//===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a wrapper around MCSchedModel that allows the interface // to benefit from information currently only available in TargetInstrInfo. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/TargetSchedule.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/MC/MCSchedule.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cassert> #include <cstdint> using namespace llvm; static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true), cl::desc("Use TargetSchedModel for latency lookup")); static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true), cl::desc("Use InstrItineraryData for latency lookup")); bool TargetSchedModel::hasInstrSchedModel() const { return EnableSchedModel && SchedModel.hasInstrSchedModel(); } bool TargetSchedModel::hasInstrItineraries() const { return EnableSchedItins && !InstrItins.isEmpty(); } static unsigned gcd(unsigned Dividend, unsigned Divisor) { // Dividend and Divisor will be naturally swapped as needed. while (Divisor) { unsigned Rem = Dividend % Divisor; Dividend = Divisor; Divisor = Rem; }; return Dividend; } static unsigned lcm(unsigned A, unsigned B) { unsigned LCM = (uint64_t(A) * B) / gcd(A, B); assert((LCM >= A && LCM >= B) && "LCM overflow"); return LCM; } void TargetSchedModel::init(const TargetSubtargetInfo *TSInfo) { STI = TSInfo; SchedModel = TSInfo->getSchedModel(); TII = TSInfo->getInstrInfo(); STI->initInstrItins(InstrItins); unsigned NumRes = SchedModel.getNumProcResourceKinds(); ResourceFactors.resize(NumRes); ResourceLCM = SchedModel.IssueWidth; for (unsigned Idx = 0; Idx < NumRes; ++Idx) { unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; if (NumUnits > 0) ResourceLCM = lcm(ResourceLCM, NumUnits); } MicroOpFactor = ResourceLCM / SchedModel.IssueWidth; for (unsigned Idx = 0; Idx < NumRes; ++Idx) { unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0; } } /// Returns true only if instruction is specified as single issue. bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI, const MCSchedClassDesc *SC) const { if (hasInstrSchedModel()) { if (!SC) SC = resolveSchedClass(MI); if (SC->isValid()) return SC->BeginGroup; } return false; } bool TargetSchedModel::mustEndGroup(const MachineInstr *MI, const MCSchedClassDesc *SC) const { if (hasInstrSchedModel()) { if (!SC) SC = resolveSchedClass(MI); if (SC->isValid()) return SC->EndGroup; } return false; } unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI, const MCSchedClassDesc *SC) const { if (hasInstrItineraries()) { int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass()); return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI); } if (hasInstrSchedModel()) { if (!SC) SC = resolveSchedClass(MI); if (SC->isValid()) return SC->NumMicroOps; } return MI->isTransient() ? 0 : 1; } // The machine model may explicitly specify an invalid latency, which // effectively means infinite latency. Since users of the TargetSchedule API // don't know how to handle this, we convert it to a very large latency that is // easy to distinguish when debugging the DAG but won't induce overflow. static unsigned capLatency(int Cycles) { return Cycles >= 0 ? Cycles : 1000; } /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require /// evaluation of predicates that depend on instruction operands or flags. const MCSchedClassDesc *TargetSchedModel:: resolveSchedClass(const MachineInstr *MI) const { // Get the definition's scheduling class descriptor from this machine model. unsigned SchedClass = MI->getDesc().getSchedClass(); const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass); if (!SCDesc->isValid()) return SCDesc; #ifndef NDEBUG unsigned NIter = 0; #endif while (SCDesc->isVariant()) { assert(++NIter < 6 && "Variants are nested deeper than the magic number"); SchedClass = STI->resolveSchedClass(SchedClass, MI, this); SCDesc = SchedModel.getSchedClassDesc(SchedClass); } return SCDesc; } /// Find the def index of this operand. This index maps to the machine model and /// is independent of use operands. Def operands may be reordered with uses or /// merged with uses without affecting the def index (e.g. before/after /// regalloc). However, an instruction's def operands must never be reordered /// with respect to each other. static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) { unsigned DefIdx = 0; for (unsigned i = 0; i != DefOperIdx; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isDef()) ++DefIdx; } return DefIdx; } /// Find the use index of this operand. This is independent of the instruction's /// def operands. /// /// Note that uses are not determined by the operand's isUse property, which /// is simply the inverse of isDef. Here we consider any readsReg operand to be /// a "use". The machine model allows an operand to be both a Def and Use. static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) { unsigned UseIdx = 0; for (unsigned i = 0; i != UseOperIdx; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.readsReg() && !MO.isDef()) ++UseIdx; } return UseIdx; } // Top-level API for clients that know the operand indices. unsigned TargetSchedModel::computeOperandLatency( const MachineInstr *DefMI, unsigned DefOperIdx, const MachineInstr *UseMI, unsigned UseOperIdx) const { if (!hasInstrSchedModel() && !hasInstrItineraries()) return TII->defaultDefLatency(SchedModel, *DefMI); if (hasInstrItineraries()) { int OperLatency = 0; if (UseMI) { OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx, *UseMI, UseOperIdx); } else { unsigned DefClass = DefMI->getDesc().getSchedClass(); OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx); } if (OperLatency >= 0) return OperLatency; // No operand latency was found. unsigned InstrLatency = TII->getInstrLatency(&InstrItins, *DefMI); // Expected latency is the max of the stage latency and itinerary props. // Rather than directly querying InstrItins stage latency, we call a TII // hook to allow subtargets to specialize latency. This hook is only // applicable to the InstrItins model. InstrSchedModel should model all // special cases without TII hooks. InstrLatency = std::max(InstrLatency, TII->defaultDefLatency(SchedModel, *DefMI)); return InstrLatency; } // hasInstrSchedModel() const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); unsigned DefIdx = findDefIdx(DefMI, DefOperIdx); if (DefIdx < SCDesc->NumWriteLatencyEntries) { // Lookup the definition's write latency in SubtargetInfo. const MCWriteLatencyEntry *WLEntry = STI->getWriteLatencyEntry(SCDesc, DefIdx); unsigned WriteID = WLEntry->WriteResourceID; unsigned Latency = capLatency(WLEntry->Cycles); if (!UseMI) return Latency; // Lookup the use's latency adjustment in SubtargetInfo. const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI); if (UseDesc->NumReadAdvanceEntries == 0) return Latency; unsigned UseIdx = findUseIdx(UseMI, UseOperIdx); int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID); if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap return 0; return Latency - Advance; } // If DefIdx does not exist in the model (e.g. implicit defs), then return // unit latency (defaultDefLatency may be too conservative). #ifndef NDEBUG if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef() && SchedModel.isComplete()) { errs() << "DefIdx " << DefIdx << " exceeds machine model writes for " << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)"; llvm_unreachable("incomplete machine model"); } #endif // FIXME: Automatically giving all implicit defs defaultDefLatency is // undesirable. We should only do it for defs that are known to the MC // desc like flags. Truly implicit defs should get 1 cycle latency. return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, *DefMI); } unsigned TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const { return capLatency(MCSchedModel::computeInstrLatency(*STI, SCDesc)); } unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const { assert(hasInstrSchedModel() && "Only call this function with a SchedModel"); unsigned SCIdx = TII->get(Opcode).getSchedClass(); return capLatency(SchedModel.computeInstrLatency(*STI, SCIdx)); } unsigned TargetSchedModel::computeInstrLatency(const MCInst &Inst) const { if (hasInstrSchedModel()) return capLatency(SchedModel.computeInstrLatency(*STI, *TII, Inst)); return computeInstrLatency(Inst.getOpcode()); } unsigned TargetSchedModel::computeInstrLatency(const MachineInstr *MI, bool UseDefaultDefLatency) const { // For the itinerary model, fall back to the old subtarget hook. // Allow subtargets to compute Bundle latencies outside the machine model. if (hasInstrItineraries() || MI->isBundle() || (!hasInstrSchedModel() && !UseDefaultDefLatency)) return TII->getInstrLatency(&InstrItins, *MI); if (hasInstrSchedModel()) { const MCSchedClassDesc *SCDesc = resolveSchedClass(MI); if (SCDesc->isValid()) return computeInstrLatency(*SCDesc); } return TII->defaultDefLatency(SchedModel, *MI); } unsigned TargetSchedModel:: computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, const MachineInstr *DepMI) const { if (!SchedModel.isOutOfOrder()) return 1; // Out-of-order processor can dispatch WAW dependencies in the same cycle. // Treat predication as a data dependency for out-of-order cpus. In-order // cpus do not need to treat predicated writes specially. // // TODO: The following hack exists because predication passes do not // correctly append imp-use operands, and readsReg() strangely returns false // for predicated defs. unsigned Reg = DefMI->getOperand(DefOperIdx).getReg(); const MachineFunction &MF = *DefMI->getMF(); const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI)) return computeInstrLatency(DefMI); // If we have a per operand scheduling model, check if this def is writing // an unbuffered resource. If so, it treated like an in-order cpu. if (hasInstrSchedModel()) { const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); if (SCDesc->isValid()) { for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc), *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) { if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize) return 1; } } } return 0; } double TargetSchedModel::computeReciprocalThroughput(const MachineInstr *MI) const { if (hasInstrItineraries()) { unsigned SchedClass = MI->getDesc().getSchedClass(); return MCSchedModel::getReciprocalThroughput(SchedClass, *getInstrItineraries()); } if (hasInstrSchedModel()) return MCSchedModel::getReciprocalThroughput(*STI, *resolveSchedClass(MI)); return 0.0; } double TargetSchedModel::computeReciprocalThroughput(unsigned Opcode) const { unsigned SchedClass = TII->get(Opcode).getSchedClass(); if (hasInstrItineraries()) return MCSchedModel::getReciprocalThroughput(SchedClass, *getInstrItineraries()); if (hasInstrSchedModel()) { const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClass); if (SCDesc.isValid() && !SCDesc.isVariant()) return MCSchedModel::getReciprocalThroughput(*STI, SCDesc); } return 0.0; } double TargetSchedModel::computeReciprocalThroughput(const MCInst &MI) const { if (hasInstrSchedModel()) return SchedModel.getReciprocalThroughput(*STI, *TII, MI); return computeReciprocalThroughput(MI.getOpcode()); }