//===- DWARFContext.cpp ---------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h" #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" #include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h" #include "llvm/DebugInfo/DWARF/DWARFDebugAddr.h" #include "llvm/DebugInfo/DWARF/DWARFDebugArangeSet.h" #include "llvm/DebugInfo/DWARF/DWARFDebugAranges.h" #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h" #include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h" #include "llvm/DebugInfo/DWARF/DWARFDebugMacro.h" #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h" #include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h" #include "llvm/DebugInfo/DWARF/DWARFDie.h" #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" #include "llvm/DebugInfo/DWARF/DWARFGdbIndex.h" #include "llvm/DebugInfo/DWARF/DWARFSection.h" #include "llvm/DebugInfo/DWARF/DWARFUnitIndex.h" #include "llvm/DebugInfo/DWARF/DWARFVerifier.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Object/Decompressor.h" #include "llvm/Object/MachO.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Object/RelocVisitor.h" #include "llvm/Support/Casting.h" #include "llvm/Support/DataExtractor.h" #include "llvm/Support/Error.h" #include "llvm/Support/Format.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/WithColor.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cstdint> #include <deque> #include <map> #include <string> #include <utility> #include <vector> using namespace llvm; using namespace dwarf; using namespace object; #define DEBUG_TYPE "dwarf" using DWARFLineTable = DWARFDebugLine::LineTable; using FileLineInfoKind = DILineInfoSpecifier::FileLineInfoKind; using FunctionNameKind = DILineInfoSpecifier::FunctionNameKind; DWARFContext::DWARFContext(std::unique_ptr<const DWARFObject> DObj, std::string DWPName) : DIContext(CK_DWARF), DWPName(std::move(DWPName)), DObj(std::move(DObj)) {} DWARFContext::~DWARFContext() = default; /// Dump the UUID load command. static void dumpUUID(raw_ostream &OS, const ObjectFile &Obj) { auto *MachO = dyn_cast<MachOObjectFile>(&Obj); if (!MachO) return; for (auto LC : MachO->load_commands()) { raw_ostream::uuid_t UUID; if (LC.C.cmd == MachO::LC_UUID) { if (LC.C.cmdsize < sizeof(UUID) + sizeof(LC.C)) { OS << "error: UUID load command is too short.\n"; return; } OS << "UUID: "; memcpy(&UUID, LC.Ptr+sizeof(LC.C), sizeof(UUID)); OS.write_uuid(UUID); Triple T = MachO->getArchTriple(); OS << " (" << T.getArchName() << ')'; OS << ' ' << MachO->getFileName() << '\n'; } } } using ContributionCollection = std::vector<Optional<StrOffsetsContributionDescriptor>>; // Collect all the contributions to the string offsets table from all units, // sort them by their starting offsets and remove duplicates. static ContributionCollection collectContributionData(DWARFContext::cu_iterator_range CUs, DWARFContext::tu_section_iterator_range TUSs) { ContributionCollection Contributions; for (const auto &CU : CUs) Contributions.push_back(CU->getStringOffsetsTableContribution()); for (const auto &TUS : TUSs) for (const auto &TU : TUS) Contributions.push_back(TU->getStringOffsetsTableContribution()); // Sort the contributions so that any invalid ones are placed at // the start of the contributions vector. This way they are reported // first. llvm::sort(Contributions.begin(), Contributions.end(), [](const Optional<StrOffsetsContributionDescriptor> &L, const Optional<StrOffsetsContributionDescriptor> &R) { if (L && R) return L->Base < R->Base; return R.hasValue(); }); // Uniquify contributions, as it is possible that units (specifically // type units in dwo or dwp files) share contributions. We don't want // to report them more than once. Contributions.erase( std::unique(Contributions.begin(), Contributions.end(), [](const Optional<StrOffsetsContributionDescriptor> &L, const Optional<StrOffsetsContributionDescriptor> &R) { if (L && R) return L->Base == R->Base && L->Size == R->Size; return false; }), Contributions.end()); return Contributions; } static void dumpDWARFv5StringOffsetsSection( raw_ostream &OS, StringRef SectionName, const DWARFObject &Obj, const DWARFSection &StringOffsetsSection, StringRef StringSection, DWARFContext::cu_iterator_range CUs, DWARFContext::tu_section_iterator_range TUSs, bool LittleEndian) { auto Contributions = collectContributionData(CUs, TUSs); DWARFDataExtractor StrOffsetExt(Obj, StringOffsetsSection, LittleEndian, 0); DataExtractor StrData(StringSection, LittleEndian, 0); uint64_t SectionSize = StringOffsetsSection.Data.size(); uint32_t Offset = 0; for (auto &Contribution : Contributions) { // Report an ill-formed contribution. if (!Contribution) { OS << "error: invalid contribution to string offsets table in section ." << SectionName << ".\n"; return; } dwarf::DwarfFormat Format = Contribution->getFormat(); uint16_t Version = Contribution->getVersion(); uint64_t ContributionHeader = Contribution->Base; // In DWARF v5 there is a contribution header that immediately precedes // the string offsets base (the location we have previously retrieved from // the CU DIE's DW_AT_str_offsets attribute). The header is located either // 8 or 16 bytes before the base, depending on the contribution's format. if (Version >= 5) ContributionHeader -= Format == DWARF32 ? 8 : 16; // Detect overlapping contributions. if (Offset > ContributionHeader) { OS << "error: overlapping contributions to string offsets table in " "section ." << SectionName << ".\n"; return; } // Report a gap in the table. if (Offset < ContributionHeader) { OS << format("0x%8.8x: Gap, length = ", Offset); OS << (ContributionHeader - Offset) << "\n"; } OS << format("0x%8.8x: ", (uint32_t)ContributionHeader); // In DWARF v5 the contribution size in the descriptor does not equal // the originally encoded length (it does not contain the length of the // version field and the padding, a total of 4 bytes). Add them back in // for reporting. OS << "Contribution size = " << (Contribution->Size + (Version < 5 ? 0 : 4)) << ", Format = " << (Format == DWARF32 ? "DWARF32" : "DWARF64") << ", Version = " << Version << "\n"; Offset = Contribution->Base; unsigned EntrySize = Contribution->getDwarfOffsetByteSize(); while (Offset - Contribution->Base < Contribution->Size) { OS << format("0x%8.8x: ", Offset); // FIXME: We can only extract strings if the offset fits in 32 bits. uint64_t StringOffset = StrOffsetExt.getRelocatedValue(EntrySize, &Offset); // Extract the string if we can and display it. Otherwise just report // the offset. if (StringOffset <= std::numeric_limits<uint32_t>::max()) { uint32_t StringOffset32 = (uint32_t)StringOffset; OS << format("%8.8x ", StringOffset32); const char *S = StrData.getCStr(&StringOffset32); if (S) OS << format("\"%s\"", S); } else OS << format("%16.16" PRIx64 " ", StringOffset); OS << "\n"; } } // Report a gap at the end of the table. if (Offset < SectionSize) { OS << format("0x%8.8x: Gap, length = ", Offset); OS << (SectionSize - Offset) << "\n"; } } // Dump a DWARF string offsets section. This may be a DWARF v5 formatted // string offsets section, where each compile or type unit contributes a // number of entries (string offsets), with each contribution preceded by // a header containing size and version number. Alternatively, it may be a // monolithic series of string offsets, as generated by the pre-DWARF v5 // implementation of split DWARF. static void dumpStringOffsetsSection( raw_ostream &OS, StringRef SectionName, const DWARFObject &Obj, const DWARFSection &StringOffsetsSection, StringRef StringSection, DWARFContext::cu_iterator_range CUs, DWARFContext::tu_section_iterator_range TUSs, bool LittleEndian, unsigned MaxVersion) { // If we have at least one (compile or type) unit with DWARF v5 or greater, // we assume that the section is formatted like a DWARF v5 string offsets // section. if (MaxVersion >= 5) dumpDWARFv5StringOffsetsSection(OS, SectionName, Obj, StringOffsetsSection, StringSection, CUs, TUSs, LittleEndian); else { DataExtractor strOffsetExt(StringOffsetsSection.Data, LittleEndian, 0); uint32_t offset = 0; uint64_t size = StringOffsetsSection.Data.size(); // Ensure that size is a multiple of the size of an entry. if (size & ((uint64_t)(sizeof(uint32_t) - 1))) { OS << "error: size of ." << SectionName << " is not a multiple of " << sizeof(uint32_t) << ".\n"; size &= -(uint64_t)sizeof(uint32_t); } DataExtractor StrData(StringSection, LittleEndian, 0); while (offset < size) { OS << format("0x%8.8x: ", offset); uint32_t StringOffset = strOffsetExt.getU32(&offset); OS << format("%8.8x ", StringOffset); const char *S = StrData.getCStr(&StringOffset); if (S) OS << format("\"%s\"", S); OS << "\n"; } } } // Dump the .debug_addr section. static void dumpAddrSection(raw_ostream &OS, DWARFDataExtractor &AddrData, DIDumpOptions DumpOpts, uint16_t Version, uint8_t AddrSize) { // TODO: Make this more general: add callback types to Error.h, create // implementation and make all DWARF classes use them. static auto WarnCallback = [](Error Warn) { handleAllErrors(std::move(Warn), [](ErrorInfoBase &Info) { WithColor::warning() << Info.message() << '\n'; }); }; uint32_t Offset = 0; while (AddrData.isValidOffset(Offset)) { DWARFDebugAddrTable AddrTable; uint32_t TableOffset = Offset; if (Error Err = AddrTable.extract(AddrData, &Offset, Version, AddrSize, WarnCallback)) { WithColor::error() << toString(std::move(Err)) << '\n'; // Keep going after an error, if we can, assuming that the length field // could be read. If it couldn't, stop reading the section. if (!AddrTable.hasValidLength()) break; uint64_t Length = AddrTable.getLength(); Offset = TableOffset + Length; } else { AddrTable.dump(OS, DumpOpts); } } } // Dump the .debug_rnglists or .debug_rnglists.dwo section (DWARF v5). static void dumpRnglistsSection(raw_ostream &OS, DWARFDataExtractor &rnglistData, DIDumpOptions DumpOpts) { uint32_t Offset = 0; while (rnglistData.isValidOffset(Offset)) { llvm::DWARFDebugRnglistTable Rnglists; uint32_t TableOffset = Offset; if (Error Err = Rnglists.extract(rnglistData, &Offset)) { WithColor::error() << toString(std::move(Err)) << '\n'; uint64_t Length = Rnglists.length(); // Keep going after an error, if we can, assuming that the length field // could be read. If it couldn't, stop reading the section. if (Length == 0) break; Offset = TableOffset + Length; } else { Rnglists.dump(OS, DumpOpts); } } } void DWARFContext::dump( raw_ostream &OS, DIDumpOptions DumpOpts, std::array<Optional<uint64_t>, DIDT_ID_Count> DumpOffsets) { Optional<uint64_t> DumpOffset; uint64_t DumpType = DumpOpts.DumpType; StringRef Extension = sys::path::extension(DObj->getFileName()); bool IsDWO = (Extension == ".dwo") || (Extension == ".dwp"); // Print UUID header. const auto *ObjFile = DObj->getFile(); if (DumpType & DIDT_UUID) dumpUUID(OS, *ObjFile); // Print a header for each explicitly-requested section. // Otherwise just print one for non-empty sections. // Only print empty .dwo section headers when dumping a .dwo file. bool Explicit = DumpType != DIDT_All && !IsDWO; bool ExplicitDWO = Explicit && IsDWO; auto shouldDump = [&](bool Explicit, const char *Name, unsigned ID, StringRef Section) { DumpOffset = DumpOffsets[ID]; unsigned Mask = 1U << ID; bool Should = (DumpType & Mask) && (Explicit || !Section.empty()); if (Should) OS << "\n" << Name << " contents:\n"; return Should; }; // Dump individual sections. if (shouldDump(Explicit, ".debug_abbrev", DIDT_ID_DebugAbbrev, DObj->getAbbrevSection())) getDebugAbbrev()->dump(OS); if (shouldDump(ExplicitDWO, ".debug_abbrev.dwo", DIDT_ID_DebugAbbrev, DObj->getAbbrevDWOSection())) getDebugAbbrevDWO()->dump(OS); auto dumpDebugInfo = [&](bool IsExplicit, const char *Name, DWARFSection Section, cu_iterator_range CUs) { if (shouldDump(IsExplicit, Name, DIDT_ID_DebugInfo, Section.Data)) { if (DumpOffset) getDIEForOffset(DumpOffset.getValue()) .dump(OS, 0, DumpOpts.noImplicitRecursion()); else for (const auto &CU : CUs) CU->dump(OS, DumpOpts); } }; dumpDebugInfo(Explicit, ".debug_info", DObj->getInfoSection(), compile_units()); dumpDebugInfo(ExplicitDWO, ".debug_info.dwo", DObj->getInfoDWOSection(), dwo_compile_units()); auto dumpDebugType = [&](const char *Name, tu_section_iterator_range TUSections) { OS << '\n' << Name << " contents:\n"; DumpOffset = DumpOffsets[DIDT_ID_DebugTypes]; for (const auto &TUS : TUSections) for (const auto &TU : TUS) if (DumpOffset) TU->getDIEForOffset(*DumpOffset) .dump(OS, 0, DumpOpts.noImplicitRecursion()); else TU->dump(OS, DumpOpts); }; if ((DumpType & DIDT_DebugTypes)) { if (Explicit || getNumTypeUnits()) dumpDebugType(".debug_types", type_unit_sections()); if (ExplicitDWO || getNumDWOTypeUnits()) dumpDebugType(".debug_types.dwo", dwo_type_unit_sections()); } if (shouldDump(Explicit, ".debug_loc", DIDT_ID_DebugLoc, DObj->getLocSection().Data)) { getDebugLoc()->dump(OS, getRegisterInfo(), DumpOffset); } if (shouldDump(ExplicitDWO, ".debug_loc.dwo", DIDT_ID_DebugLoc, DObj->getLocDWOSection().Data)) { getDebugLocDWO()->dump(OS, getRegisterInfo(), DumpOffset); } if (shouldDump(Explicit, ".debug_frame", DIDT_ID_DebugFrame, DObj->getDebugFrameSection())) getDebugFrame()->dump(OS, getRegisterInfo(), DumpOffset); if (shouldDump(Explicit, ".eh_frame", DIDT_ID_DebugFrame, DObj->getEHFrameSection())) getEHFrame()->dump(OS, getRegisterInfo(), DumpOffset); if (DumpType & DIDT_DebugMacro) { if (Explicit || !getDebugMacro()->empty()) { OS << "\n.debug_macinfo contents:\n"; getDebugMacro()->dump(OS); } } if (shouldDump(Explicit, ".debug_aranges", DIDT_ID_DebugAranges, DObj->getARangeSection())) { uint32_t offset = 0; DataExtractor arangesData(DObj->getARangeSection(), isLittleEndian(), 0); DWARFDebugArangeSet set; while (set.extract(arangesData, &offset)) set.dump(OS); } auto DumpLineSection = [&](DWARFDebugLine::SectionParser Parser, DIDumpOptions DumpOpts) { while (!Parser.done()) { if (DumpOffset && Parser.getOffset() != *DumpOffset) { Parser.skip(); continue; } OS << "debug_line[" << format("0x%8.8x", Parser.getOffset()) << "]\n"; if (DumpOpts.Verbose) { Parser.parseNext(DWARFDebugLine::warn, DWARFDebugLine::warn, &OS); } else { DWARFDebugLine::LineTable LineTable = Parser.parseNext(); LineTable.dump(OS, DumpOpts); } } }; if (shouldDump(Explicit, ".debug_line", DIDT_ID_DebugLine, DObj->getLineSection().Data)) { DWARFDataExtractor LineData(*DObj, DObj->getLineSection(), isLittleEndian(), 0); DWARFDebugLine::SectionParser Parser(LineData, *this, compile_units(), type_unit_sections()); DumpLineSection(Parser, DumpOpts); } if (shouldDump(ExplicitDWO, ".debug_line.dwo", DIDT_ID_DebugLine, DObj->getLineDWOSection().Data)) { DWARFDataExtractor LineData(*DObj, DObj->getLineDWOSection(), isLittleEndian(), 0); DWARFDebugLine::SectionParser Parser(LineData, *this, dwo_compile_units(), dwo_type_unit_sections()); DumpLineSection(Parser, DumpOpts); } if (shouldDump(Explicit, ".debug_cu_index", DIDT_ID_DebugCUIndex, DObj->getCUIndexSection())) { getCUIndex().dump(OS); } if (shouldDump(Explicit, ".debug_tu_index", DIDT_ID_DebugTUIndex, DObj->getTUIndexSection())) { getTUIndex().dump(OS); } if (shouldDump(Explicit, ".debug_str", DIDT_ID_DebugStr, DObj->getStringSection())) { DataExtractor strData(DObj->getStringSection(), isLittleEndian(), 0); uint32_t offset = 0; uint32_t strOffset = 0; while (const char *s = strData.getCStr(&offset)) { OS << format("0x%8.8x: \"%s\"\n", strOffset, s); strOffset = offset; } } if (shouldDump(ExplicitDWO, ".debug_str.dwo", DIDT_ID_DebugStr, DObj->getStringDWOSection())) { DataExtractor strDWOData(DObj->getStringDWOSection(), isLittleEndian(), 0); uint32_t offset = 0; uint32_t strDWOOffset = 0; while (const char *s = strDWOData.getCStr(&offset)) { OS << format("0x%8.8x: \"%s\"\n", strDWOOffset, s); strDWOOffset = offset; } } if (shouldDump(Explicit, ".debug_line_str", DIDT_ID_DebugLineStr, DObj->getLineStringSection())) { DataExtractor strData(DObj->getLineStringSection(), isLittleEndian(), 0); uint32_t offset = 0; uint32_t strOffset = 0; while (const char *s = strData.getCStr(&offset)) { OS << format("0x%8.8x: \"", strOffset); OS.write_escaped(s); OS << "\"\n"; strOffset = offset; } } if (shouldDump(Explicit, ".debug_addr", DIDT_ID_DebugAddr, DObj->getAddrSection().Data)) { DWARFDataExtractor AddrData(*DObj, DObj->getAddrSection(), isLittleEndian(), 0); dumpAddrSection(OS, AddrData, DumpOpts, getMaxVersion(), getCUAddrSize()); } if (shouldDump(Explicit, ".debug_ranges", DIDT_ID_DebugRanges, DObj->getRangeSection().Data)) { uint8_t savedAddressByteSize = getCUAddrSize(); DWARFDataExtractor rangesData(*DObj, DObj->getRangeSection(), isLittleEndian(), savedAddressByteSize); uint32_t offset = 0; DWARFDebugRangeList rangeList; while (rangesData.isValidOffset(offset)) { if (Error E = rangeList.extract(rangesData, &offset)) { WithColor::error() << toString(std::move(E)) << '\n'; break; } rangeList.dump(OS); } } if (shouldDump(Explicit, ".debug_rnglists", DIDT_ID_DebugRnglists, DObj->getRnglistsSection().Data)) { DWARFDataExtractor RnglistData(*DObj, DObj->getRnglistsSection(), isLittleEndian(), 0); dumpRnglistsSection(OS, RnglistData, DumpOpts); } if (shouldDump(ExplicitDWO, ".debug_rnglists.dwo", DIDT_ID_DebugRnglists, DObj->getRnglistsDWOSection().Data)) { DWARFDataExtractor RnglistData(*DObj, DObj->getRnglistsDWOSection(), isLittleEndian(), 0); dumpRnglistsSection(OS, RnglistData, DumpOpts); } if (shouldDump(Explicit, ".debug_pubnames", DIDT_ID_DebugPubnames, DObj->getPubNamesSection())) DWARFDebugPubTable(DObj->getPubNamesSection(), isLittleEndian(), false) .dump(OS); if (shouldDump(Explicit, ".debug_pubtypes", DIDT_ID_DebugPubtypes, DObj->getPubTypesSection())) DWARFDebugPubTable(DObj->getPubTypesSection(), isLittleEndian(), false) .dump(OS); if (shouldDump(Explicit, ".debug_gnu_pubnames", DIDT_ID_DebugGnuPubnames, DObj->getGnuPubNamesSection())) DWARFDebugPubTable(DObj->getGnuPubNamesSection(), isLittleEndian(), true /* GnuStyle */) .dump(OS); if (shouldDump(Explicit, ".debug_gnu_pubtypes", DIDT_ID_DebugGnuPubtypes, DObj->getGnuPubTypesSection())) DWARFDebugPubTable(DObj->getGnuPubTypesSection(), isLittleEndian(), true /* GnuStyle */) .dump(OS); if (shouldDump(Explicit, ".debug_str_offsets", DIDT_ID_DebugStrOffsets, DObj->getStringOffsetSection().Data)) dumpStringOffsetsSection( OS, "debug_str_offsets", *DObj, DObj->getStringOffsetSection(), DObj->getStringSection(), compile_units(), type_unit_sections(), isLittleEndian(), getMaxVersion()); if (shouldDump(ExplicitDWO, ".debug_str_offsets.dwo", DIDT_ID_DebugStrOffsets, DObj->getStringOffsetDWOSection().Data)) dumpStringOffsetsSection( OS, "debug_str_offsets.dwo", *DObj, DObj->getStringOffsetDWOSection(), DObj->getStringDWOSection(), dwo_compile_units(), dwo_type_unit_sections(), isLittleEndian(), getMaxVersion()); if (shouldDump(Explicit, ".gnu_index", DIDT_ID_GdbIndex, DObj->getGdbIndexSection())) { getGdbIndex().dump(OS); } if (shouldDump(Explicit, ".apple_names", DIDT_ID_AppleNames, DObj->getAppleNamesSection().Data)) getAppleNames().dump(OS); if (shouldDump(Explicit, ".apple_types", DIDT_ID_AppleTypes, DObj->getAppleTypesSection().Data)) getAppleTypes().dump(OS); if (shouldDump(Explicit, ".apple_namespaces", DIDT_ID_AppleNamespaces, DObj->getAppleNamespacesSection().Data)) getAppleNamespaces().dump(OS); if (shouldDump(Explicit, ".apple_objc", DIDT_ID_AppleObjC, DObj->getAppleObjCSection().Data)) getAppleObjC().dump(OS); if (shouldDump(Explicit, ".debug_names", DIDT_ID_DebugNames, DObj->getDebugNamesSection().Data)) getDebugNames().dump(OS); } DWARFCompileUnit *DWARFContext::getDWOCompileUnitForHash(uint64_t Hash) { DWOCUs.parseDWO(*this, DObj->getInfoDWOSection(), true); if (const auto &CUI = getCUIndex()) { if (const auto *R = CUI.getFromHash(Hash)) return DWOCUs.getUnitForIndexEntry(*R); return nullptr; } // If there's no index, just search through the CUs in the DWO - there's // probably only one unless this is something like LTO - though an in-process // built/cached lookup table could be used in that case to improve repeated // lookups of different CUs in the DWO. for (const auto &DWOCU : dwo_compile_units()) { // Might not have parsed DWO ID yet. if (!DWOCU->getDWOId()) { if (Optional<uint64_t> DWOId = toUnsigned(DWOCU->getUnitDIE().find(DW_AT_GNU_dwo_id))) DWOCU->setDWOId(*DWOId); else // No DWO ID? continue; } if (DWOCU->getDWOId() == Hash) return DWOCU.get(); } return nullptr; } DWARFDie DWARFContext::getDIEForOffset(uint32_t Offset) { parseCompileUnits(); if (auto *CU = CUs.getUnitForOffset(Offset)) return CU->getDIEForOffset(Offset); return DWARFDie(); } bool DWARFContext::verify(raw_ostream &OS, DIDumpOptions DumpOpts) { bool Success = true; DWARFVerifier verifier(OS, *this, DumpOpts); Success &= verifier.handleDebugAbbrev(); if (DumpOpts.DumpType & DIDT_DebugInfo) Success &= verifier.handleDebugInfo(); if (DumpOpts.DumpType & DIDT_DebugLine) Success &= verifier.handleDebugLine(); Success &= verifier.handleAccelTables(); return Success; } const DWARFUnitIndex &DWARFContext::getCUIndex() { if (CUIndex) return *CUIndex; DataExtractor CUIndexData(DObj->getCUIndexSection(), isLittleEndian(), 0); CUIndex = llvm::make_unique<DWARFUnitIndex>(DW_SECT_INFO); CUIndex->parse(CUIndexData); return *CUIndex; } const DWARFUnitIndex &DWARFContext::getTUIndex() { if (TUIndex) return *TUIndex; DataExtractor TUIndexData(DObj->getTUIndexSection(), isLittleEndian(), 0); TUIndex = llvm::make_unique<DWARFUnitIndex>(DW_SECT_TYPES); TUIndex->parse(TUIndexData); return *TUIndex; } DWARFGdbIndex &DWARFContext::getGdbIndex() { if (GdbIndex) return *GdbIndex; DataExtractor GdbIndexData(DObj->getGdbIndexSection(), true /*LE*/, 0); GdbIndex = llvm::make_unique<DWARFGdbIndex>(); GdbIndex->parse(GdbIndexData); return *GdbIndex; } const DWARFDebugAbbrev *DWARFContext::getDebugAbbrev() { if (Abbrev) return Abbrev.get(); DataExtractor abbrData(DObj->getAbbrevSection(), isLittleEndian(), 0); Abbrev.reset(new DWARFDebugAbbrev()); Abbrev->extract(abbrData); return Abbrev.get(); } const DWARFDebugAbbrev *DWARFContext::getDebugAbbrevDWO() { if (AbbrevDWO) return AbbrevDWO.get(); DataExtractor abbrData(DObj->getAbbrevDWOSection(), isLittleEndian(), 0); AbbrevDWO.reset(new DWARFDebugAbbrev()); AbbrevDWO->extract(abbrData); return AbbrevDWO.get(); } const DWARFDebugLoc *DWARFContext::getDebugLoc() { if (Loc) return Loc.get(); Loc.reset(new DWARFDebugLoc); // Assume all compile units have the same address byte size. if (getNumCompileUnits()) { DWARFDataExtractor LocData(*DObj, DObj->getLocSection(), isLittleEndian(), getCompileUnitAtIndex(0)->getAddressByteSize()); Loc->parse(LocData); } return Loc.get(); } const DWARFDebugLocDWO *DWARFContext::getDebugLocDWO() { if (LocDWO) return LocDWO.get(); LocDWO.reset(new DWARFDebugLocDWO()); // Assume all compile units have the same address byte size. if (getNumCompileUnits()) { DataExtractor LocData(DObj->getLocDWOSection().Data, isLittleEndian(), getCompileUnitAtIndex(0)->getAddressByteSize()); LocDWO->parse(LocData); } return LocDWO.get(); } const DWARFDebugAranges *DWARFContext::getDebugAranges() { if (Aranges) return Aranges.get(); Aranges.reset(new DWARFDebugAranges()); Aranges->generate(this); return Aranges.get(); } const DWARFDebugFrame *DWARFContext::getDebugFrame() { if (DebugFrame) return DebugFrame.get(); // There's a "bug" in the DWARFv3 standard with respect to the target address // size within debug frame sections. While DWARF is supposed to be independent // of its container, FDEs have fields with size being "target address size", // which isn't specified in DWARF in general. It's only specified for CUs, but // .eh_frame can appear without a .debug_info section. Follow the example of // other tools (libdwarf) and extract this from the container (ObjectFile // provides this information). This problem is fixed in DWARFv4 // See this dwarf-discuss discussion for more details: // http://lists.dwarfstd.org/htdig.cgi/dwarf-discuss-dwarfstd.org/2011-December/001173.html DWARFDataExtractor debugFrameData(DObj->getDebugFrameSection(), isLittleEndian(), DObj->getAddressSize()); DebugFrame.reset(new DWARFDebugFrame(false /* IsEH */)); DebugFrame->parse(debugFrameData); return DebugFrame.get(); } const DWARFDebugFrame *DWARFContext::getEHFrame() { if (EHFrame) return EHFrame.get(); DWARFDataExtractor debugFrameData(DObj->getEHFrameSection(), isLittleEndian(), DObj->getAddressSize()); DebugFrame.reset(new DWARFDebugFrame(true /* IsEH */)); DebugFrame->parse(debugFrameData); return DebugFrame.get(); } const DWARFDebugMacro *DWARFContext::getDebugMacro() { if (Macro) return Macro.get(); DataExtractor MacinfoData(DObj->getMacinfoSection(), isLittleEndian(), 0); Macro.reset(new DWARFDebugMacro()); Macro->parse(MacinfoData); return Macro.get(); } template <typename T> static T &getAccelTable(std::unique_ptr<T> &Cache, const DWARFObject &Obj, const DWARFSection &Section, StringRef StringSection, bool IsLittleEndian) { if (Cache) return *Cache; DWARFDataExtractor AccelSection(Obj, Section, IsLittleEndian, 0); DataExtractor StrData(StringSection, IsLittleEndian, 0); Cache.reset(new T(AccelSection, StrData)); if (Error E = Cache->extract()) llvm::consumeError(std::move(E)); return *Cache; } const DWARFDebugNames &DWARFContext::getDebugNames() { return getAccelTable(Names, *DObj, DObj->getDebugNamesSection(), DObj->getStringSection(), isLittleEndian()); } const AppleAcceleratorTable &DWARFContext::getAppleNames() { return getAccelTable(AppleNames, *DObj, DObj->getAppleNamesSection(), DObj->getStringSection(), isLittleEndian()); } const AppleAcceleratorTable &DWARFContext::getAppleTypes() { return getAccelTable(AppleTypes, *DObj, DObj->getAppleTypesSection(), DObj->getStringSection(), isLittleEndian()); } const AppleAcceleratorTable &DWARFContext::getAppleNamespaces() { return getAccelTable(AppleNamespaces, *DObj, DObj->getAppleNamespacesSection(), DObj->getStringSection(), isLittleEndian()); } const AppleAcceleratorTable &DWARFContext::getAppleObjC() { return getAccelTable(AppleObjC, *DObj, DObj->getAppleObjCSection(), DObj->getStringSection(), isLittleEndian()); } const DWARFDebugLine::LineTable * DWARFContext::getLineTableForUnit(DWARFUnit *U) { Expected<const DWARFDebugLine::LineTable *> ExpectedLineTable = getLineTableForUnit(U, DWARFDebugLine::warn); if (!ExpectedLineTable) { DWARFDebugLine::warn(ExpectedLineTable.takeError()); return nullptr; } return *ExpectedLineTable; } Expected<const DWARFDebugLine::LineTable *> DWARFContext::getLineTableForUnit( DWARFUnit *U, std::function<void(Error)> RecoverableErrorCallback) { if (!Line) Line.reset(new DWARFDebugLine); auto UnitDIE = U->getUnitDIE(); if (!UnitDIE) return nullptr; auto Offset = toSectionOffset(UnitDIE.find(DW_AT_stmt_list)); if (!Offset) return nullptr; // No line table for this compile unit. uint32_t stmtOffset = *Offset + U->getLineTableOffset(); // See if the line table is cached. if (const DWARFLineTable *lt = Line->getLineTable(stmtOffset)) return lt; // Make sure the offset is good before we try to parse. if (stmtOffset >= U->getLineSection().Data.size()) return nullptr; // We have to parse it first. DWARFDataExtractor lineData(*DObj, U->getLineSection(), isLittleEndian(), U->getAddressByteSize()); return Line->getOrParseLineTable(lineData, stmtOffset, *this, U, RecoverableErrorCallback); } void DWARFContext::parseCompileUnits() { CUs.parse(*this, DObj->getInfoSection()); } void DWARFContext::parseTypeUnits() { if (!TUs.empty()) return; DObj->forEachTypesSections([&](const DWARFSection &S) { TUs.emplace_back(); TUs.back().parse(*this, S); }); } void DWARFContext::parseDWOCompileUnits() { DWOCUs.parseDWO(*this, DObj->getInfoDWOSection()); } void DWARFContext::parseDWOTypeUnits() { if (!DWOTUs.empty()) return; DObj->forEachTypesDWOSections([&](const DWARFSection &S) { DWOTUs.emplace_back(); DWOTUs.back().parseDWO(*this, S); }); } DWARFCompileUnit *DWARFContext::getCompileUnitForOffset(uint32_t Offset) { parseCompileUnits(); return CUs.getUnitForOffset(Offset); } DWARFCompileUnit *DWARFContext::getCompileUnitForAddress(uint64_t Address) { // First, get the offset of the compile unit. uint32_t CUOffset = getDebugAranges()->findAddress(Address); // Retrieve the compile unit. return getCompileUnitForOffset(CUOffset); } DWARFContext::DIEsForAddress DWARFContext::getDIEsForAddress(uint64_t Address) { DIEsForAddress Result; DWARFCompileUnit *CU = getCompileUnitForAddress(Address); if (!CU) return Result; Result.CompileUnit = CU; Result.FunctionDIE = CU->getSubroutineForAddress(Address); std::vector<DWARFDie> Worklist; Worklist.push_back(Result.FunctionDIE); while (!Worklist.empty()) { DWARFDie DIE = Worklist.back(); Worklist.pop_back(); if (DIE.getTag() == DW_TAG_lexical_block && DIE.addressRangeContainsAddress(Address)) { Result.BlockDIE = DIE; break; } for (auto Child : DIE) Worklist.push_back(Child); } return Result; } static bool getFunctionNameAndStartLineForAddress(DWARFCompileUnit *CU, uint64_t Address, FunctionNameKind Kind, std::string &FunctionName, uint32_t &StartLine) { // The address may correspond to instruction in some inlined function, // so we have to build the chain of inlined functions and take the // name of the topmost function in it. SmallVector<DWARFDie, 4> InlinedChain; CU->getInlinedChainForAddress(Address, InlinedChain); if (InlinedChain.empty()) return false; const DWARFDie &DIE = InlinedChain[0]; bool FoundResult = false; const char *Name = nullptr; if (Kind != FunctionNameKind::None && (Name = DIE.getSubroutineName(Kind))) { FunctionName = Name; FoundResult = true; } if (auto DeclLineResult = DIE.getDeclLine()) { StartLine = DeclLineResult; FoundResult = true; } return FoundResult; } DILineInfo DWARFContext::getLineInfoForAddress(uint64_t Address, DILineInfoSpecifier Spec) { DILineInfo Result; DWARFCompileUnit *CU = getCompileUnitForAddress(Address); if (!CU) return Result; getFunctionNameAndStartLineForAddress(CU, Address, Spec.FNKind, Result.FunctionName, Result.StartLine); if (Spec.FLIKind != FileLineInfoKind::None) { if (const DWARFLineTable *LineTable = getLineTableForUnit(CU)) LineTable->getFileLineInfoForAddress(Address, CU->getCompilationDir(), Spec.FLIKind, Result); } return Result; } DILineInfoTable DWARFContext::getLineInfoForAddressRange(uint64_t Address, uint64_t Size, DILineInfoSpecifier Spec) { DILineInfoTable Lines; DWARFCompileUnit *CU = getCompileUnitForAddress(Address); if (!CU) return Lines; std::string FunctionName = "<invalid>"; uint32_t StartLine = 0; getFunctionNameAndStartLineForAddress(CU, Address, Spec.FNKind, FunctionName, StartLine); // If the Specifier says we don't need FileLineInfo, just // return the top-most function at the starting address. if (Spec.FLIKind == FileLineInfoKind::None) { DILineInfo Result; Result.FunctionName = FunctionName; Result.StartLine = StartLine; Lines.push_back(std::make_pair(Address, Result)); return Lines; } const DWARFLineTable *LineTable = getLineTableForUnit(CU); // Get the index of row we're looking for in the line table. std::vector<uint32_t> RowVector; if (!LineTable->lookupAddressRange(Address, Size, RowVector)) return Lines; for (uint32_t RowIndex : RowVector) { // Take file number and line/column from the row. const DWARFDebugLine::Row &Row = LineTable->Rows[RowIndex]; DILineInfo Result; LineTable->getFileNameByIndex(Row.File, CU->getCompilationDir(), Spec.FLIKind, Result.FileName); Result.FunctionName = FunctionName; Result.Line = Row.Line; Result.Column = Row.Column; Result.StartLine = StartLine; Lines.push_back(std::make_pair(Row.Address, Result)); } return Lines; } DIInliningInfo DWARFContext::getInliningInfoForAddress(uint64_t Address, DILineInfoSpecifier Spec) { DIInliningInfo InliningInfo; DWARFCompileUnit *CU = getCompileUnitForAddress(Address); if (!CU) return InliningInfo; const DWARFLineTable *LineTable = nullptr; SmallVector<DWARFDie, 4> InlinedChain; CU->getInlinedChainForAddress(Address, InlinedChain); if (InlinedChain.size() == 0) { // If there is no DIE for address (e.g. it is in unavailable .dwo file), // try to at least get file/line info from symbol table. if (Spec.FLIKind != FileLineInfoKind::None) { DILineInfo Frame; LineTable = getLineTableForUnit(CU); if (LineTable && LineTable->getFileLineInfoForAddress(Address, CU->getCompilationDir(), Spec.FLIKind, Frame)) InliningInfo.addFrame(Frame); } return InliningInfo; } uint32_t CallFile = 0, CallLine = 0, CallColumn = 0, CallDiscriminator = 0; for (uint32_t i = 0, n = InlinedChain.size(); i != n; i++) { DWARFDie &FunctionDIE = InlinedChain[i]; DILineInfo Frame; // Get function name if necessary. if (const char *Name = FunctionDIE.getSubroutineName(Spec.FNKind)) Frame.FunctionName = Name; if (auto DeclLineResult = FunctionDIE.getDeclLine()) Frame.StartLine = DeclLineResult; if (Spec.FLIKind != FileLineInfoKind::None) { if (i == 0) { // For the topmost frame, initialize the line table of this // compile unit and fetch file/line info from it. LineTable = getLineTableForUnit(CU); // For the topmost routine, get file/line info from line table. if (LineTable) LineTable->getFileLineInfoForAddress(Address, CU->getCompilationDir(), Spec.FLIKind, Frame); } else { // Otherwise, use call file, call line and call column from // previous DIE in inlined chain. if (LineTable) LineTable->getFileNameByIndex(CallFile, CU->getCompilationDir(), Spec.FLIKind, Frame.FileName); Frame.Line = CallLine; Frame.Column = CallColumn; Frame.Discriminator = CallDiscriminator; } // Get call file/line/column of a current DIE. if (i + 1 < n) { FunctionDIE.getCallerFrame(CallFile, CallLine, CallColumn, CallDiscriminator); } } InliningInfo.addFrame(Frame); } return InliningInfo; } std::shared_ptr<DWARFContext> DWARFContext::getDWOContext(StringRef AbsolutePath) { if (auto S = DWP.lock()) { DWARFContext *Ctxt = S->Context.get(); return std::shared_ptr<DWARFContext>(std::move(S), Ctxt); } std::weak_ptr<DWOFile> *Entry = &DWOFiles[AbsolutePath]; if (auto S = Entry->lock()) { DWARFContext *Ctxt = S->Context.get(); return std::shared_ptr<DWARFContext>(std::move(S), Ctxt); } Expected<OwningBinary<ObjectFile>> Obj = [&] { if (!CheckedForDWP) { SmallString<128> DWPName; auto Obj = object::ObjectFile::createObjectFile( this->DWPName.empty() ? (DObj->getFileName() + ".dwp").toStringRef(DWPName) : StringRef(this->DWPName)); if (Obj) { Entry = &DWP; return Obj; } else { CheckedForDWP = true; // TODO: Should this error be handled (maybe in a high verbosity mode) // before falling back to .dwo files? consumeError(Obj.takeError()); } } return object::ObjectFile::createObjectFile(AbsolutePath); }(); if (!Obj) { // TODO: Actually report errors helpfully. consumeError(Obj.takeError()); return nullptr; } auto S = std::make_shared<DWOFile>(); S->File = std::move(Obj.get()); S->Context = DWARFContext::create(*S->File.getBinary()); *Entry = S; auto *Ctxt = S->Context.get(); return std::shared_ptr<DWARFContext>(std::move(S), Ctxt); } static Error createError(const Twine &Reason, llvm::Error E) { return make_error<StringError>(Reason + toString(std::move(E)), inconvertibleErrorCode()); } /// SymInfo contains information about symbol: it's address /// and section index which is -1LL for absolute symbols. struct SymInfo { uint64_t Address; uint64_t SectionIndex; }; /// Returns the address of symbol relocation used against and a section index. /// Used for futher relocations computation. Symbol's section load address is static Expected<SymInfo> getSymbolInfo(const object::ObjectFile &Obj, const RelocationRef &Reloc, const LoadedObjectInfo *L, std::map<SymbolRef, SymInfo> &Cache) { SymInfo Ret = {0, (uint64_t)-1LL}; object::section_iterator RSec = Obj.section_end(); object::symbol_iterator Sym = Reloc.getSymbol(); std::map<SymbolRef, SymInfo>::iterator CacheIt = Cache.end(); // First calculate the address of the symbol or section as it appears // in the object file if (Sym != Obj.symbol_end()) { bool New; std::tie(CacheIt, New) = Cache.insert({*Sym, {0, 0}}); if (!New) return CacheIt->second; Expected<uint64_t> SymAddrOrErr = Sym->getAddress(); if (!SymAddrOrErr) return createError("failed to compute symbol address: ", SymAddrOrErr.takeError()); // Also remember what section this symbol is in for later auto SectOrErr = Sym->getSection(); if (!SectOrErr) return createError("failed to get symbol section: ", SectOrErr.takeError()); RSec = *SectOrErr; Ret.Address = *SymAddrOrErr; } else if (auto *MObj = dyn_cast<MachOObjectFile>(&Obj)) { RSec = MObj->getRelocationSection(Reloc.getRawDataRefImpl()); Ret.Address = RSec->getAddress(); } if (RSec != Obj.section_end()) Ret.SectionIndex = RSec->getIndex(); // If we are given load addresses for the sections, we need to adjust: // SymAddr = (Address of Symbol Or Section in File) - // (Address of Section in File) + // (Load Address of Section) // RSec is now either the section being targeted or the section // containing the symbol being targeted. In either case, // we need to perform the same computation. if (L && RSec != Obj.section_end()) if (uint64_t SectionLoadAddress = L->getSectionLoadAddress(*RSec)) Ret.Address += SectionLoadAddress - RSec->getAddress(); if (CacheIt != Cache.end()) CacheIt->second = Ret; return Ret; } static bool isRelocScattered(const object::ObjectFile &Obj, const RelocationRef &Reloc) { const MachOObjectFile *MachObj = dyn_cast<MachOObjectFile>(&Obj); if (!MachObj) return false; // MachO also has relocations that point to sections and // scattered relocations. auto RelocInfo = MachObj->getRelocation(Reloc.getRawDataRefImpl()); return MachObj->isRelocationScattered(RelocInfo); } ErrorPolicy DWARFContext::defaultErrorHandler(Error E) { WithColor::error() << toString(std::move(E)) << '\n'; return ErrorPolicy::Continue; } namespace { struct DWARFSectionMap final : public DWARFSection { RelocAddrMap Relocs; }; class DWARFObjInMemory final : public DWARFObject { bool IsLittleEndian; uint8_t AddressSize; StringRef FileName; const object::ObjectFile *Obj = nullptr; std::vector<SectionName> SectionNames; using TypeSectionMap = MapVector<object::SectionRef, DWARFSectionMap, std::map<object::SectionRef, unsigned>>; TypeSectionMap TypesSections; TypeSectionMap TypesDWOSections; DWARFSectionMap InfoSection; DWARFSectionMap LocSection; DWARFSectionMap LineSection; DWARFSectionMap RangeSection; DWARFSectionMap RnglistsSection; DWARFSectionMap StringOffsetSection; DWARFSectionMap InfoDWOSection; DWARFSectionMap LineDWOSection; DWARFSectionMap LocDWOSection; DWARFSectionMap StringOffsetDWOSection; DWARFSectionMap RangeDWOSection; DWARFSectionMap RnglistsDWOSection; DWARFSectionMap AddrSection; DWARFSectionMap AppleNamesSection; DWARFSectionMap AppleTypesSection; DWARFSectionMap AppleNamespacesSection; DWARFSectionMap AppleObjCSection; DWARFSectionMap DebugNamesSection; DWARFSectionMap *mapNameToDWARFSection(StringRef Name) { return StringSwitch<DWARFSectionMap *>(Name) .Case("debug_info", &InfoSection) .Case("debug_loc", &LocSection) .Case("debug_line", &LineSection) .Case("debug_str_offsets", &StringOffsetSection) .Case("debug_ranges", &RangeSection) .Case("debug_rnglists", &RnglistsSection) .Case("debug_info.dwo", &InfoDWOSection) .Case("debug_loc.dwo", &LocDWOSection) .Case("debug_line.dwo", &LineDWOSection) .Case("debug_names", &DebugNamesSection) .Case("debug_rnglists.dwo", &RnglistsDWOSection) .Case("debug_str_offsets.dwo", &StringOffsetDWOSection) .Case("debug_addr", &AddrSection) .Case("apple_names", &AppleNamesSection) .Case("apple_types", &AppleTypesSection) .Case("apple_namespaces", &AppleNamespacesSection) .Case("apple_namespac", &AppleNamespacesSection) .Case("apple_objc", &AppleObjCSection) .Default(nullptr); } StringRef AbbrevSection; StringRef ARangeSection; StringRef DebugFrameSection; StringRef EHFrameSection; StringRef StringSection; StringRef MacinfoSection; StringRef PubNamesSection; StringRef PubTypesSection; StringRef GnuPubNamesSection; StringRef AbbrevDWOSection; StringRef StringDWOSection; StringRef GnuPubTypesSection; StringRef CUIndexSection; StringRef GdbIndexSection; StringRef TUIndexSection; StringRef LineStringSection; // A deque holding section data whose iterators are not invalidated when // new decompressed sections are inserted at the end. std::deque<SmallString<0>> UncompressedSections; StringRef *mapSectionToMember(StringRef Name) { if (DWARFSection *Sec = mapNameToDWARFSection(Name)) return &Sec->Data; return StringSwitch<StringRef *>(Name) .Case("debug_abbrev", &AbbrevSection) .Case("debug_aranges", &ARangeSection) .Case("debug_frame", &DebugFrameSection) .Case("eh_frame", &EHFrameSection) .Case("debug_str", &StringSection) .Case("debug_macinfo", &MacinfoSection) .Case("debug_pubnames", &PubNamesSection) .Case("debug_pubtypes", &PubTypesSection) .Case("debug_gnu_pubnames", &GnuPubNamesSection) .Case("debug_gnu_pubtypes", &GnuPubTypesSection) .Case("debug_abbrev.dwo", &AbbrevDWOSection) .Case("debug_str.dwo", &StringDWOSection) .Case("debug_cu_index", &CUIndexSection) .Case("debug_tu_index", &TUIndexSection) .Case("gdb_index", &GdbIndexSection) .Case("debug_line_str", &LineStringSection) // Any more debug info sections go here. .Default(nullptr); } /// If Sec is compressed section, decompresses and updates its contents /// provided by Data. Otherwise leaves it unchanged. Error maybeDecompress(const object::SectionRef &Sec, StringRef Name, StringRef &Data) { if (!Decompressor::isCompressed(Sec)) return Error::success(); Expected<Decompressor> Decompressor = Decompressor::create(Name, Data, IsLittleEndian, AddressSize == 8); if (!Decompressor) return Decompressor.takeError(); SmallString<0> Out; if (auto Err = Decompressor->resizeAndDecompress(Out)) return Err; UncompressedSections.push_back(std::move(Out)); Data = UncompressedSections.back(); return Error::success(); } public: DWARFObjInMemory(const StringMap<std::unique_ptr<MemoryBuffer>> &Sections, uint8_t AddrSize, bool IsLittleEndian) : IsLittleEndian(IsLittleEndian) { for (const auto &SecIt : Sections) { if (StringRef *SectionData = mapSectionToMember(SecIt.first())) *SectionData = SecIt.second->getBuffer(); } } DWARFObjInMemory(const object::ObjectFile &Obj, const LoadedObjectInfo *L, function_ref<ErrorPolicy(Error)> HandleError) : IsLittleEndian(Obj.isLittleEndian()), AddressSize(Obj.getBytesInAddress()), FileName(Obj.getFileName()), Obj(&Obj) { StringMap<unsigned> SectionAmountMap; for (const SectionRef &Section : Obj.sections()) { StringRef Name; Section.getName(Name); ++SectionAmountMap[Name]; SectionNames.push_back({ Name, true }); // Skip BSS and Virtual sections, they aren't interesting. if (Section.isBSS() || Section.isVirtual()) continue; // Skip sections stripped by dsymutil. if (Section.isStripped()) continue; StringRef Data; section_iterator RelocatedSection = Section.getRelocatedSection(); // Try to obtain an already relocated version of this section. // Else use the unrelocated section from the object file. We'll have to // apply relocations ourselves later. if (!L || !L->getLoadedSectionContents(*RelocatedSection, Data)) Section.getContents(Data); if (auto Err = maybeDecompress(Section, Name, Data)) { ErrorPolicy EP = HandleError(createError( "failed to decompress '" + Name + "', ", std::move(Err))); if (EP == ErrorPolicy::Halt) return; continue; } // Compressed sections names in GNU style starts from ".z", // at this point section is decompressed and we drop compression prefix. Name = Name.substr( Name.find_first_not_of("._z")); // Skip ".", "z" and "_" prefixes. // Map platform specific debug section names to DWARF standard section // names. Name = Obj.mapDebugSectionName(Name); if (StringRef *SectionData = mapSectionToMember(Name)) { *SectionData = Data; if (Name == "debug_ranges") { // FIXME: Use the other dwo range section when we emit it. RangeDWOSection.Data = Data; } } else if (Name == "debug_types") { // Find debug_types data by section rather than name as there are // multiple, comdat grouped, debug_types sections. TypesSections[Section].Data = Data; } else if (Name == "debug_types.dwo") { TypesDWOSections[Section].Data = Data; } if (RelocatedSection == Obj.section_end()) continue; StringRef RelSecName; StringRef RelSecData; RelocatedSection->getName(RelSecName); // If the section we're relocating was relocated already by the JIT, // then we used the relocated version above, so we do not need to process // relocations for it now. if (L && L->getLoadedSectionContents(*RelocatedSection, RelSecData)) continue; // In Mach-o files, the relocations do not need to be applied if // there is no load offset to apply. The value read at the // relocation point already factors in the section address // (actually applying the relocations will produce wrong results // as the section address will be added twice). if (!L && isa<MachOObjectFile>(&Obj)) continue; RelSecName = RelSecName.substr( RelSecName.find_first_not_of("._z")); // Skip . and _ prefixes. // TODO: Add support for relocations in other sections as needed. // Record relocations for the debug_info and debug_line sections. DWARFSectionMap *Sec = mapNameToDWARFSection(RelSecName); RelocAddrMap *Map = Sec ? &Sec->Relocs : nullptr; if (!Map) { // Find debug_types relocs by section rather than name as there are // multiple, comdat grouped, debug_types sections. if (RelSecName == "debug_types") Map = &static_cast<DWARFSectionMap &>(TypesSections[*RelocatedSection]) .Relocs; else if (RelSecName == "debug_types.dwo") Map = &static_cast<DWARFSectionMap &>( TypesDWOSections[*RelocatedSection]) .Relocs; else continue; } if (Section.relocation_begin() == Section.relocation_end()) continue; // Symbol to [address, section index] cache mapping. std::map<SymbolRef, SymInfo> AddrCache; for (const RelocationRef &Reloc : Section.relocations()) { // FIXME: it's not clear how to correctly handle scattered // relocations. if (isRelocScattered(Obj, Reloc)) continue; Expected<SymInfo> SymInfoOrErr = getSymbolInfo(Obj, Reloc, L, AddrCache); if (!SymInfoOrErr) { if (HandleError(SymInfoOrErr.takeError()) == ErrorPolicy::Halt) return; continue; } object::RelocVisitor V(Obj); uint64_t Val = V.visit(Reloc.getType(), Reloc, SymInfoOrErr->Address); if (V.error()) { SmallString<32> Type; Reloc.getTypeName(Type); ErrorPolicy EP = HandleError( createError("failed to compute relocation: " + Type + ", ", errorCodeToError(object_error::parse_failed))); if (EP == ErrorPolicy::Halt) return; continue; } RelocAddrEntry Rel = {SymInfoOrErr->SectionIndex, Val}; Map->insert({Reloc.getOffset(), Rel}); } } for (SectionName &S : SectionNames) if (SectionAmountMap[S.Name] > 1) S.IsNameUnique = false; } Optional<RelocAddrEntry> find(const DWARFSection &S, uint64_t Pos) const override { auto &Sec = static_cast<const DWARFSectionMap &>(S); RelocAddrMap::const_iterator AI = Sec.Relocs.find(Pos); if (AI == Sec.Relocs.end()) return None; return AI->second; } const object::ObjectFile *getFile() const override { return Obj; } ArrayRef<SectionName> getSectionNames() const override { return SectionNames; } bool isLittleEndian() const override { return IsLittleEndian; } StringRef getAbbrevDWOSection() const override { return AbbrevDWOSection; } const DWARFSection &getLineDWOSection() const override { return LineDWOSection; } const DWARFSection &getLocDWOSection() const override { return LocDWOSection; } StringRef getStringDWOSection() const override { return StringDWOSection; } const DWARFSection &getStringOffsetDWOSection() const override { return StringOffsetDWOSection; } const DWARFSection &getRangeDWOSection() const override { return RangeDWOSection; } const DWARFSection &getRnglistsDWOSection() const override { return RnglistsDWOSection; } const DWARFSection &getAddrSection() const override { return AddrSection; } StringRef getCUIndexSection() const override { return CUIndexSection; } StringRef getGdbIndexSection() const override { return GdbIndexSection; } StringRef getTUIndexSection() const override { return TUIndexSection; } // DWARF v5 const DWARFSection &getStringOffsetSection() const override { return StringOffsetSection; } StringRef getLineStringSection() const override { return LineStringSection; } // Sections for DWARF5 split dwarf proposal. const DWARFSection &getInfoDWOSection() const override { return InfoDWOSection; } void forEachTypesDWOSections( function_ref<void(const DWARFSection &)> F) const override { for (auto &P : TypesDWOSections) F(P.second); } StringRef getAbbrevSection() const override { return AbbrevSection; } const DWARFSection &getLocSection() const override { return LocSection; } StringRef getARangeSection() const override { return ARangeSection; } StringRef getDebugFrameSection() const override { return DebugFrameSection; } StringRef getEHFrameSection() const override { return EHFrameSection; } const DWARFSection &getLineSection() const override { return LineSection; } StringRef getStringSection() const override { return StringSection; } const DWARFSection &getRangeSection() const override { return RangeSection; } const DWARFSection &getRnglistsSection() const override { return RnglistsSection; } StringRef getMacinfoSection() const override { return MacinfoSection; } StringRef getPubNamesSection() const override { return PubNamesSection; } StringRef getPubTypesSection() const override { return PubTypesSection; } StringRef getGnuPubNamesSection() const override { return GnuPubNamesSection; } StringRef getGnuPubTypesSection() const override { return GnuPubTypesSection; } const DWARFSection &getAppleNamesSection() const override { return AppleNamesSection; } const DWARFSection &getAppleTypesSection() const override { return AppleTypesSection; } const DWARFSection &getAppleNamespacesSection() const override { return AppleNamespacesSection; } const DWARFSection &getAppleObjCSection() const override { return AppleObjCSection; } const DWARFSection &getDebugNamesSection() const override { return DebugNamesSection; } StringRef getFileName() const override { return FileName; } uint8_t getAddressSize() const override { return AddressSize; } const DWARFSection &getInfoSection() const override { return InfoSection; } void forEachTypesSections( function_ref<void(const DWARFSection &)> F) const override { for (auto &P : TypesSections) F(P.second); } }; } // namespace std::unique_ptr<DWARFContext> DWARFContext::create(const object::ObjectFile &Obj, const LoadedObjectInfo *L, function_ref<ErrorPolicy(Error)> HandleError, std::string DWPName) { auto DObj = llvm::make_unique<DWARFObjInMemory>(Obj, L, HandleError); return llvm::make_unique<DWARFContext>(std::move(DObj), std::move(DWPName)); } std::unique_ptr<DWARFContext> DWARFContext::create(const StringMap<std::unique_ptr<MemoryBuffer>> &Sections, uint8_t AddrSize, bool isLittleEndian) { auto DObj = llvm::make_unique<DWARFObjInMemory>(Sections, AddrSize, isLittleEndian); return llvm::make_unique<DWARFContext>(std::move(DObj), ""); } Error DWARFContext::loadRegisterInfo(const object::ObjectFile &Obj) { // Detect the architecture from the object file. We usually don't need OS // info to lookup a target and create register info. Triple TT; TT.setArch(Triple::ArchType(Obj.getArch())); TT.setVendor(Triple::UnknownVendor); TT.setOS(Triple::UnknownOS); std::string TargetLookupError; const Target *TheTarget = TargetRegistry::lookupTarget(TT.str(), TargetLookupError); if (!TargetLookupError.empty()) return make_error<StringError>(TargetLookupError, inconvertibleErrorCode()); RegInfo.reset(TheTarget->createMCRegInfo(TT.str())); return Error::success(); } uint8_t DWARFContext::getCUAddrSize() { // In theory, different compile units may have different address byte // sizes, but for simplicity we just use the address byte size of the // last compile unit. In practice the address size field is repeated across // various DWARF headers (at least in version 5) to make it easier to dump // them independently, not to enable varying the address size. uint8_t Addr = 0; for (const auto &CU : compile_units()) { Addr = CU->getAddressByteSize(); break; } return Addr; }