===---------------------------------------------------------------------===// /// /// \file /// This pass moves instructions close to the definition of its operands to /// shrink live range of the def instruction. The code motion is limited within /// the basic block. The moved instruction should have 1 def, and more than one /// uses, all of which are the only use of the def. /// ///===---------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/iterator_range.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include <iterator> #include <utility> using namespace llvm; #define DEBUG_TYPE "lrshrink" STATISTIC(NumInstrsHoistedToShrinkLiveRange, "Number of insructions hoisted to shrink live range."); namespace { class LiveRangeShrink : public MachineFunctionPass { public: static char ID; LiveRangeShrink() : MachineFunctionPass(ID) { initializeLiveRangeShrinkPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } StringRef getPassName() const override { return "Live Range Shrink"; } bool runOnMachineFunction(MachineFunction &MF) override; }; } // end anonymous namespace char LiveRangeShrink::ID = 0; char &llvm::LiveRangeShrinkID = LiveRangeShrink::ID; INITIALIZE_PASS(LiveRangeShrink, "lrshrink", "Live Range Shrink Pass", false, false) using InstOrderMap = DenseMap<MachineInstr *, unsigned>; /// Returns \p New if it's dominated by \p Old, otherwise return \p Old. /// \p M maintains a map from instruction to its dominating order that satisfies /// M[A] > M[B] guarantees that A is dominated by B. /// If \p New is not in \p M, return \p Old. Otherwise if \p Old is null, return /// \p New. static MachineInstr *FindDominatedInstruction(MachineInstr &New, MachineInstr *Old, const InstOrderMap &M) { auto NewIter = M.find(&New); if (NewIter == M.end()) return Old; if (Old == nullptr) return &New; unsigned OrderOld = M.find(Old)->second; unsigned OrderNew = NewIter->second; if (OrderOld != OrderNew) return OrderOld < OrderNew ? &New : Old; // OrderOld == OrderNew, we need to iterate down from Old to see if it // can reach New, if yes, New is dominated by Old. for (MachineInstr *I = Old->getNextNode(); M.find(I)->second == OrderNew; I = I->getNextNode()) if (I == &New) return &New; return Old; } /// Builds Instruction to its dominating order number map \p M by traversing /// from instruction \p Start. static void BuildInstOrderMap(MachineBasicBlock::iterator Start, InstOrderMap &M) { M.clear(); unsigned i = 0; for (MachineInstr &I : make_range(Start, Start->getParent()->end())) M[&I] = i++; } bool LiveRangeShrink::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; MachineRegisterInfo &MRI = MF.getRegInfo(); LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n'); InstOrderMap IOM; // Map from register to instruction order (value of IOM) where the // register is used last. When moving instructions up, we need to // make sure all its defs (including dead def) will not cross its // last use when moving up. DenseMap<unsigned, std::pair<unsigned, MachineInstr *>> UseMap; for (MachineBasicBlock &MBB : MF) { if (MBB.empty()) continue; bool SawStore = false; BuildInstOrderMap(MBB.begin(), IOM); UseMap.clear(); for (MachineBasicBlock::iterator Next = MBB.begin(); Next != MBB.end();) { MachineInstr &MI = *Next; ++Next; if (MI.isPHI() || MI.isDebugInstr()) continue; if (MI.mayStore()) SawStore = true; unsigned CurrentOrder = IOM[&MI]; unsigned Barrier = 0; MachineInstr *BarrierMI = nullptr; for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg() || MO.isDebug()) continue; if (MO.isUse()) UseMap[MO.getReg()] = std::make_pair(CurrentOrder, &MI); else if (MO.isDead() && UseMap.count(MO.getReg())) // Barrier is the last instruction where MO get used. MI should not // be moved above Barrier. if (Barrier < UseMap[MO.getReg()].first) { Barrier = UseMap[MO.getReg()].first; BarrierMI = UseMap[MO.getReg()].second; } } if (!MI.isSafeToMove(nullptr, SawStore)) { // If MI has side effects, it should become a barrier for code motion. // IOM is rebuild from the next instruction to prevent later // instructions from being moved before this MI. if (MI.hasUnmodeledSideEffects() && Next != MBB.end()) { BuildInstOrderMap(Next, IOM); SawStore = false; } continue; } const MachineOperand *DefMO = nullptr; MachineInstr *Insert = nullptr; // Number of live-ranges that will be shortened. We do not count // live-ranges that are defined by a COPY as it could be coalesced later. unsigned NumEligibleUse = 0; for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg() || MO.isDead() || MO.isDebug()) continue; unsigned Reg = MO.getReg(); // Do not move the instruction if it def/uses a physical register, // unless it is a constant physical register or a noreg. if (!TargetRegisterInfo::isVirtualRegister(Reg)) { if (!Reg || MRI.isConstantPhysReg(Reg)) continue; Insert = nullptr; break; } if (MO.isDef()) { // Do not move if there is more than one def. if (DefMO) { Insert = nullptr; break; } DefMO = &MO; } else if (MRI.hasOneNonDBGUse(Reg) && MRI.hasOneDef(Reg) && DefMO && MRI.getRegClass(DefMO->getReg()) == MRI.getRegClass(MO.getReg())) { // The heuristic does not handle different register classes yet // (registers of different sizes, looser/tighter constraints). This // is because it needs more accurate model to handle register // pressure correctly. MachineInstr &DefInstr = *MRI.def_instr_begin(Reg); if (!DefInstr.isCopy()) NumEligibleUse++; Insert = FindDominatedInstruction(DefInstr, Insert, IOM); } else { Insert = nullptr; break; } } // If Barrier equals IOM[I], traverse forward to find if BarrierMI is // after Insert, if yes, then we should not hoist. for (MachineInstr *I = Insert; I && IOM[I] == Barrier; I = I->getNextNode()) if (I == BarrierMI) { Insert = nullptr; break; } // Move the instruction when # of shrunk live range > 1. if (DefMO && Insert && NumEligibleUse > 1 && Barrier <= IOM[Insert]) { MachineBasicBlock::iterator I = std::next(Insert->getIterator()); // Skip all the PHI and debug instructions. while (I != MBB.end() && (I->isPHI() || I->isDebugInstr())) I = std::next(I); if (I == MI.getIterator()) continue; // Update the dominator order to be the same as the insertion point. // We do this to maintain a non-decreasing order without need to update // all instruction orders after the insertion point. unsigned NewOrder = IOM[&*I]; IOM[&MI] = NewOrder; NumInstrsHoistedToShrinkLiveRange++; // Find MI's debug value following MI. MachineBasicBlock::iterator EndIter = std::next(MI.getIterator()); if (MI.getOperand(0).isReg()) for (; EndIter != MBB.end() && EndIter->isDebugValue() && EndIter->getOperand(0).isReg() && EndIter->getOperand(0).getReg() == MI.getOperand(0).getReg(); ++EndIter, ++Next) IOM[&*EndIter] = NewOrder; MBB.splice(I, &MBB, MI.getIterator(), EndIter); } } } return false; }