//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the generic RegisterCoalescer interface which // is used as the common interface used by all clients and // implementations of register coalescing. // //===----------------------------------------------------------------------===// #include "RegisterCoalescer.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/LiveRangeEdit.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DebugLoc.h" #include "llvm/MC/LaneBitmask.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cassert> #include <iterator> #include <limits> #include <tuple> #include <utility> #include <vector> using namespace llvm; #define DEBUG_TYPE "regalloc" STATISTIC(numJoins , "Number of interval joins performed"); STATISTIC(numCrossRCs , "Number of cross class joins performed"); STATISTIC(numCommutes , "Number of instruction commuting performed"); STATISTIC(numExtends , "Number of copies extended"); STATISTIC(NumReMats , "Number of instructions re-materialized"); STATISTIC(NumInflated , "Number of register classes inflated"); STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); static cl::opt<bool> EnableJoining("join-liveintervals", cl::desc("Coalesce copies (default=true)"), cl::init(true), cl::Hidden); static cl::opt<bool> UseTerminalRule("terminal-rule", cl::desc("Apply the terminal rule"), cl::init(false), cl::Hidden); /// Temporary flag to test critical edge unsplitting. static cl::opt<bool> EnableJoinSplits("join-splitedges", cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); /// Temporary flag to test global copy optimization. static cl::opt<cl::boolOrDefault> EnableGlobalCopies("join-globalcopies", cl::desc("Coalesce copies that span blocks (default=subtarget)"), cl::init(cl::BOU_UNSET), cl::Hidden); static cl::opt<bool> VerifyCoalescing("verify-coalescing", cl::desc("Verify machine instrs before and after register coalescing"), cl::Hidden); namespace { class RegisterCoalescer : public MachineFunctionPass, private LiveRangeEdit::Delegate { MachineFunction* MF; MachineRegisterInfo* MRI; const TargetRegisterInfo* TRI; const TargetInstrInfo* TII; LiveIntervals *LIS; const MachineLoopInfo* Loops; AliasAnalysis *AA; RegisterClassInfo RegClassInfo; /// A LaneMask to remember on which subregister live ranges we need to call /// shrinkToUses() later. LaneBitmask ShrinkMask; /// True if the main range of the currently coalesced intervals should be /// checked for smaller live intervals. bool ShrinkMainRange; /// True if the coalescer should aggressively coalesce global copies /// in favor of keeping local copies. bool JoinGlobalCopies; /// True if the coalescer should aggressively coalesce fall-thru /// blocks exclusively containing copies. bool JoinSplitEdges; /// Copy instructions yet to be coalesced. SmallVector<MachineInstr*, 8> WorkList; SmallVector<MachineInstr*, 8> LocalWorkList; /// Set of instruction pointers that have been erased, and /// that may be present in WorkList. SmallPtrSet<MachineInstr*, 8> ErasedInstrs; /// Dead instructions that are about to be deleted. SmallVector<MachineInstr*, 8> DeadDefs; /// Virtual registers to be considered for register class inflation. SmallVector<unsigned, 8> InflateRegs; /// Recursively eliminate dead defs in DeadDefs. void eliminateDeadDefs(); /// LiveRangeEdit callback for eliminateDeadDefs(). void LRE_WillEraseInstruction(MachineInstr *MI) override; /// Coalesce the LocalWorkList. void coalesceLocals(); /// Join compatible live intervals void joinAllIntervals(); /// Coalesce copies in the specified MBB, putting /// copies that cannot yet be coalesced into WorkList. void copyCoalesceInMBB(MachineBasicBlock *MBB); /// Tries to coalesce all copies in CurrList. Returns true if any progress /// was made. bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the /// src/dst of the copy instruction CopyMI. This returns true if the copy /// was successfully coalesced away. If it is not currently possible to /// coalesce this interval, but it may be possible if other things get /// coalesced, then it returns true by reference in 'Again'. bool joinCopy(MachineInstr *CopyMI, bool &Again); /// Attempt to join these two intervals. On failure, this /// returns false. The output "SrcInt" will not have been modified, so we /// can use this information below to update aliases. bool joinIntervals(CoalescerPair &CP); /// Attempt joining two virtual registers. Return true on success. bool joinVirtRegs(CoalescerPair &CP); /// Attempt joining with a reserved physreg. bool joinReservedPhysReg(CoalescerPair &CP); /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. /// Subranges in @p LI which only partially interfere with the desired /// LaneMask are split as necessary. @p LaneMask are the lanes that /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange /// lanemasks already adjusted to the coalesced register. void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, LaneBitmask LaneMask, CoalescerPair &CP); /// Join the liveranges of two subregisters. Joins @p RRange into /// @p LRange, @p RRange may be invalid afterwards. void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, LaneBitmask LaneMask, const CoalescerPair &CP); /// We found a non-trivially-coalescable copy. If the source value number is /// defined by a copy from the destination reg see if we can merge these two /// destination reg valno# into a single value number, eliminating a copy. /// This returns true if an interval was modified. bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); /// Return true if there are definitions of IntB /// other than BValNo val# that can reach uses of AValno val# of IntA. bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, VNInfo *AValNo, VNInfo *BValNo); /// We found a non-trivially-coalescable copy. /// If the source value number is defined by a commutable instruction and /// its other operand is coalesced to the copy dest register, see if we /// can transform the copy into a noop by commuting the definition. /// This returns true if an interval was modified. bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI); /// We found a copy which can be moved to its less frequent predecessor. bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); /// If the source of a copy is defined by a /// trivial computation, replace the copy by rematerialize the definition. bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, bool &IsDefCopy); /// Return true if a copy involving a physreg should be joined. bool canJoinPhys(const CoalescerPair &CP); /// Replace all defs and uses of SrcReg to DstReg and update the subregister /// number if it is not zero. If DstReg is a physical register and the /// existing subregister number of the def / use being updated is not zero, /// make sure to set it to the correct physical subregister. void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx); /// If the given machine operand reads only undefined lanes add an undef /// flag. /// This can happen when undef uses were previously concealed by a copy /// which we coalesced. Example: /// %0:sub0<def,read-undef> = ... /// %1 = COPY %0 <-- Coalescing COPY reveals undef /// = use %1:sub1 <-- hidden undef use void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, MachineOperand &MO, unsigned SubRegIdx); /// Handle copies of undef values. If the undef value is an incoming /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF. /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise, /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point). MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI); /// Check whether or not we should apply the terminal rule on the /// destination (Dst) of \p Copy. /// When the terminal rule applies, Copy is not profitable to /// coalesce. /// Dst is terminal if it has exactly one affinity (Dst, Src) and /// at least one interference (Dst, Dst2). If Dst is terminal, the /// terminal rule consists in checking that at least one of /// interfering node, say Dst2, has an affinity of equal or greater /// weight with Src. /// In that case, Dst2 and Dst will not be able to be both coalesced /// with Src. Since Dst2 exposes more coalescing opportunities than /// Dst, we can drop \p Copy. bool applyTerminalRule(const MachineInstr &Copy) const; /// Wrapper method for \see LiveIntervals::shrinkToUses. /// This method does the proper fixing of the live-ranges when the afore /// mentioned method returns true. void shrinkToUses(LiveInterval *LI, SmallVectorImpl<MachineInstr * > *Dead = nullptr) { if (LIS->shrinkToUses(LI, Dead)) { /// Check whether or not \p LI is composed by multiple connected /// components and if that is the case, fix that. SmallVector<LiveInterval*, 8> SplitLIs; LIS->splitSeparateComponents(*LI, SplitLIs); } } /// Wrapper Method to do all the necessary work when an Instruction is /// deleted. /// Optimizations should use this to make sure that deleted instructions /// are always accounted for. void deleteInstr(MachineInstr* MI) { ErasedInstrs.insert(MI); LIS->RemoveMachineInstrFromMaps(*MI); MI->eraseFromParent(); } public: static char ID; ///< Class identification, replacement for typeinfo RegisterCoalescer() : MachineFunctionPass(ID) { initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override; void releaseMemory() override; /// This is the pass entry point. bool runOnMachineFunction(MachineFunction&) override; /// Implement the dump method. void print(raw_ostream &O, const Module* = nullptr) const override; }; } // end anonymous namespace char RegisterCoalescer::ID = 0; char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", "Simple Register Coalescing", false, false) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", "Simple Register Coalescing", false, false) static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI, unsigned &Src, unsigned &Dst, unsigned &SrcSub, unsigned &DstSub) { if (MI->isCopy()) { Dst = MI->getOperand(0).getReg(); DstSub = MI->getOperand(0).getSubReg(); Src = MI->getOperand(1).getReg(); SrcSub = MI->getOperand(1).getSubReg(); } else if (MI->isSubregToReg()) { Dst = MI->getOperand(0).getReg(); DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), MI->getOperand(3).getImm()); Src = MI->getOperand(2).getReg(); SrcSub = MI->getOperand(2).getSubReg(); } else return false; return true; } /// Return true if this block should be vacated by the coalescer to eliminate /// branches. The important cases to handle in the coalescer are critical edges /// split during phi elimination which contain only copies. Simple blocks that /// contain non-branches should also be vacated, but this can be handled by an /// earlier pass similar to early if-conversion. static bool isSplitEdge(const MachineBasicBlock *MBB) { if (MBB->pred_size() != 1 || MBB->succ_size() != 1) return false; for (const auto &MI : *MBB) { if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) return false; } return true; } bool CoalescerPair::setRegisters(const MachineInstr *MI) { SrcReg = DstReg = 0; SrcIdx = DstIdx = 0; NewRC = nullptr; Flipped = CrossClass = false; unsigned Src, Dst, SrcSub, DstSub; if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) return false; Partial = SrcSub || DstSub; // If one register is a physreg, it must be Dst. if (TargetRegisterInfo::isPhysicalRegister(Src)) { if (TargetRegisterInfo::isPhysicalRegister(Dst)) return false; std::swap(Src, Dst); std::swap(SrcSub, DstSub); Flipped = true; } const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); if (TargetRegisterInfo::isPhysicalRegister(Dst)) { // Eliminate DstSub on a physreg. if (DstSub) { Dst = TRI.getSubReg(Dst, DstSub); if (!Dst) return false; DstSub = 0; } // Eliminate SrcSub by picking a corresponding Dst superregister. if (SrcSub) { Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); if (!Dst) return false; } else if (!MRI.getRegClass(Src)->contains(Dst)) { return false; } } else { // Both registers are virtual. const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); // Both registers have subreg indices. if (SrcSub && DstSub) { // Copies between different sub-registers are never coalescable. if (Src == Dst && SrcSub != DstSub) return false; NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, SrcIdx, DstIdx); if (!NewRC) return false; } else if (DstSub) { // SrcReg will be merged with a sub-register of DstReg. SrcIdx = DstSub; NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); } else if (SrcSub) { // DstReg will be merged with a sub-register of SrcReg. DstIdx = SrcSub; NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); } else { // This is a straight copy without sub-registers. NewRC = TRI.getCommonSubClass(DstRC, SrcRC); } // The combined constraint may be impossible to satisfy. if (!NewRC) return false; // Prefer SrcReg to be a sub-register of DstReg. // FIXME: Coalescer should support subregs symmetrically. if (DstIdx && !SrcIdx) { std::swap(Src, Dst); std::swap(SrcIdx, DstIdx); Flipped = !Flipped; } CrossClass = NewRC != DstRC || NewRC != SrcRC; } // Check our invariants assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual"); assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) && "Cannot have a physical SubIdx"); SrcReg = Src; DstReg = Dst; return true; } bool CoalescerPair::flip() { if (TargetRegisterInfo::isPhysicalRegister(DstReg)) return false; std::swap(SrcReg, DstReg); std::swap(SrcIdx, DstIdx); Flipped = !Flipped; return true; } bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { if (!MI) return false; unsigned Src, Dst, SrcSub, DstSub; if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) return false; // Find the virtual register that is SrcReg. if (Dst == SrcReg) { std::swap(Src, Dst); std::swap(SrcSub, DstSub); } else if (Src != SrcReg) { return false; } // Now check that Dst matches DstReg. if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { if (!TargetRegisterInfo::isPhysicalRegister(Dst)) return false; assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); // DstSub could be set for a physreg from INSERT_SUBREG. if (DstSub) Dst = TRI.getSubReg(Dst, DstSub); // Full copy of Src. if (!SrcSub) return DstReg == Dst; // This is a partial register copy. Check that the parts match. return TRI.getSubReg(DstReg, SrcSub) == Dst; } else { // DstReg is virtual. if (DstReg != Dst) return false; // Registers match, do the subregisters line up? return TRI.composeSubRegIndices(SrcIdx, SrcSub) == TRI.composeSubRegIndices(DstIdx, DstSub); } } void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired<AAResultsWrapperPass>(); AU.addRequired<LiveIntervals>(); AU.addPreserved<LiveIntervals>(); AU.addPreserved<SlotIndexes>(); AU.addRequired<MachineLoopInfo>(); AU.addPreserved<MachineLoopInfo>(); AU.addPreservedID(MachineDominatorsID); MachineFunctionPass::getAnalysisUsage(AU); } void RegisterCoalescer::eliminateDeadDefs() { SmallVector<unsigned, 8> NewRegs; LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, nullptr, this).eliminateDeadDefs(DeadDefs); } void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { // MI may be in WorkList. Make sure we don't visit it. ErasedInstrs.insert(MI); } bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI) { assert(!CP.isPartial() && "This doesn't work for partial copies."); assert(!CP.isPhys() && "This doesn't work for physreg copies."); LiveInterval &IntA = LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); LiveInterval &IntB = LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); // We have a non-trivially-coalescable copy with IntA being the source and // IntB being the dest, thus this defines a value number in IntB. If the // source value number (in IntA) is defined by a copy from B, see if we can // merge these two pieces of B into a single value number, eliminating a copy. // For example: // // A3 = B0 // ... // B1 = A3 <- this copy // // In this case, B0 can be extended to where the B1 copy lives, allowing the // B1 value number to be replaced with B0 (which simplifies the B // liveinterval). // BValNo is a value number in B that is defined by a copy from A. 'B1' in // the example above. LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); if (BS == IntB.end()) return false; VNInfo *BValNo = BS->valno; // Get the location that B is defined at. Two options: either this value has // an unknown definition point or it is defined at CopyIdx. If unknown, we // can't process it. if (BValNo->def != CopyIdx) return false; // AValNo is the value number in A that defines the copy, A3 in the example. SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); // The live segment might not exist after fun with physreg coalescing. if (AS == IntA.end()) return false; VNInfo *AValNo = AS->valno; // If AValNo is defined as a copy from IntB, we can potentially process this. // Get the instruction that defines this value number. MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); // Don't allow any partial copies, even if isCoalescable() allows them. if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) return false; // Get the Segment in IntB that this value number starts with. LiveInterval::iterator ValS = IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); if (ValS == IntB.end()) return false; // Make sure that the end of the live segment is inside the same block as // CopyMI. MachineInstr *ValSEndInst = LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) return false; // Okay, we now know that ValS ends in the same block that the CopyMI // live-range starts. If there are no intervening live segments between them // in IntB, we can merge them. if (ValS+1 != BS) return false; LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI)); SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; // We are about to delete CopyMI, so need to remove it as the 'instruction // that defines this value #'. Update the valnum with the new defining // instruction #. BValNo->def = FillerStart; // Okay, we can merge them. We need to insert a new liverange: // [ValS.end, BS.begin) of either value number, then we merge the // two value numbers. IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); // Okay, merge "B1" into the same value number as "B0". if (BValNo != ValS->valno) IntB.MergeValueNumberInto(BValNo, ValS->valno); // Do the same for the subregister segments. for (LiveInterval::SubRange &S : IntB.subranges()) { // Check for SubRange Segments of the form [1234r,1234d:0) which can be // removed to prevent creating bogus SubRange Segments. LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx); if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) { S.removeSegment(*SS, true); continue; } VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); if (SubBValNo != SubValSNo) S.MergeValueNumberInto(SubBValNo, SubValSNo); } LLVM_DEBUG(dbgs() << " result = " << IntB << '\n'); // If the source instruction was killing the source register before the // merge, unset the isKill marker given the live range has been extended. int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true); if (UIdx != -1) { ValSEndInst->getOperand(UIdx).setIsKill(false); } // Rewrite the copy. CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI); // If the copy instruction was killing the destination register or any // subrange before the merge trim the live range. bool RecomputeLiveRange = AS->end == CopyIdx; if (!RecomputeLiveRange) { for (LiveInterval::SubRange &S : IntA.subranges()) { LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx); if (SS != S.end() && SS->end == CopyIdx) { RecomputeLiveRange = true; break; } } } if (RecomputeLiveRange) shrinkToUses(&IntA); ++numExtends; return true; } bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, VNInfo *AValNo, VNInfo *BValNo) { // If AValNo has PHI kills, conservatively assume that IntB defs can reach // the PHI values. if (LIS->hasPHIKill(IntA, AValNo)) return true; for (LiveRange::Segment &ASeg : IntA.segments) { if (ASeg.valno != AValNo) continue; LiveInterval::iterator BI = std::upper_bound(IntB.begin(), IntB.end(), ASeg.start); if (BI != IntB.begin()) --BI; for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { if (BI->valno == BValNo) continue; if (BI->start <= ASeg.start && BI->end > ASeg.start) return true; if (BI->start > ASeg.start && BI->start < ASeg.end) return true; } } return false; } /// Copy segments with value number @p SrcValNo from liverange @p Src to live /// range @Dst and use value number @p DstValNo there. static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, const VNInfo *SrcValNo) { for (const LiveRange::Segment &S : Src.segments) { if (S.valno != SrcValNo) continue; Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo)); } } bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, MachineInstr *CopyMI) { assert(!CP.isPhys()); LiveInterval &IntA = LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); LiveInterval &IntB = LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); // We found a non-trivially-coalescable copy with IntA being the source and // IntB being the dest, thus this defines a value number in IntB. If the // source value number (in IntA) is defined by a commutable instruction and // its other operand is coalesced to the copy dest register, see if we can // transform the copy into a noop by commuting the definition. For example, // // A3 = op A2 killed B0 // ... // B1 = A3 <- this copy // ... // = op A3 <- more uses // // ==> // // B2 = op B0 killed A2 // ... // B1 = B2 <- now an identity copy // ... // = op B2 <- more uses // BValNo is a value number in B that is defined by a copy from A. 'B1' in // the example above. SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); assert(BValNo != nullptr && BValNo->def == CopyIdx); // AValNo is the value number in A that defines the copy, A3 in the example. VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); assert(AValNo && !AValNo->isUnused() && "COPY source not live"); if (AValNo->isPHIDef()) return false; MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); if (!DefMI) return false; if (!DefMI->isCommutable()) return false; // If DefMI is a two-address instruction then commuting it will change the // destination register. int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg); assert(DefIdx != -1); unsigned UseOpIdx; if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) return false; // FIXME: The code below tries to commute 'UseOpIdx' operand with some other // commutable operand which is expressed by 'CommuteAnyOperandIndex'value // passed to the method. That _other_ operand is chosen by // the findCommutedOpIndices() method. // // That is obviously an area for improvement in case of instructions having // more than 2 operands. For example, if some instruction has 3 commutable // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, // op#2<->op#3) of commute transformation should be considered/tried here. unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) return false; MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); unsigned NewReg = NewDstMO.getReg(); if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill()) return false; // Make sure there are no other definitions of IntB that would reach the // uses which the new definition can reach. if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) return false; // If some of the uses of IntA.reg is already coalesced away, return false. // It's not possible to determine whether it's safe to perform the coalescing. for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) { MachineInstr *UseMI = MO.getParent(); unsigned OpNo = &MO - &UseMI->getOperand(0); SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); if (US == IntA.end() || US->valno != AValNo) continue; // If this use is tied to a def, we can't rewrite the register. if (UseMI->isRegTiedToDefOperand(OpNo)) return false; } LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' << *DefMI); // At this point we have decided that it is legal to do this // transformation. Start by commuting the instruction. MachineBasicBlock *MBB = DefMI->getParent(); MachineInstr *NewMI = TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); if (!NewMI) return false; if (TargetRegisterInfo::isVirtualRegister(IntA.reg) && TargetRegisterInfo::isVirtualRegister(IntB.reg) && !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg))) return false; if (NewMI != DefMI) { LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); MachineBasicBlock::iterator Pos = DefMI; MBB->insert(Pos, NewMI); MBB->erase(DefMI); } // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. // A = or A, B // ... // B = A // ... // C = killed A // ... // = B // Update uses of IntA of the specific Val# with IntB. for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg), UE = MRI->use_end(); UI != UE; /* ++UI is below because of possible MI removal */) { MachineOperand &UseMO = *UI; ++UI; if (UseMO.isUndef()) continue; MachineInstr *UseMI = UseMO.getParent(); if (UseMI->isDebugValue()) { // FIXME These don't have an instruction index. Not clear we have enough // info to decide whether to do this replacement or not. For now do it. UseMO.setReg(NewReg); continue; } SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); assert(US != IntA.end() && "Use must be live"); if (US->valno != AValNo) continue; // Kill flags are no longer accurate. They are recomputed after RA. UseMO.setIsKill(false); if (TargetRegisterInfo::isPhysicalRegister(NewReg)) UseMO.substPhysReg(NewReg, *TRI); else UseMO.setReg(NewReg); if (UseMI == CopyMI) continue; if (!UseMI->isCopy()) continue; if (UseMI->getOperand(0).getReg() != IntB.reg || UseMI->getOperand(0).getSubReg()) continue; // This copy will become a noop. If it's defining a new val#, merge it into // BValNo. SlotIndex DefIdx = UseIdx.getRegSlot(); VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); if (!DVNI) continue; LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); assert(DVNI->def == DefIdx); BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); for (LiveInterval::SubRange &S : IntB.subranges()) { VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); if (!SubDVNI) continue; VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); assert(SubBValNo->def == CopyIdx); S.MergeValueNumberInto(SubDVNI, SubBValNo); } deleteInstr(UseMI); } // Extend BValNo by merging in IntA live segments of AValNo. Val# definition // is updated. BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); if (IntB.hasSubRanges()) { if (!IntA.hasSubRanges()) { LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg); IntA.createSubRangeFrom(Allocator, Mask, IntA); } SlotIndex AIdx = CopyIdx.getRegSlot(true); for (LiveInterval::SubRange &SA : IntA.subranges()) { VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); assert(ASubValNo != nullptr); IntB.refineSubRanges(Allocator, SA.LaneMask, [&Allocator,&SA,CopyIdx,ASubValNo](LiveInterval::SubRange &SR) { VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator) : SR.getVNInfoAt(CopyIdx); assert(BSubValNo != nullptr); addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); }); } } BValNo->def = AValNo->def; addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); LIS->removeVRegDefAt(IntA, AValNo->def); LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); ++numCommutes; return true; } /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a /// predecessor of BB2, and if B is not redefined on the way from A = B /// in BB2 to B = A in BB2, B = A in BB2 is partially redundant if the /// execution goes through the path from BB0 to BB2. We may move B = A /// to the predecessor without such reversed copy. /// So we will transform the program from: /// BB0: /// A = B; BB1: /// ... ... /// / \ / /// BB2: /// ... /// B = A; /// /// to: /// /// BB0: BB1: /// A = B; ... /// ... B = A; /// / \ / /// BB2: /// ... /// /// A special case is when BB0 and BB2 are the same BB which is the only /// BB in a loop: /// BB1: /// ... /// BB0/BB2: ---- /// B = A; | /// ... | /// A = B; | /// |------- /// | /// We may hoist B = A from BB0/BB2 to BB1. /// /// The major preconditions for correctness to remove such partial /// redundancy include: /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of /// the PHI is defined by the reversed copy A = B in BB0. /// 2. No B is referenced from the start of BB2 to B = A. /// 3. No B is defined from A = B to the end of BB0. /// 4. BB1 has only one successor. /// /// 2 and 4 implicitly ensure B is not live at the end of BB1. /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a /// colder place, which not only prevent endless loop, but also make sure /// the movement of copy is beneficial. bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI) { assert(!CP.isPhys()); if (!CopyMI.isFullCopy()) return false; MachineBasicBlock &MBB = *CopyMI.getParent(); if (MBB.isEHPad()) return false; if (MBB.pred_size() != 2) return false; LiveInterval &IntA = LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); LiveInterval &IntB = LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); // A is defined by PHI at the entry of MBB. SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); assert(AValNo && !AValNo->isUnused() && "COPY source not live"); if (!AValNo->isPHIDef()) return false; // No B is referenced before CopyMI in MBB. if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) return false; // MBB has two predecessors: one contains A = B so no copy will be inserted // for it. The other one will have a copy moved from MBB. bool FoundReverseCopy = false; MachineBasicBlock *CopyLeftBB = nullptr; for (MachineBasicBlock *Pred : MBB.predecessors()) { VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); if (!DefMI || !DefMI->isFullCopy()) { CopyLeftBB = Pred; continue; } // Check DefMI is a reverse copy and it is in BB Pred. if (DefMI->getOperand(0).getReg() != IntA.reg || DefMI->getOperand(1).getReg() != IntB.reg || DefMI->getParent() != Pred) { CopyLeftBB = Pred; continue; } // If there is any other def of B after DefMI and before the end of Pred, // we need to keep the copy of B = A at the end of Pred if we remove // B = A from MBB. bool ValB_Changed = false; for (auto VNI : IntB.valnos) { if (VNI->isUnused()) continue; if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { ValB_Changed = true; break; } } if (ValB_Changed) { CopyLeftBB = Pred; continue; } FoundReverseCopy = true; } // If no reverse copy is found in predecessors, nothing to do. if (!FoundReverseCopy) return false; // If CopyLeftBB is nullptr, it means every predecessor of MBB contains // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and // update IntA/IntB. // // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so // MBB is hotter than CopyLeftBB. if (CopyLeftBB && CopyLeftBB->succ_size() > 1) return false; // Now (almost sure it's) ok to move copy. if (CopyLeftBB) { // Position in CopyLeftBB where we should insert new copy. auto InsPos = CopyLeftBB->getFirstTerminator(); // Make sure that B isn't referenced in the terminators (if any) at the end // of the predecessor since we're about to insert a new definition of B // before them. if (InsPos != CopyLeftBB->end()) { SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) return false; } LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); // Insert new copy to CopyLeftBB. MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), TII->get(TargetOpcode::COPY), IntB.reg) .addReg(IntA.reg); SlotIndex NewCopyIdx = LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); for (LiveInterval::SubRange &SR : IntB.subranges()) SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); // If the newly created Instruction has an address of an instruction that was // deleted before (object recycled by the allocator) it needs to be removed from // the deleted list. ErasedInstrs.erase(NewCopyMI); } else { LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " << printMBBReference(MBB) << '\t' << CopyMI); } // Remove CopyMI. // Note: This is fine to remove the copy before updating the live-ranges. // While updating the live-ranges, we only look at slot indices and // never go back to the instruction. // Mark instructions as deleted. deleteInstr(&CopyMI); // Update the liveness. SmallVector<SlotIndex, 8> EndPoints; VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), &EndPoints); BValNo->markUnused(); // Extend IntB to the EndPoints of its original live interval. LIS->extendToIndices(IntB, EndPoints); // Now, do the same for its subranges. for (LiveInterval::SubRange &SR : IntB.subranges()) { EndPoints.clear(); VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); assert(BValNo && "All sublanes should be live"); LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); BValNo->markUnused(); LIS->extendToIndices(SR, EndPoints); } // If any dead defs were extended, truncate them. shrinkToUses(&IntB); // Finally, update the live-range of IntA. shrinkToUses(&IntA); return true; } /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just /// defining a subregister. static bool definesFullReg(const MachineInstr &MI, unsigned Reg) { assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "This code cannot handle physreg aliasing"); for (const MachineOperand &Op : MI.operands()) { if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) continue; // Return true if we define the full register or don't care about the value // inside other subregisters. if (Op.getSubReg() == 0 || Op.isUndef()) return true; } return false; } bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, bool &IsDefCopy) { IsDefCopy = false; unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) return false; LiveInterval &SrcInt = LIS->getInterval(SrcReg); SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); assert(ValNo && "CopyMI input register not live"); if (ValNo->isPHIDef() || ValNo->isUnused()) return false; MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); if (!DefMI) return false; if (DefMI->isCopyLike()) { IsDefCopy = true; return false; } if (!TII->isAsCheapAsAMove(*DefMI)) return false; if (!TII->isTriviallyReMaterializable(*DefMI, AA)) return false; if (!definesFullReg(*DefMI, SrcReg)) return false; bool SawStore = false; if (!DefMI->isSafeToMove(AA, SawStore)) return false; const MCInstrDesc &MCID = DefMI->getDesc(); if (MCID.getNumDefs() != 1) return false; // Only support subregister destinations when the def is read-undef. MachineOperand &DstOperand = CopyMI->getOperand(0); unsigned CopyDstReg = DstOperand.getReg(); if (DstOperand.getSubReg() && !DstOperand.isUndef()) return false; // If both SrcIdx and DstIdx are set, correct rematerialization would widen // the register substantially (beyond both source and dest size). This is bad // for performance since it can cascade through a function, introducing many // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers // around after a few subreg copies). if (SrcIdx && DstIdx) return false; const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); if (!DefMI->isImplicitDef()) { if (TargetRegisterInfo::isPhysicalRegister(DstReg)) { unsigned NewDstReg = DstReg; unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), DefMI->getOperand(0).getSubReg()); if (NewDstIdx) NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); // Finally, make sure that the physical subregister that will be // constructed later is permitted for the instruction. if (!DefRC->contains(NewDstReg)) return false; } else { // Theoretically, some stack frame reference could exist. Just make sure // it hasn't actually happened. assert(TargetRegisterInfo::isVirtualRegister(DstReg) && "Only expect to deal with virtual or physical registers"); } } DebugLoc DL = CopyMI->getDebugLoc(); MachineBasicBlock *MBB = CopyMI->getParent(); MachineBasicBlock::iterator MII = std::next(MachineBasicBlock::iterator(CopyMI)); TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI); MachineInstr &NewMI = *std::prev(MII); NewMI.setDebugLoc(DL); // In a situation like the following: // %0:subreg = instr ; DefMI, subreg = DstIdx // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 // instead of widening %1 to the register class of %0 simply do: // %1 = instr const TargetRegisterClass *NewRC = CP.getNewRC(); if (DstIdx != 0) { MachineOperand &DefMO = NewMI.getOperand(0); if (DefMO.getSubReg() == DstIdx) { assert(SrcIdx == 0 && CP.isFlipped() && "Shouldn't have SrcIdx+DstIdx at this point"); const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); const TargetRegisterClass *CommonRC = TRI->getCommonSubClass(DefRC, DstRC); if (CommonRC != nullptr) { NewRC = CommonRC; DstIdx = 0; DefMO.setSubReg(0); DefMO.setIsUndef(false); // Only subregs can have def+undef. } } } // CopyMI may have implicit operands, save them so that we can transfer them // over to the newly materialized instruction after CopyMI is removed. SmallVector<MachineOperand, 4> ImplicitOps; ImplicitOps.reserve(CopyMI->getNumOperands() - CopyMI->getDesc().getNumOperands()); for (unsigned I = CopyMI->getDesc().getNumOperands(), E = CopyMI->getNumOperands(); I != E; ++I) { MachineOperand &MO = CopyMI->getOperand(I); if (MO.isReg()) { assert(MO.isImplicit() && "No explicit operands after implicit operands."); // Discard VReg implicit defs. if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) ImplicitOps.push_back(MO); } } LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI); CopyMI->eraseFromParent(); ErasedInstrs.insert(CopyMI); // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). // We need to remember these so we can add intervals once we insert // NewMI into SlotIndexes. SmallVector<unsigned, 4> NewMIImplDefs; for (unsigned i = NewMI.getDesc().getNumOperands(), e = NewMI.getNumOperands(); i != e; ++i) { MachineOperand &MO = NewMI.getOperand(i); if (MO.isReg() && MO.isDef()) { assert(MO.isImplicit() && MO.isDead() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())); NewMIImplDefs.push_back(MO.getReg()); } } if (TargetRegisterInfo::isVirtualRegister(DstReg)) { unsigned NewIdx = NewMI.getOperand(0).getSubReg(); if (DefRC != nullptr) { if (NewIdx) NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); else NewRC = TRI->getCommonSubClass(NewRC, DefRC); assert(NewRC && "subreg chosen for remat incompatible with instruction"); } // Remap subranges to new lanemask and change register class. LiveInterval &DstInt = LIS->getInterval(DstReg); for (LiveInterval::SubRange &SR : DstInt.subranges()) { SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); } MRI->setRegClass(DstReg, NewRC); // Update machine operands and add flags. updateRegDefsUses(DstReg, DstReg, DstIdx); NewMI.getOperand(0).setSubReg(NewIdx); // updateRegDefUses can add an "undef" flag to the definition, since // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make // sure that "undef" is not set. if (NewIdx == 0) NewMI.getOperand(0).setIsUndef(false); // Add dead subregister definitions if we are defining the whole register // but only part of it is live. // This could happen if the rematerialization instruction is rematerializing // more than actually is used in the register. // An example would be: // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs // ; Copying only part of the register here, but the rest is undef. // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit // ==> // ; Materialize all the constants but only using one // %2 = LOAD_CONSTANTS 5, 8 // // at this point for the part that wasn't defined before we could have // subranges missing the definition. if (NewIdx == 0 && DstInt.hasSubRanges()) { SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); SlotIndex DefIndex = CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); for (LiveInterval::SubRange &SR : DstInt.subranges()) { if (!SR.liveAt(DefIndex)) SR.createDeadDef(DefIndex, Alloc); MaxMask &= ~SR.LaneMask; } if (MaxMask.any()) { LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); SR->createDeadDef(DefIndex, Alloc); } } // Make sure that the subrange for resultant undef is removed // For example: // %1:sub1<def,read-undef> = LOAD CONSTANT 1 // %2 = COPY %1 // ==> // %2:sub1<def, read-undef> = LOAD CONSTANT 1 // ; Correct but need to remove the subrange for %2:sub0 // ; as it is now undef if (NewIdx != 0 && DstInt.hasSubRanges()) { // The affected subregister segments can be removed. SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); bool UpdatedSubRanges = false; for (LiveInterval::SubRange &SR : DstInt.subranges()) { if ((SR.LaneMask & DstMask).none()) { LLVM_DEBUG(dbgs() << "Removing undefined SubRange " << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); // VNI is in ValNo - remove any segments in this SubRange that have this ValNo if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { SR.removeValNo(RmValNo); UpdatedSubRanges = true; } } } if (UpdatedSubRanges) DstInt.removeEmptySubRanges(); } } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { // The New instruction may be defining a sub-register of what's actually // been asked for. If so it must implicitly define the whole thing. assert(TargetRegisterInfo::isPhysicalRegister(DstReg) && "Only expect virtual or physical registers in remat"); NewMI.getOperand(0).setIsDead(true); NewMI.addOperand(MachineOperand::CreateReg( CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); // Record small dead def live-ranges for all the subregisters // of the destination register. // Otherwise, variables that live through may miss some // interferences, thus creating invalid allocation. // E.g., i386 code: // %1 = somedef ; %1 GR8 // %2 = remat ; %2 GR32 // CL = COPY %2.sub_8bit // = somedef %1 ; %1 GR8 // => // %1 = somedef ; %1 GR8 // dead ECX = remat ; implicit-def CL // = somedef %1 ; %1 GR8 // %1 will see the interferences with CL but not with CH since // no live-ranges would have been created for ECX. // Fix that! SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); Units.isValid(); ++Units) if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); } if (NewMI.getOperand(0).getSubReg()) NewMI.getOperand(0).setIsUndef(); // Transfer over implicit operands to the rematerialized instruction. for (MachineOperand &MO : ImplicitOps) NewMI.addOperand(MO); SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { unsigned Reg = NewMIImplDefs[i]; for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); } LLVM_DEBUG(dbgs() << "Remat: " << NewMI); ++NumReMats; // The source interval can become smaller because we removed a use. shrinkToUses(&SrcInt, &DeadDefs); if (!DeadDefs.empty()) { // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs // to describe DstReg instead. for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) { MachineInstr *UseMI = UseMO.getParent(); if (UseMI->isDebugValue()) { UseMO.setReg(DstReg); // Move the debug value directly after the def of the rematerialized // value in DstReg. MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI); } } eliminateDeadDefs(); } return true; } MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { // ProcessImplicitDefs may leave some copies of <undef> values, it only // removes local variables. When we have a copy like: // // %1 = COPY undef %2 // // We delete the copy and remove the corresponding value number from %1. // Any uses of that value number are marked as <undef>. // Note that we do not query CoalescerPair here but redo isMoveInstr as the // CoalescerPair may have a new register class with adjusted subreg indices // at this point. unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx); SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); const LiveInterval &SrcLI = LIS->getInterval(SrcReg); // CopyMI is undef iff SrcReg is not live before the instruction. if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { if ((SR.LaneMask & SrcMask).none()) continue; if (SR.liveAt(Idx)) return nullptr; } } else if (SrcLI.liveAt(Idx)) return nullptr; // If the undef copy defines a live-out value (i.e. an input to a PHI def), // then replace it with an IMPLICIT_DEF. LiveInterval &DstLI = LIS->getInterval(DstReg); SlotIndex RegIndex = Idx.getRegSlot(); LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex); assert(Seg != nullptr && "No segment for defining instruction"); if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) { if (V->isPHIDef()) { CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) { MachineOperand &MO = CopyMI->getOperand(i-1); if (MO.isReg() && MO.isUse()) CopyMI->RemoveOperand(i-1); } LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an " "implicit def\n"); return CopyMI; } } // Remove any DstReg segments starting at the instruction. LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); // Remove value or merge with previous one in case of a subregister def. if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); DstLI.MergeValueNumberInto(VNI, PrevVNI); // The affected subregister segments can be removed. LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); for (LiveInterval::SubRange &SR : DstLI.subranges()) { if ((SR.LaneMask & DstMask).none()) continue; VNInfo *SVNI = SR.getVNInfoAt(RegIndex); assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); SR.removeValNo(SVNI); } DstLI.removeEmptySubRanges(); } else LIS->removeVRegDefAt(DstLI, RegIndex); // Mark uses as undef. for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { if (MO.isDef() /*|| MO.isUndef()*/) continue; const MachineInstr &MI = *MO.getParent(); SlotIndex UseIdx = LIS->getInstructionIndex(MI); LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); bool isLive; if (!UseMask.all() && DstLI.hasSubRanges()) { isLive = false; for (const LiveInterval::SubRange &SR : DstLI.subranges()) { if ((SR.LaneMask & UseMask).none()) continue; if (SR.liveAt(UseIdx)) { isLive = true; break; } } } else isLive = DstLI.liveAt(UseIdx); if (isLive) continue; MO.setIsUndef(true); LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); } // A def of a subregister may be a use of the other subregisters, so // deleting a def of a subregister may also remove uses. Since CopyMI // is still part of the function (but about to be erased), mark all // defs of DstReg in it as <undef>, so that shrinkToUses would // ignore them. for (MachineOperand &MO : CopyMI->operands()) if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) MO.setIsUndef(true); LIS->shrinkToUses(&DstLI); return CopyMI; } void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, MachineOperand &MO, unsigned SubRegIdx) { LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); if (MO.isDef()) Mask = ~Mask; bool IsUndef = true; for (const LiveInterval::SubRange &S : Int.subranges()) { if ((S.LaneMask & Mask).none()) continue; if (S.liveAt(UseIdx)) { IsUndef = false; break; } } if (IsUndef) { MO.setIsUndef(true); // We found out some subregister use is actually reading an undefined // value. In some cases the whole vreg has become undefined at this // point so we have to potentially shrink the main range if the // use was ending a live segment there. LiveQueryResult Q = Int.Query(UseIdx); if (Q.valueOut() == nullptr) ShrinkMainRange = true; } } void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx) { bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { for (MachineOperand &MO : MRI->reg_operands(DstReg)) { unsigned SubReg = MO.getSubReg(); if (SubReg == 0 || MO.isUndef()) continue; MachineInstr &MI = *MO.getParent(); if (MI.isDebugValue()) continue; SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); addUndefFlag(*DstInt, UseIdx, MO, SubReg); } } SmallPtrSet<MachineInstr*, 8> Visited; for (MachineRegisterInfo::reg_instr_iterator I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); I != E; ) { MachineInstr *UseMI = &*(I++); // Each instruction can only be rewritten once because sub-register // composition is not always idempotent. When SrcReg != DstReg, rewriting // the UseMI operands removes them from the SrcReg use-def chain, but when // SrcReg is DstReg we could encounter UseMI twice if it has multiple // operands mentioning the virtual register. if (SrcReg == DstReg && !Visited.insert(UseMI).second) continue; SmallVector<unsigned,8> Ops; bool Reads, Writes; std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); // If SrcReg wasn't read, it may still be the case that DstReg is live-in // because SrcReg is a sub-register. if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue()) Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); // Replace SrcReg with DstReg in all UseMI operands. for (unsigned i = 0, e = Ops.size(); i != e; ++i) { MachineOperand &MO = UseMI->getOperand(Ops[i]); // Adjust <undef> flags in case of sub-register joins. We don't want to // turn a full def into a read-modify-write sub-register def and vice // versa. if (SubIdx && MO.isDef()) MO.setIsUndef(!Reads); // A subreg use of a partially undef (super) register may be a complete // undef use now and then has to be marked that way. if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) { if (!DstInt->hasSubRanges()) { BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg); DstInt->createSubRangeFrom(Allocator, Mask, *DstInt); } SlotIndex MIIdx = UseMI->isDebugValue() ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) : LIS->getInstructionIndex(*UseMI); SlotIndex UseIdx = MIIdx.getRegSlot(true); addUndefFlag(*DstInt, UseIdx, MO, SubIdx); } if (DstIsPhys) MO.substPhysReg(DstReg, *TRI); else MO.substVirtReg(DstReg, SubIdx, *TRI); } LLVM_DEBUG({ dbgs() << "\t\tupdated: "; if (!UseMI->isDebugValue()) dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; dbgs() << *UseMI; }); } } bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { // Always join simple intervals that are defined by a single copy from a // reserved register. This doesn't increase register pressure, so it is // always beneficial. if (!MRI->isReserved(CP.getDstReg())) { LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); return false; } LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); if (JoinVInt.containsOneValue()) return true; LLVM_DEBUG( dbgs() << "\tCannot join complex intervals into reserved register.\n"); return false; } bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { Again = false; LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); CoalescerPair CP(*TRI); if (!CP.setRegisters(CopyMI)) { LLVM_DEBUG(dbgs() << "\tNot coalescable.\n"); return false; } if (CP.getNewRC()) { auto SrcRC = MRI->getRegClass(CP.getSrcReg()); auto DstRC = MRI->getRegClass(CP.getDstReg()); unsigned SrcIdx = CP.getSrcIdx(); unsigned DstIdx = CP.getDstIdx(); if (CP.isFlipped()) { std::swap(SrcIdx, DstIdx); std::swap(SrcRC, DstRC); } if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, CP.getNewRC(), *LIS)) { LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); return false; } } // Dead code elimination. This really should be handled by MachineDCE, but // sometimes dead copies slip through, and we can't generate invalid live // ranges. if (!CP.isPhys() && CopyMI->allDefsAreDead()) { LLVM_DEBUG(dbgs() << "\tCopy is dead.\n"); DeadDefs.push_back(CopyMI); eliminateDeadDefs(); return true; } // Eliminate undefs. if (!CP.isPhys()) { // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce. if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) { if (UndefMI->isImplicitDef()) return false; deleteInstr(CopyMI); return false; // Not coalescable. } } // Coalesced copies are normally removed immediately, but transformations // like removeCopyByCommutingDef() can inadvertently create identity copies. // When that happens, just join the values and remove the copy. if (CP.getSrcReg() == CP.getDstReg()) { LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); LiveQueryResult LRQ = LI.Query(CopyIdx); if (VNInfo *DefVNI = LRQ.valueDefined()) { VNInfo *ReadVNI = LRQ.valueIn(); assert(ReadVNI && "No value before copy and no <undef> flag."); assert(ReadVNI != DefVNI && "Cannot read and define the same value."); LI.MergeValueNumberInto(DefVNI, ReadVNI); // Process subregister liveranges. for (LiveInterval::SubRange &S : LI.subranges()) { LiveQueryResult SLRQ = S.Query(CopyIdx); if (VNInfo *SDefVNI = SLRQ.valueDefined()) { VNInfo *SReadVNI = SLRQ.valueIn(); S.MergeValueNumberInto(SDefVNI, SReadVNI); } } LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); } deleteInstr(CopyMI); return true; } // Enforce policies. if (CP.isPhys()) { LLVM_DEBUG(dbgs() << "\tConsidering merging " << printReg(CP.getSrcReg(), TRI) << " with " << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); if (!canJoinPhys(CP)) { // Before giving up coalescing, if definition of source is defined by // trivial computation, try rematerializing it. bool IsDefCopy; if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) return true; if (IsDefCopy) Again = true; // May be possible to coalesce later. return false; } } else { // When possible, let DstReg be the larger interval. if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > LIS->getInterval(CP.getDstReg()).size()) CP.flip(); LLVM_DEBUG({ dbgs() << "\tConsidering merging to " << TRI->getRegClassName(CP.getNewRC()) << " with "; if (CP.getDstIdx() && CP.getSrcIdx()) dbgs() << printReg(CP.getDstReg()) << " in " << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " << printReg(CP.getSrcReg()) << " in " << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; else dbgs() << printReg(CP.getSrcReg(), TRI) << " in " << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; }); } ShrinkMask = LaneBitmask::getNone(); ShrinkMainRange = false; // Okay, attempt to join these two intervals. On failure, this returns false. // Otherwise, if one of the intervals being joined is a physreg, this method // always canonicalizes DstInt to be it. The output "SrcInt" will not have // been modified, so we can use this information below to update aliases. if (!joinIntervals(CP)) { // Coalescing failed. // If definition of source is defined by trivial computation, try // rematerializing it. bool IsDefCopy; if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) return true; // If we can eliminate the copy without merging the live segments, do so // now. if (!CP.isPartial() && !CP.isPhys()) { if (adjustCopiesBackFrom(CP, CopyMI) || removeCopyByCommutingDef(CP, CopyMI)) { deleteInstr(CopyMI); LLVM_DEBUG(dbgs() << "\tTrivial!\n"); return true; } } // Try and see if we can partially eliminate the copy by moving the copy to // its predecessor. if (!CP.isPartial() && !CP.isPhys()) if (removePartialRedundancy(CP, *CopyMI)) return true; // Otherwise, we are unable to join the intervals. LLVM_DEBUG(dbgs() << "\tInterference!\n"); Again = true; // May be possible to coalesce later. return false; } // Coalescing to a virtual register that is of a sub-register class of the // other. Make sure the resulting register is set to the right register class. if (CP.isCrossClass()) { ++numCrossRCs; MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); } // Removing sub-register copies can ease the register class constraints. // Make sure we attempt to inflate the register class of DstReg. if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) InflateRegs.push_back(CP.getDstReg()); // CopyMI has been erased by joinIntervals at this point. Remove it from // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back // to the work list. This keeps ErasedInstrs from growing needlessly. ErasedInstrs.erase(CopyMI); // Rewrite all SrcReg operands to DstReg. // Also update DstReg operands to include DstIdx if it is set. if (CP.getDstIdx()) updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); // Shrink subregister ranges if necessary. if (ShrinkMask.any()) { LiveInterval &LI = LIS->getInterval(CP.getDstReg()); for (LiveInterval::SubRange &S : LI.subranges()) { if ((S.LaneMask & ShrinkMask).none()) continue; LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) << ")\n"); LIS->shrinkToUses(S, LI.reg); } LI.removeEmptySubRanges(); } if (ShrinkMainRange) { LiveInterval &LI = LIS->getInterval(CP.getDstReg()); shrinkToUses(&LI); } // SrcReg is guaranteed to be the register whose live interval that is // being merged. LIS->removeInterval(CP.getSrcReg()); // Update regalloc hint. TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); LLVM_DEBUG({ dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; dbgs() << "\tResult = "; if (CP.isPhys()) dbgs() << printReg(CP.getDstReg(), TRI); else dbgs() << LIS->getInterval(CP.getDstReg()); dbgs() << '\n'; }); ++numJoins; return true; } bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { unsigned DstReg = CP.getDstReg(); unsigned SrcReg = CP.getSrcReg(); assert(CP.isPhys() && "Must be a physreg copy"); assert(MRI->isReserved(DstReg) && "Not a reserved register"); LiveInterval &RHS = LIS->getInterval(SrcReg); LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); assert(RHS.containsOneValue() && "Invalid join with reserved register"); // Optimization for reserved registers like ESP. We can only merge with a // reserved physreg if RHS has a single value that is a copy of DstReg. // The live range of the reserved register will look like a set of dead defs // - we don't properly track the live range of reserved registers. // Deny any overlapping intervals. This depends on all the reserved // register live ranges to look like dead defs. if (!MRI->isConstantPhysReg(DstReg)) { for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { // Abort if not all the regunits are reserved. for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { if (!MRI->isReserved(*RI)) return false; } if (RHS.overlaps(LIS->getRegUnit(*UI))) { LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) << '\n'); return false; } } // We must also check for overlaps with regmask clobbers. BitVector RegMaskUsable; if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && !RegMaskUsable.test(DstReg)) { LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n"); return false; } } // Skip any value computations, we are not adding new values to the // reserved register. Also skip merging the live ranges, the reserved // register live range doesn't need to be accurate as long as all the // defs are there. // Delete the identity copy. MachineInstr *CopyMI; if (CP.isFlipped()) { // Physreg is copied into vreg // %y = COPY %physreg_x // ... //< no other def of %x here // use %y // => // ... // use %x CopyMI = MRI->getVRegDef(SrcReg); } else { // VReg is copied into physreg: // %y = def // ... //< no other def or use of %y here // %y = COPY %physreg_x // => // %y = def // ... if (!MRI->hasOneNonDBGUse(SrcReg)) { LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); return false; } if (!LIS->intervalIsInOneMBB(RHS)) { LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n"); return false; } MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); if (!MRI->isConstantPhysReg(DstReg)) { // We checked above that there are no interfering defs of the physical // register. However, for this case, where we intend to move up the def of // the physical register, we also need to check for interfering uses. SlotIndexes *Indexes = LIS->getSlotIndexes(); for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { MachineInstr *MI = LIS->getInstructionFromIndex(SI); if (MI->readsRegister(DstReg, TRI)) { LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI); return false; } } } // We're going to remove the copy which defines a physical reserved // register, so remove its valno, etc. LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of " << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n"); LIS->removePhysRegDefAt(DstReg, CopyRegIdx); // Create a new dead def at the new def location. for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { LiveRange &LR = LIS->getRegUnit(*UI); LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); } } deleteInstr(CopyMI); // We don't track kills for reserved registers. MRI->clearKillFlags(CP.getSrcReg()); return true; } //===----------------------------------------------------------------------===// // Interference checking and interval joining //===----------------------------------------------------------------------===// // // In the easiest case, the two live ranges being joined are disjoint, and // there is no interference to consider. It is quite common, though, to have // overlapping live ranges, and we need to check if the interference can be // resolved. // // The live range of a single SSA value forms a sub-tree of the dominator tree. // This means that two SSA values overlap if and only if the def of one value // is contained in the live range of the other value. As a special case, the // overlapping values can be defined at the same index. // // The interference from an overlapping def can be resolved in these cases: // // 1. Coalescable copies. The value is defined by a copy that would become an // identity copy after joining SrcReg and DstReg. The copy instruction will // be removed, and the value will be merged with the source value. // // There can be several copies back and forth, causing many values to be // merged into one. We compute a list of ultimate values in the joined live // range as well as a mappings from the old value numbers. // // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI // predecessors have a live out value. It doesn't cause real interference, // and can be merged into the value it overlaps. Like a coalescable copy, it // can be erased after joining. // // 3. Copy of external value. The overlapping def may be a copy of a value that // is already in the other register. This is like a coalescable copy, but // the live range of the source register must be trimmed after erasing the // copy instruction: // // %src = COPY %ext // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. // // 4. Clobbering undefined lanes. Vector registers are sometimes built by // defining one lane at a time: // // %dst:ssub0<def,read-undef> = FOO // %src = BAR // %dst:ssub1 = COPY %src // // The live range of %src overlaps the %dst value defined by FOO, but // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane // which was undef anyway. // // The value mapping is more complicated in this case. The final live range // will have different value numbers for both FOO and BAR, but there is no // simple mapping from old to new values. It may even be necessary to add // new PHI values. // // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that // is live, but never read. This can happen because we don't compute // individual live ranges per lane. // // %dst = FOO // %src = BAR // %dst:ssub1 = COPY %src // // This kind of interference is only resolved locally. If the clobbered // lane value escapes the block, the join is aborted. namespace { /// Track information about values in a single virtual register about to be /// joined. Objects of this class are always created in pairs - one for each /// side of the CoalescerPair (or one for each lane of a side of the coalescer /// pair) class JoinVals { /// Live range we work on. LiveRange &LR; /// (Main) register we work on. const unsigned Reg; /// Reg (and therefore the values in this liverange) will end up as /// subregister SubIdx in the coalesced register. Either CP.DstIdx or /// CP.SrcIdx. const unsigned SubIdx; /// The LaneMask that this liverange will occupy the coalesced register. May /// be smaller than the lanemask produced by SubIdx when merging subranges. const LaneBitmask LaneMask; /// This is true when joining sub register ranges, false when joining main /// ranges. const bool SubRangeJoin; /// Whether the current LiveInterval tracks subregister liveness. const bool TrackSubRegLiveness; /// Values that will be present in the final live range. SmallVectorImpl<VNInfo*> &NewVNInfo; const CoalescerPair &CP; LiveIntervals *LIS; SlotIndexes *Indexes; const TargetRegisterInfo *TRI; /// Value number assignments. Maps value numbers in LI to entries in /// NewVNInfo. This is suitable for passing to LiveInterval::join(). SmallVector<int, 8> Assignments; /// Conflict resolution for overlapping values. enum ConflictResolution { /// No overlap, simply keep this value. CR_Keep, /// Merge this value into OtherVNI and erase the defining instruction. /// Used for IMPLICIT_DEF, coalescable copies, and copies from external /// values. CR_Erase, /// Merge this value into OtherVNI but keep the defining instruction. /// This is for the special case where OtherVNI is defined by the same /// instruction. CR_Merge, /// Keep this value, and have it replace OtherVNI where possible. This /// complicates value mapping since OtherVNI maps to two different values /// before and after this def. /// Used when clobbering undefined or dead lanes. CR_Replace, /// Unresolved conflict. Visit later when all values have been mapped. CR_Unresolved, /// Unresolvable conflict. Abort the join. CR_Impossible }; /// Per-value info for LI. The lane bit masks are all relative to the final /// joined register, so they can be compared directly between SrcReg and /// DstReg. struct Val { ConflictResolution Resolution = CR_Keep; /// Lanes written by this def, 0 for unanalyzed values. LaneBitmask WriteLanes; /// Lanes with defined values in this register. Other lanes are undef and /// safe to clobber. LaneBitmask ValidLanes; /// Value in LI being redefined by this def. VNInfo *RedefVNI = nullptr; /// Value in the other live range that overlaps this def, if any. VNInfo *OtherVNI = nullptr; /// Is this value an IMPLICIT_DEF that can be erased? /// /// IMPLICIT_DEF values should only exist at the end of a basic block that /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be /// safely erased if they are overlapping a live value in the other live /// interval. /// /// Weird control flow graphs and incomplete PHI handling in /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with /// longer live ranges. Such IMPLICIT_DEF values should be treated like /// normal values. bool ErasableImplicitDef = false; /// True when the live range of this value will be pruned because of an /// overlapping CR_Replace value in the other live range. bool Pruned = false; /// True once Pruned above has been computed. bool PrunedComputed = false; /// True if this value is determined to be identical to OtherVNI /// (in valuesIdentical). This is used with CR_Erase where the erased /// copy is redundant, i.e. the source value is already the same as /// the destination. In such cases the subranges need to be updated /// properly. See comment at pruneSubRegValues for more info. bool Identical = false; Val() = default; bool isAnalyzed() const { return WriteLanes.any(); } }; /// One entry per value number in LI. SmallVector<Val, 8> Vals; /// Compute the bitmask of lanes actually written by DefMI. /// Set Redef if there are any partial register definitions that depend on the /// previous value of the register. LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; /// Find the ultimate value that VNI was copied from. std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const; bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const; /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. /// Return a conflict resolution when possible, but leave the hard cases as /// CR_Unresolved. /// Recursively calls computeAssignment() on this and Other, guaranteeing that /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. /// The recursion always goes upwards in the dominator tree, making loops /// impossible. ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); /// Compute the value assignment for ValNo in RI. /// This may be called recursively by analyzeValue(), but never for a ValNo on /// the stack. void computeAssignment(unsigned ValNo, JoinVals &Other); /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute /// the extent of the tainted lanes in the block. /// /// Multiple values in Other.LR can be affected since partial redefinitions /// can preserve previously tainted lanes. /// /// 1 %dst = VLOAD <-- Define all lanes in %dst /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read /// /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) /// entry to TaintedVals. /// /// Returns false if the tainted lanes extend beyond the basic block. bool taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); /// Return true if MI uses any of the given Lanes from Reg. /// This does not include partial redefinitions of Reg. bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const; /// Determine if ValNo is a copy of a value number in LR or Other.LR that will /// be pruned: /// /// %dst = COPY %src /// %src = COPY %dst <-- This value to be pruned. /// %dst = COPY %src <-- This value is a copy of a pruned value. bool isPrunedValue(unsigned ValNo, JoinVals &Other); public: JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask, SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp, LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, bool TrackSubRegLiveness) : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {} /// Analyze defs in LR and compute a value mapping in NewVNInfo. /// Returns false if any conflicts were impossible to resolve. bool mapValues(JoinVals &Other); /// Try to resolve conflicts that require all values to be mapped. /// Returns false if any conflicts were impossible to resolve. bool resolveConflicts(JoinVals &Other); /// Prune the live range of values in Other.LR where they would conflict with /// CR_Replace values in LR. Collect end points for restoring the live range /// after joining. void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, bool changeInstrs); /// Removes subranges starting at copies that get removed. This sometimes /// happens when undefined subranges are copied around. These ranges contain /// no useful information and can be removed. void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); /// Pruning values in subranges can lead to removing segments in these /// subranges started by IMPLICIT_DEFs. The corresponding segments in /// the main range also need to be removed. This function will mark /// the corresponding values in the main range as pruned, so that /// eraseInstrs can do the final cleanup. /// The parameter @p LI must be the interval whose main range is the /// live range LR. void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); /// Erase any machine instructions that have been coalesced away. /// Add erased instructions to ErasedInstrs. /// Add foreign virtual registers to ShrinkRegs if their live range ended at /// the erased instrs. void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, SmallVectorImpl<unsigned> &ShrinkRegs, LiveInterval *LI = nullptr); /// Remove liverange defs at places where implicit defs will be removed. void removeImplicitDefs(); /// Get the value assignments suitable for passing to LiveInterval::join. const int *getAssignments() const { return Assignments.data(); } }; } // end anonymous namespace LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const { LaneBitmask L; for (const MachineOperand &MO : DefMI->operands()) { if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) continue; L |= TRI->getSubRegIndexLaneMask( TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); if (MO.readsReg()) Redef = true; } return L; } std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain( const VNInfo *VNI) const { unsigned TrackReg = Reg; while (!VNI->isPHIDef()) { SlotIndex Def = VNI->def; MachineInstr *MI = Indexes->getInstructionFromIndex(Def); assert(MI && "No defining instruction"); if (!MI->isFullCopy()) return std::make_pair(VNI, TrackReg); unsigned SrcReg = MI->getOperand(1).getReg(); if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) return std::make_pair(VNI, TrackReg); const LiveInterval &LI = LIS->getInterval(SrcReg); const VNInfo *ValueIn; // No subrange involved. if (!SubRangeJoin || !LI.hasSubRanges()) { LiveQueryResult LRQ = LI.Query(Def); ValueIn = LRQ.valueIn(); } else { // Query subranges. Ensure that all matching ones take us to the same def // (allowing some of them to be undef). ValueIn = nullptr; for (const LiveInterval::SubRange &S : LI.subranges()) { // Transform lanemask to a mask in the joined live interval. LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); if ((SMask & LaneMask).none()) continue; LiveQueryResult LRQ = S.Query(Def); if (!ValueIn) { ValueIn = LRQ.valueIn(); continue; } if (LRQ.valueIn() && ValueIn != LRQ.valueIn()) return std::make_pair(VNI, TrackReg); } } if (ValueIn == nullptr) { // Reaching an undefined value is legitimate, for example: // // 1 undef %0.sub1 = ... ;; %0.sub0 == undef // 2 %1 = COPY %0 ;; %1 is defined here. // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition, // ;; but it's equivalent to "undef". return std::make_pair(nullptr, SrcReg); } VNI = ValueIn; TrackReg = SrcReg; } return std::make_pair(VNI, TrackReg); } bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const { const VNInfo *Orig0; unsigned Reg0; std::tie(Orig0, Reg0) = followCopyChain(Value0); if (Orig0 == Value1 && Reg0 == Other.Reg) return true; const VNInfo *Orig1; unsigned Reg1; std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); // If both values are undefined, and the source registers are the same // register, the values are identical. Filter out cases where only one // value is defined. if (Orig0 == nullptr || Orig1 == nullptr) return Orig0 == Orig1 && Reg0 == Reg1; // The values are equal if they are defined at the same place and use the // same register. Note that we cannot compare VNInfos directly as some of // them might be from a copy created in mergeSubRangeInto() while the other // is from the original LiveInterval. return Orig0->def == Orig1->def && Reg0 == Reg1; } JoinVals::ConflictResolution JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { Val &V = Vals[ValNo]; assert(!V.isAnalyzed() && "Value has already been analyzed!"); VNInfo *VNI = LR.getValNumInfo(ValNo); if (VNI->isUnused()) { V.WriteLanes = LaneBitmask::getAll(); return CR_Keep; } // Get the instruction defining this value, compute the lanes written. const MachineInstr *DefMI = nullptr; if (VNI->isPHIDef()) { // Conservatively assume that all lanes in a PHI are valid. LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) : TRI->getSubRegIndexLaneMask(SubIdx); V.ValidLanes = V.WriteLanes = Lanes; } else { DefMI = Indexes->getInstructionFromIndex(VNI->def); assert(DefMI != nullptr); if (SubRangeJoin) { // We don't care about the lanes when joining subregister ranges. V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); if (DefMI->isImplicitDef()) { V.ValidLanes = LaneBitmask::getNone(); V.ErasableImplicitDef = true; } } else { bool Redef = false; V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); // If this is a read-modify-write instruction, there may be more valid // lanes than the ones written by this instruction. // This only covers partial redef operands. DefMI may have normal use // operands reading the register. They don't contribute valid lanes. // // This adds ssub1 to the set of valid lanes in %src: // // %src:ssub1 = FOO // // This leaves only ssub1 valid, making any other lanes undef: // // %src:ssub1<def,read-undef> = FOO %src:ssub2 // // The <read-undef> flag on the def operand means that old lane values are // not important. if (Redef) { V.RedefVNI = LR.Query(VNI->def).valueIn(); assert((TrackSubRegLiveness || V.RedefVNI) && "Instruction is reading nonexistent value"); if (V.RedefVNI != nullptr) { computeAssignment(V.RedefVNI->id, Other); V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; } } // An IMPLICIT_DEF writes undef values. if (DefMI->isImplicitDef()) { // We normally expect IMPLICIT_DEF values to be live only until the end // of their block. If the value is really live longer and gets pruned in // another block, this flag is cleared again. V.ErasableImplicitDef = true; V.ValidLanes &= ~V.WriteLanes; } } } // Find the value in Other that overlaps VNI->def, if any. LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); // It is possible that both values are defined by the same instruction, or // the values are PHIs defined in the same block. When that happens, the two // values should be merged into one, but not into any preceding value. // The first value defined or visited gets CR_Keep, the other gets CR_Merge. if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); // One value stays, the other is merged. Keep the earlier one, or the first // one we see. if (OtherVNI->def < VNI->def) Other.computeAssignment(OtherVNI->id, *this); else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { // This is an early-clobber def overlapping a live-in value in the other // register. Not mergeable. V.OtherVNI = OtherLRQ.valueIn(); return CR_Impossible; } V.OtherVNI = OtherVNI; Val &OtherV = Other.Vals[OtherVNI->id]; // Keep this value, check for conflicts when analyzing OtherVNI. if (!OtherV.isAnalyzed()) return CR_Keep; // Both sides have been analyzed now. // Allow overlapping PHI values. Any real interference would show up in a // predecessor, the PHI itself can't introduce any conflicts. if (VNI->isPHIDef()) return CR_Merge; if ((V.ValidLanes & OtherV.ValidLanes).any()) // Overlapping lanes can't be resolved. return CR_Impossible; else return CR_Merge; } // No simultaneous def. Is Other live at the def? V.OtherVNI = OtherLRQ.valueIn(); if (!V.OtherVNI) // No overlap, no conflict. return CR_Keep; assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); // We have overlapping values, or possibly a kill of Other. // Recursively compute assignments up the dominator tree. Other.computeAssignment(V.OtherVNI->id, *this); Val &OtherV = Other.Vals[V.OtherVNI->id]; // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. // This shouldn't normally happen, but ProcessImplicitDefs can leave such // IMPLICIT_DEF instructions behind, and there is nothing wrong with it // technically. // // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try // to erase the IMPLICIT_DEF instruction. if (OtherV.ErasableImplicitDef && DefMI && DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def << " extends into " << printMBBReference(*DefMI->getParent()) << ", keeping it.\n"); OtherV.ErasableImplicitDef = false; } // Allow overlapping PHI values. Any real interference would show up in a // predecessor, the PHI itself can't introduce any conflicts. if (VNI->isPHIDef()) return CR_Replace; // Check for simple erasable conflicts. if (DefMI->isImplicitDef()) { // We need the def for the subregister if there is nothing else live at the // subrange at this point. if (TrackSubRegLiveness && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none()) return CR_Replace; return CR_Erase; } // Include the non-conflict where DefMI is a coalescable copy that kills // OtherVNI. We still want the copy erased and value numbers merged. if (CP.isCoalescable(DefMI)) { // Some of the lanes copied from OtherVNI may be undef, making them undef // here too. V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; return CR_Erase; } // This may not be a real conflict if DefMI simply kills Other and defines // VNI. if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) return CR_Keep; // Handle the case where VNI and OtherVNI can be proven to be identical: // // %other = COPY %ext // %this = COPY %ext <-- Erase this copy // if (DefMI->isFullCopy() && !CP.isPartial() && valuesIdentical(VNI, V.OtherVNI, Other)) { V.Identical = true; return CR_Erase; } // If the lanes written by this instruction were all undef in OtherVNI, it is // still safe to join the live ranges. This can't be done with a simple value // mapping, though - OtherVNI will map to multiple values: // // 1 %dst:ssub0 = FOO <-- OtherVNI // 2 %src = BAR <-- VNI // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. // 4 BAZ killed %dst // 5 QUUX killed %src // // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace // handles this complex value mapping. if ((V.WriteLanes & OtherV.ValidLanes).none()) return CR_Replace; // If the other live range is killed by DefMI and the live ranges are still // overlapping, it must be because we're looking at an early clobber def: // // %dst<def,early-clobber> = ASM killed %src // // In this case, it is illegal to merge the two live ranges since the early // clobber def would clobber %src before it was read. if (OtherLRQ.isKill()) { // This case where the def doesn't overlap the kill is handled above. assert(VNI->def.isEarlyClobber() && "Only early clobber defs can overlap a kill"); return CR_Impossible; } // VNI is clobbering live lanes in OtherVNI, but there is still the // possibility that no instructions actually read the clobbered lanes. // If we're clobbering all the lanes in OtherVNI, at least one must be read. // Otherwise Other.RI wouldn't be live here. if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) return CR_Impossible; // We need to verify that no instructions are reading the clobbered lanes. To // save compile time, we'll only check that locally. Don't allow the tainted // value to escape the basic block. MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) return CR_Impossible; // There are still some things that could go wrong besides clobbered lanes // being read, for example OtherVNI may be only partially redefined in MBB, // and some clobbered lanes could escape the block. Save this analysis for // resolveConflicts() when all values have been mapped. We need to know // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute // that now - the recursive analyzeValue() calls must go upwards in the // dominator tree. return CR_Unresolved; } void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { Val &V = Vals[ValNo]; if (V.isAnalyzed()) { // Recursion should always move up the dominator tree, so ValNo is not // supposed to reappear before it has been assigned. assert(Assignments[ValNo] != -1 && "Bad recursion?"); return; } switch ((V.Resolution = analyzeValue(ValNo, Other))) { case CR_Erase: case CR_Merge: // Merge this ValNo into OtherVNI. assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' << LR.getValNumInfo(ValNo)->def << " into " << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' << V.OtherVNI->def << " --> @" << NewVNInfo[Assignments[ValNo]]->def << '\n'); break; case CR_Replace: case CR_Unresolved: { // The other value is going to be pruned if this join is successful. assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); Val &OtherV = Other.Vals[V.OtherVNI->id]; // We cannot erase an IMPLICIT_DEF if we don't have valid values for all // its lanes. if ((OtherV.WriteLanes & ~V.ValidLanes).any() && TrackSubRegLiveness) OtherV.ErasableImplicitDef = false; OtherV.Pruned = true; LLVM_FALLTHROUGH; } default: // This value number needs to go in the final joined live range. Assignments[ValNo] = NewVNInfo.size(); NewVNInfo.push_back(LR.getValNumInfo(ValNo)); break; } } bool JoinVals::mapValues(JoinVals &Other) { for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { computeAssignment(i, Other); if (Vals[i].Resolution == CR_Impossible) { LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i << '@' << LR.getValNumInfo(i)->def << '\n'); return false; } } return true; } bool JoinVals:: taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { VNInfo *VNI = LR.getValNumInfo(ValNo); MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); // Scan Other.LR from VNI.def to MBBEnd. LiveInterval::iterator OtherI = Other.LR.find(VNI->def); assert(OtherI != Other.LR.end() && "No conflict?"); do { // OtherI is pointing to a tainted value. Abort the join if the tainted // lanes escape the block. SlotIndex End = OtherI->end; if (End >= MBBEnd) { LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' << OtherI->valno->id << '@' << OtherI->start << '\n'); return false; } LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' << OtherI->valno->id << '@' << OtherI->start << " to " << End << '\n'); // A dead def is not a problem. if (End.isDead()) break; TaintExtent.push_back(std::make_pair(End, TaintedLanes)); // Check for another def in the MBB. if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) break; // Lanes written by the new def are no longer tainted. const Val &OV = Other.Vals[OtherI->valno->id]; TaintedLanes &= ~OV.WriteLanes; if (!OV.RedefVNI) break; } while (TaintedLanes.any()); return true; } bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx, LaneBitmask Lanes) const { if (MI.isDebugInstr()) return false; for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) continue; if (!MO.readsReg()) continue; unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) return true; } return false; } bool JoinVals::resolveConflicts(JoinVals &Other) { for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { Val &V = Vals[i]; assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); if (V.Resolution != CR_Unresolved) continue; LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@' << LR.getValNumInfo(i)->def << '\n'); if (SubRangeJoin) return false; ++NumLaneConflicts; assert(V.OtherVNI && "Inconsistent conflict resolution."); VNInfo *VNI = LR.getValNumInfo(i); const Val &OtherV = Other.Vals[V.OtherVNI->id]; // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the // join, those lanes will be tainted with a wrong value. Get the extent of // the tainted lanes. LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) // Tainted lanes would extend beyond the basic block. return false; assert(!TaintExtent.empty() && "There should be at least one conflict."); // Now look at the instructions from VNI->def to TaintExtent (inclusive). MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); MachineBasicBlock::iterator MI = MBB->begin(); if (!VNI->isPHIDef()) { MI = Indexes->getInstructionFromIndex(VNI->def); // No need to check the instruction defining VNI for reads. ++MI; } assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && "Interference ends on VNI->def. Should have been handled earlier"); MachineInstr *LastMI = Indexes->getInstructionFromIndex(TaintExtent.front().first); assert(LastMI && "Range must end at a proper instruction"); unsigned TaintNum = 0; while (true) { assert(MI != MBB->end() && "Bad LastMI"); if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); return false; } // LastMI is the last instruction to use the current value. if (&*MI == LastMI) { if (++TaintNum == TaintExtent.size()) break; LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); assert(LastMI && "Range must end at a proper instruction"); TaintedLanes = TaintExtent[TaintNum].second; } ++MI; } // The tainted lanes are unused. V.Resolution = CR_Replace; ++NumLaneResolves; } return true; } bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { Val &V = Vals[ValNo]; if (V.Pruned || V.PrunedComputed) return V.Pruned; if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) return V.Pruned; // Follow copies up the dominator tree and check if any intermediate value // has been pruned. V.PrunedComputed = true; V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); return V.Pruned; } void JoinVals::pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, bool changeInstrs) { for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { SlotIndex Def = LR.getValNumInfo(i)->def; switch (Vals[i].Resolution) { case CR_Keep: break; case CR_Replace: { // This value takes precedence over the value in Other.LR. LIS->pruneValue(Other.LR, Def, &EndPoints); // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF // instructions are only inserted to provide a live-out value for PHI // predecessors, so the instruction should simply go away once its value // has been replaced. Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; bool EraseImpDef = OtherV.ErasableImplicitDef && OtherV.Resolution == CR_Keep; if (!Def.isBlock()) { if (changeInstrs) { // Remove <def,read-undef> flags. This def is now a partial redef. // Also remove dead flags since the joined live range will // continue past this instruction. for (MachineOperand &MO : Indexes->getInstructionFromIndex(Def)->operands()) { if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) MO.setIsUndef(false); MO.setIsDead(false); } } } // This value will reach instructions below, but we need to make sure // the live range also reaches the instruction at Def. if (!EraseImpDef) EndPoints.push_back(Def); } LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def << ": " << Other.LR << '\n'); break; } case CR_Erase: case CR_Merge: if (isPrunedValue(i, Other)) { // This value is ultimately a copy of a pruned value in LR or Other.LR. // We can no longer trust the value mapping computed by // computeAssignment(), the value that was originally copied could have // been replaced. LIS->pruneValue(LR, Def, &EndPoints); LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " << Def << ": " << LR << '\n'); } break; case CR_Unresolved: case CR_Impossible: llvm_unreachable("Unresolved conflicts"); } } } /// Consider the following situation when coalescing the copy between /// %31 and %45 at 800. (The vertical lines represent live range segments.) /// /// Main range Subrange 0004 (sub2) /// %31 %45 %31 %45 /// 544 %45 = COPY %28 + + /// | v1 | v1 /// 560B bb.1: + + /// 624 = %45.sub2 | v2 | v2 /// 800 %31 = COPY %45 + + + + /// | v0 | v0 /// 816 %31.sub1 = ... + | /// 880 %30 = COPY %31 | v1 + /// 928 %45 = COPY %30 | + + /// | | v0 | v0 <--+ /// 992B ; backedge -> bb.1 | + + | /// 1040 = %31.sub0 + | /// This value must remain /// live-out! /// /// Assuming that %31 is coalesced into %45, the copy at 928 becomes /// redundant, since it copies the value from %45 back into it. The /// conflict resolution for the main range determines that %45.v0 is /// to be erased, which is ok since %31.v1 is identical to it. /// The problem happens with the subrange for sub2: it has to be live /// on exit from the block, but since 928 was actually a point of /// definition of %45.sub2, %45.sub2 was not live immediately prior /// to that definition. As a result, when 928 was erased, the value v0 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2, /// providing an incorrect value to the use at 624. /// /// Since the main-range values %31.v1 and %45.v0 were proved to be /// identical, the corresponding values in subranges must also be the /// same. A redundant copy is removed because it's not needed, and not /// because it copied an undefined value, so any liveness that originated /// from that copy cannot disappear. When pruning a value that started /// at the removed copy, the corresponding identical value must be /// extended to replace it. void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { // Look for values being erased. bool DidPrune = false; for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { Val &V = Vals[i]; // We should trigger in all cases in which eraseInstrs() does something. // match what eraseInstrs() is doing, print a message so if (V.Resolution != CR_Erase && (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)) continue; // Check subranges at the point where the copy will be removed. SlotIndex Def = LR.getValNumInfo(i)->def; SlotIndex OtherDef; if (V.Identical) OtherDef = V.OtherVNI->def; // Print message so mismatches with eraseInstrs() can be diagnosed. LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def << '\n'); for (LiveInterval::SubRange &S : LI.subranges()) { LiveQueryResult Q = S.Query(Def); // If a subrange starts at the copy then an undefined value has been // copied and we must remove that subrange value as well. VNInfo *ValueOut = Q.valueOutOrDead(); if (ValueOut != nullptr && Q.valueIn() == nullptr) { LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) << " at " << Def << "\n"); SmallVector<SlotIndex,8> EndPoints; LIS->pruneValue(S, Def, &EndPoints); DidPrune = true; // Mark value number as unused. ValueOut->markUnused(); if (V.Identical && S.Query(OtherDef).valueOut()) { // If V is identical to V.OtherVNI (and S was live at OtherDef), // then we can't simply prune V from S. V needs to be replaced // with V.OtherVNI. LIS->extendToIndices(S, EndPoints); } continue; } // If a subrange ends at the copy, then a value was copied but only // partially used later. Shrink the subregister range appropriately. if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) { LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane " << PrintLaneMask(S.LaneMask) << " at " << Def << "\n"); ShrinkMask |= S.LaneMask; } } } if (DidPrune) LI.removeEmptySubRanges(); } /// Check if any of the subranges of @p LI contain a definition at @p Def. static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { for (LiveInterval::SubRange &SR : LI.subranges()) { if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) if (VNI->def == Def) return true; } return false; } void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { assert(&static_cast<LiveRange&>(LI) == &LR); for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { if (Vals[i].Resolution != CR_Keep) continue; VNInfo *VNI = LR.getValNumInfo(i); if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) continue; Vals[i].Pruned = true; ShrinkMainRange = true; } } void JoinVals::removeImplicitDefs() { for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { Val &V = Vals[i]; if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) continue; VNInfo *VNI = LR.getValNumInfo(i); VNI->markUnused(); LR.removeValNo(VNI); } } void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, SmallVectorImpl<unsigned> &ShrinkRegs, LiveInterval *LI) { for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { // Get the def location before markUnused() below invalidates it. SlotIndex Def = LR.getValNumInfo(i)->def; switch (Vals[i].Resolution) { case CR_Keep: { // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any // longer. The IMPLICIT_DEF instructions are only inserted by // PHIElimination to guarantee that all PHI predecessors have a value. if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) break; // Remove value number i from LR. // For intervals with subranges, removing a segment from the main range // may require extending the previous segment: for each definition of // a subregister, there will be a corresponding def in the main range. // That def may fall in the middle of a segment from another subrange. // In such cases, removing this def from the main range must be // complemented by extending the main range to account for the liveness // of the other subrange. VNInfo *VNI = LR.getValNumInfo(i); SlotIndex Def = VNI->def; // The new end point of the main range segment to be extended. SlotIndex NewEnd; if (LI != nullptr) { LiveRange::iterator I = LR.FindSegmentContaining(Def); assert(I != LR.end()); // Do not extend beyond the end of the segment being removed. // The segment may have been pruned in preparation for joining // live ranges. NewEnd = I->end; } LR.removeValNo(VNI); // Note that this VNInfo is reused and still referenced in NewVNInfo, // make it appear like an unused value number. VNI->markUnused(); if (LI != nullptr && LI->hasSubRanges()) { assert(static_cast<LiveRange*>(LI) == &LR); // Determine the end point based on the subrange information: // minimum of (earliest def of next segment, // latest end point of containing segment) SlotIndex ED, LE; for (LiveInterval::SubRange &SR : LI->subranges()) { LiveRange::iterator I = SR.find(Def); if (I == SR.end()) continue; if (I->start > Def) ED = ED.isValid() ? std::min(ED, I->start) : I->start; else LE = LE.isValid() ? std::max(LE, I->end) : I->end; } if (LE.isValid()) NewEnd = std::min(NewEnd, LE); if (ED.isValid()) NewEnd = std::min(NewEnd, ED); // We only want to do the extension if there was a subrange that // was live across Def. if (LE.isValid()) { LiveRange::iterator S = LR.find(Def); if (S != LR.begin()) std::prev(S)->end = NewEnd; } } LLVM_DEBUG({ dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; if (LI != nullptr) dbgs() << "\t\t LHS = " << *LI << '\n'; }); LLVM_FALLTHROUGH; } case CR_Erase: { MachineInstr *MI = Indexes->getInstructionFromIndex(Def); assert(MI && "No instruction to erase"); if (MI->isCopy()) { unsigned Reg = MI->getOperand(1).getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg) && Reg != CP.getSrcReg() && Reg != CP.getDstReg()) ShrinkRegs.push_back(Reg); } ErasedInstrs.insert(MI); LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); LIS->RemoveMachineInstrFromMaps(*MI); MI->eraseFromParent(); break; } default: break; } } } void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, LaneBitmask LaneMask, const CoalescerPair &CP) { SmallVector<VNInfo*, 16> NewVNInfo; JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, NewVNInfo, CP, LIS, TRI, true, true); JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, NewVNInfo, CP, LIS, TRI, true, true); // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) // We should be able to resolve all conflicts here as we could successfully do // it on the mainrange already. There is however a problem when multiple // ranges get mapped to the "overflow" lane mask bit which creates unexpected // interferences. if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { // We already determined that it is legal to merge the intervals, so this // should never fail. llvm_unreachable("*** Couldn't join subrange!\n"); } if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) { // We already determined that it is legal to merge the intervals, so this // should never fail. llvm_unreachable("*** Couldn't join subrange!\n"); } // The merging algorithm in LiveInterval::join() can't handle conflicting // value mappings, so we need to remove any live ranges that overlap a // CR_Replace resolution. Collect a set of end points that can be used to // restore the live range after joining. SmallVector<SlotIndex, 8> EndPoints; LHSVals.pruneValues(RHSVals, EndPoints, false); RHSVals.pruneValues(LHSVals, EndPoints, false); LHSVals.removeImplicitDefs(); RHSVals.removeImplicitDefs(); LRange.verify(); RRange.verify(); // Join RRange into LHS. LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask) << ' ' << LRange << "\n"); if (EndPoints.empty()) return; // Recompute the parts of the live range we had to remove because of // CR_Replace conflicts. LLVM_DEBUG({ dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": " << LRange << '\n'; }); LIS->extendToIndices(LRange, EndPoints); } void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, LaneBitmask LaneMask, CoalescerPair &CP) { BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); LI.refineSubRanges(Allocator, LaneMask, [this,&Allocator,&ToMerge,&CP](LiveInterval::SubRange &SR) { if (SR.empty()) { SR.assign(ToMerge, Allocator); } else { // joinSubRegRange() destroys the merged range, so we need a copy. LiveRange RangeCopy(ToMerge, Allocator); joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); } }); } bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { SmallVector<VNInfo*, 16> NewVNInfo; LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n'); // First compute NewVNInfo and the simple value mappings. // Detect impossible conflicts early. if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) return false; // Some conflicts can only be resolved after all values have been mapped. if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) return false; // All clear, the live ranges can be merged. if (RHS.hasSubRanges() || LHS.hasSubRanges()) { BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); // Transform lanemasks from the LHS to masks in the coalesced register and // create initial subranges if necessary. unsigned DstIdx = CP.getDstIdx(); if (!LHS.hasSubRanges()) { LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() : TRI->getSubRegIndexLaneMask(DstIdx); // LHS must support subregs or we wouldn't be in this codepath. assert(Mask.any()); LHS.createSubRangeFrom(Allocator, Mask, LHS); } else if (DstIdx != 0) { // Transform LHS lanemasks to new register class if necessary. for (LiveInterval::SubRange &R : LHS.subranges()) { LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); R.LaneMask = Mask; } } LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS << '\n'); // Determine lanemasks of RHS in the coalesced register and merge subranges. unsigned SrcIdx = CP.getSrcIdx(); if (!RHS.hasSubRanges()) { LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() : TRI->getSubRegIndexLaneMask(SrcIdx); mergeSubRangeInto(LHS, RHS, Mask, CP); } else { // Pair up subranges and merge. for (LiveInterval::SubRange &R : RHS.subranges()) { LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); mergeSubRangeInto(LHS, R, Mask, CP); } } LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); // Pruning implicit defs from subranges may result in the main range // having stale segments. LHSVals.pruneMainSegments(LHS, ShrinkMainRange); LHSVals.pruneSubRegValues(LHS, ShrinkMask); RHSVals.pruneSubRegValues(LHS, ShrinkMask); } // The merging algorithm in LiveInterval::join() can't handle conflicting // value mappings, so we need to remove any live ranges that overlap a // CR_Replace resolution. Collect a set of end points that can be used to // restore the live range after joining. SmallVector<SlotIndex, 8> EndPoints; LHSVals.pruneValues(RHSVals, EndPoints, true); RHSVals.pruneValues(LHSVals, EndPoints, true); // Erase COPY and IMPLICIT_DEF instructions. This may cause some external // registers to require trimming. SmallVector<unsigned, 8> ShrinkRegs; LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); while (!ShrinkRegs.empty()) shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); // Join RHS into LHS. LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); // Kill flags are going to be wrong if the live ranges were overlapping. // Eventually, we should simply clear all kill flags when computing live // ranges. They are reinserted after register allocation. MRI->clearKillFlags(LHS.reg); MRI->clearKillFlags(RHS.reg); if (!EndPoints.empty()) { // Recompute the parts of the live range we had to remove because of // CR_Replace conflicts. LLVM_DEBUG({ dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { dbgs() << EndPoints[i]; if (i != n-1) dbgs() << ','; } dbgs() << ": " << LHS << '\n'; }); LIS->extendToIndices((LiveRange&)LHS, EndPoints); } return true; } bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); } namespace { /// Information concerning MBB coalescing priority. struct MBBPriorityInfo { MachineBasicBlock *MBB; unsigned Depth; bool IsSplit; MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) : MBB(mbb), Depth(depth), IsSplit(issplit) {} }; } // end anonymous namespace /// C-style comparator that sorts first based on the loop depth of the basic /// block (the unsigned), and then on the MBB number. /// /// EnableGlobalCopies assumes that the primary sort key is loop depth. static int compareMBBPriority(const MBBPriorityInfo *LHS, const MBBPriorityInfo *RHS) { // Deeper loops first if (LHS->Depth != RHS->Depth) return LHS->Depth > RHS->Depth ? -1 : 1; // Try to unsplit critical edges next. if (LHS->IsSplit != RHS->IsSplit) return LHS->IsSplit ? -1 : 1; // Prefer blocks that are more connected in the CFG. This takes care of // the most difficult copies first while intervals are short. unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); if (cl != cr) return cl > cr ? -1 : 1; // As a last resort, sort by block number. return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; } /// \returns true if the given copy uses or defines a local live range. static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { if (!Copy->isCopy()) return false; if (Copy->getOperand(1).isUndef()) return false; unsigned SrcReg = Copy->getOperand(1).getReg(); unsigned DstReg = Copy->getOperand(0).getReg(); if (TargetRegisterInfo::isPhysicalRegister(SrcReg) || TargetRegisterInfo::isPhysicalRegister(DstReg)) return false; return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); } bool RegisterCoalescer:: copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { bool Progress = false; for (unsigned i = 0, e = CurrList.size(); i != e; ++i) { if (!CurrList[i]) continue; // Skip instruction pointers that have already been erased, for example by // dead code elimination. if (ErasedInstrs.count(CurrList[i])) { CurrList[i] = nullptr; continue; } bool Again = false; bool Success = joinCopy(CurrList[i], Again); Progress |= Success; if (Success || !Again) CurrList[i] = nullptr; } return Progress; } /// Check if DstReg is a terminal node. /// I.e., it does not have any affinity other than \p Copy. static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy, const MachineRegisterInfo *MRI) { assert(Copy.isCopyLike()); // Check if the destination of this copy as any other affinity. for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) if (&MI != &Copy && MI.isCopyLike()) return false; return true; } bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { assert(Copy.isCopyLike()); if (!UseTerminalRule) return false; unsigned DstReg, DstSubReg, SrcReg, SrcSubReg; isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg); // Check if the destination of this copy has any other affinity. if (TargetRegisterInfo::isPhysicalRegister(DstReg) || // If SrcReg is a physical register, the copy won't be coalesced. // Ignoring it may have other side effect (like missing // rematerialization). So keep it. TargetRegisterInfo::isPhysicalRegister(SrcReg) || !isTerminalReg(DstReg, Copy, MRI)) return false; // DstReg is a terminal node. Check if it interferes with any other // copy involving SrcReg. const MachineBasicBlock *OrigBB = Copy.getParent(); const LiveInterval &DstLI = LIS->getInterval(DstReg); for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { // Technically we should check if the weight of the new copy is // interesting compared to the other one and update the weight // of the copies accordingly. However, this would only work if // we would gather all the copies first then coalesce, whereas // right now we interleave both actions. // For now, just consider the copies that are in the same block. if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) continue; unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg; isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, OtherSubReg); if (OtherReg == SrcReg) OtherReg = OtherSrcReg; // Check if OtherReg is a non-terminal. if (TargetRegisterInfo::isPhysicalRegister(OtherReg) || isTerminalReg(OtherReg, MI, MRI)) continue; // Check that OtherReg interfere with DstReg. if (LIS->getInterval(OtherReg).overlaps(DstLI)) { LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) << '\n'); return true; } } return false; } void RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { LLVM_DEBUG(dbgs() << MBB->getName() << ":\n"); // Collect all copy-like instructions in MBB. Don't start coalescing anything // yet, it might invalidate the iterator. const unsigned PrevSize = WorkList.size(); if (JoinGlobalCopies) { SmallVector<MachineInstr*, 2> LocalTerminals; SmallVector<MachineInstr*, 2> GlobalTerminals; // Coalesce copies bottom-up to coalesce local defs before local uses. They // are not inherently easier to resolve, but slightly preferable until we // have local live range splitting. In particular this is required by // cmp+jmp macro fusion. for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { if (!MII->isCopyLike()) continue; bool ApplyTerminalRule = applyTerminalRule(*MII); if (isLocalCopy(&(*MII), LIS)) { if (ApplyTerminalRule) LocalTerminals.push_back(&(*MII)); else LocalWorkList.push_back(&(*MII)); } else { if (ApplyTerminalRule) GlobalTerminals.push_back(&(*MII)); else WorkList.push_back(&(*MII)); } } // Append the copies evicted by the terminal rule at the end of the list. LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); } else { SmallVector<MachineInstr*, 2> Terminals; for (MachineInstr &MII : *MBB) if (MII.isCopyLike()) { if (applyTerminalRule(MII)) Terminals.push_back(&MII); else WorkList.push_back(&MII); } // Append the copies evicted by the terminal rule at the end of the list. WorkList.append(Terminals.begin(), Terminals.end()); } // Try coalescing the collected copies immediately, and remove the nulls. // This prevents the WorkList from getting too large since most copies are // joinable on the first attempt. MutableArrayRef<MachineInstr*> CurrList(WorkList.begin() + PrevSize, WorkList.end()); if (copyCoalesceWorkList(CurrList)) WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), nullptr), WorkList.end()); } void RegisterCoalescer::coalesceLocals() { copyCoalesceWorkList(LocalWorkList); for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { if (LocalWorkList[j]) WorkList.push_back(LocalWorkList[j]); } LocalWorkList.clear(); } void RegisterCoalescer::joinAllIntervals() { LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); std::vector<MBBPriorityInfo> MBBs; MBBs.reserve(MF->size()); for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { MachineBasicBlock *MBB = &*I; MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB), JoinSplitEdges && isSplitEdge(MBB))); } array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); // Coalesce intervals in MBB priority order. unsigned CurrDepth = std::numeric_limits<unsigned>::max(); for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { // Try coalescing the collected local copies for deeper loops. if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) { coalesceLocals(); CurrDepth = MBBs[i].Depth; } copyCoalesceInMBB(MBBs[i].MBB); } coalesceLocals(); // Joining intervals can allow other intervals to be joined. Iteratively join // until we make no progress. while (copyCoalesceWorkList(WorkList)) /* empty */ ; } void RegisterCoalescer::releaseMemory() { ErasedInstrs.clear(); WorkList.clear(); DeadDefs.clear(); InflateRegs.clear(); } bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { MF = &fn; MRI = &fn.getRegInfo(); const TargetSubtargetInfo &STI = fn.getSubtarget(); TRI = STI.getRegisterInfo(); TII = STI.getInstrInfo(); LIS = &getAnalysis<LiveIntervals>(); AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); Loops = &getAnalysis<MachineLoopInfo>(); if (EnableGlobalCopies == cl::BOU_UNSET) JoinGlobalCopies = STI.enableJoinGlobalCopies(); else JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); // The MachineScheduler does not currently require JoinSplitEdges. This will // either be enabled unconditionally or replaced by a more general live range // splitting optimization. JoinSplitEdges = EnableJoinSplits; LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" << "********** Function: " << MF->getName() << '\n'); if (VerifyCoalescing) MF->verify(this, "Before register coalescing"); RegClassInfo.runOnMachineFunction(fn); // Join (coalesce) intervals if requested. if (EnableJoining) joinAllIntervals(); // After deleting a lot of copies, register classes may be less constrained. // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> // DPR inflation. array_pod_sort(InflateRegs.begin(), InflateRegs.end()); InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), InflateRegs.end()); LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n"); for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { unsigned Reg = InflateRegs[i]; if (MRI->reg_nodbg_empty(Reg)) continue; if (MRI->recomputeRegClass(Reg)) { LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to " << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); ++NumInflated; LiveInterval &LI = LIS->getInterval(Reg); if (LI.hasSubRanges()) { // If the inflated register class does not support subregisters anymore // remove the subranges. if (!MRI->shouldTrackSubRegLiveness(Reg)) { LI.clearSubRanges(); } else { #ifndef NDEBUG LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); // If subranges are still supported, then the same subregs // should still be supported. for (LiveInterval::SubRange &S : LI.subranges()) { assert((S.LaneMask & ~MaxMask).none()); } #endif } } } } LLVM_DEBUG(dump()); if (VerifyCoalescing) MF->verify(this, "After register coalescing"); return true; } void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { LIS->print(O, m); }