//===-- Execution.cpp - Implement code to simulate the program ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the actual instruction interpreter. // //===----------------------------------------------------------------------===// #include "Interpreter.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cmath> using namespace llvm; #define DEBUG_TYPE "interpreter" STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed"); static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden, cl::desc("make the interpreter print every volatile load and store")); //===----------------------------------------------------------------------===// // Various Helper Functions //===----------------------------------------------------------------------===// static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) { SF.Values[V] = Val; } //===----------------------------------------------------------------------===// // Binary Instruction Implementations //===----------------------------------------------------------------------===// #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \ case Type::TY##TyID: \ Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \ break static void executeFAddInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty) { switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(+, Float); IMPLEMENT_BINARY_OPERATOR(+, Double); default: dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n"; llvm_unreachable(nullptr); } } static void executeFSubInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty) { switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(-, Float); IMPLEMENT_BINARY_OPERATOR(-, Double); default: dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n"; llvm_unreachable(nullptr); } } static void executeFMulInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty) { switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(*, Float); IMPLEMENT_BINARY_OPERATOR(*, Double); default: dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n"; llvm_unreachable(nullptr); } } static void executeFDivInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty) { switch (Ty->getTypeID()) { IMPLEMENT_BINARY_OPERATOR(/, Float); IMPLEMENT_BINARY_OPERATOR(/, Double); default: dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n"; llvm_unreachable(nullptr); } } static void executeFRemInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty) { switch (Ty->getTypeID()) { case Type::FloatTyID: Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal); break; case Type::DoubleTyID: Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal); break; default: dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; llvm_unreachable(nullptr); } } #define IMPLEMENT_INTEGER_ICMP(OP, TY) \ case Type::IntegerTyID: \ Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \ break; #define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \ case Type::VectorTyID: { \ assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \ Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \ for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \ Dest.AggregateVal[_i].IntVal = APInt(1, \ Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\ } break; // Handle pointers specially because they must be compared with only as much // width as the host has. We _do not_ want to be comparing 64 bit values when // running on a 32-bit target, otherwise the upper 32 bits might mess up // comparisons if they contain garbage. #define IMPLEMENT_POINTER_ICMP(OP) \ case Type::PointerTyID: \ Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \ (void*)(intptr_t)Src2.PointerVal); \ break; static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(eq,Ty); IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty); IMPLEMENT_POINTER_ICMP(==); default: dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n"; llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(ne,Ty); IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty); IMPLEMENT_POINTER_ICMP(!=); default: dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n"; llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(ult,Ty); IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty); IMPLEMENT_POINTER_ICMP(<); default: dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n"; llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(slt,Ty); IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty); IMPLEMENT_POINTER_ICMP(<); default: dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n"; llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(ugt,Ty); IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty); IMPLEMENT_POINTER_ICMP(>); default: dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n"; llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(sgt,Ty); IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty); IMPLEMENT_POINTER_ICMP(>); default: dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n"; llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(ule,Ty); IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty); IMPLEMENT_POINTER_ICMP(<=); default: dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n"; llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(sle,Ty); IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty); IMPLEMENT_POINTER_ICMP(<=); default: dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n"; llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(uge,Ty); IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty); IMPLEMENT_POINTER_ICMP(>=); default: dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n"; llvm_unreachable(nullptr); } return Dest; } static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_INTEGER_ICMP(sge,Ty); IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty); IMPLEMENT_POINTER_ICMP(>=); default: dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n"; llvm_unreachable(nullptr); } return Dest; } void Interpreter::visitICmpInst(ICmpInst &I) { ExecutionContext &SF = ECStack.back(); Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue R; // Result switch (I.getPredicate()) { case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break; case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break; case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break; case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break; case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break; case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break; case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break; case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break; case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break; case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break; default: dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I; llvm_unreachable(nullptr); } SetValue(&I, R, SF); } #define IMPLEMENT_FCMP(OP, TY) \ case Type::TY##TyID: \ Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \ break #define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \ assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \ Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \ for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \ Dest.AggregateVal[_i].IntVal = APInt(1, \ Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\ break; #define IMPLEMENT_VECTOR_FCMP(OP) \ case Type::VectorTyID: \ if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \ IMPLEMENT_VECTOR_FCMP_T(OP, Float); \ } else { \ IMPLEMENT_VECTOR_FCMP_T(OP, Double); \ } static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(==, Float); IMPLEMENT_FCMP(==, Double); IMPLEMENT_VECTOR_FCMP(==); default: dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n"; llvm_unreachable(nullptr); } return Dest; } #define IMPLEMENT_SCALAR_NANS(TY, X,Y) \ if (TY->isFloatTy()) { \ if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ Dest.IntVal = APInt(1,false); \ return Dest; \ } \ } else { \ if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ Dest.IntVal = APInt(1,false); \ return Dest; \ } \ } #define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \ assert(X.AggregateVal.size() == Y.AggregateVal.size()); \ Dest.AggregateVal.resize( X.AggregateVal.size() ); \ for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \ if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \ Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \ Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \ else { \ Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \ } \ } #define MASK_VECTOR_NANS(TY, X,Y, FLAG) \ if (TY->isVectorTy()) { \ if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \ MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \ } else { \ MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \ } \ } \ static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; // if input is scalar value and Src1 or Src2 is NaN return false IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2) // if vector input detect NaNs and fill mask MASK_VECTOR_NANS(Ty, Src1, Src2, false) GenericValue DestMask = Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(!=, Float); IMPLEMENT_FCMP(!=, Double); IMPLEMENT_VECTOR_FCMP(!=); default: dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n"; llvm_unreachable(nullptr); } // in vector case mask out NaN elements if (Ty->isVectorTy()) for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) if (DestMask.AggregateVal[_i].IntVal == false) Dest.AggregateVal[_i].IntVal = APInt(1,false); return Dest; } static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(<=, Float); IMPLEMENT_FCMP(<=, Double); IMPLEMENT_VECTOR_FCMP(<=); default: dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n"; llvm_unreachable(nullptr); } return Dest; } static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(>=, Float); IMPLEMENT_FCMP(>=, Double); IMPLEMENT_VECTOR_FCMP(>=); default: dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n"; llvm_unreachable(nullptr); } return Dest; } static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(<, Float); IMPLEMENT_FCMP(<, Double); IMPLEMENT_VECTOR_FCMP(<); default: dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n"; llvm_unreachable(nullptr); } return Dest; } static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; switch (Ty->getTypeID()) { IMPLEMENT_FCMP(>, Float); IMPLEMENT_FCMP(>, Double); IMPLEMENT_VECTOR_FCMP(>); default: dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n"; llvm_unreachable(nullptr); } return Dest; } #define IMPLEMENT_UNORDERED(TY, X,Y) \ if (TY->isFloatTy()) { \ if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \ Dest.IntVal = APInt(1,true); \ return Dest; \ } \ } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \ Dest.IntVal = APInt(1,true); \ return Dest; \ } #define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \ if (TY->isVectorTy()) { \ GenericValue DestMask = Dest; \ Dest = FUNC(Src1, Src2, Ty); \ for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \ if (DestMask.AggregateVal[_i].IntVal == true) \ Dest.AggregateVal[_i].IntVal = APInt(1, true); \ return Dest; \ } static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) MASK_VECTOR_NANS(Ty, Src1, Src2, true) IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ) return executeFCMP_OEQ(Src1, Src2, Ty); } static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) MASK_VECTOR_NANS(Ty, Src1, Src2, true) IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE) return executeFCMP_ONE(Src1, Src2, Ty); } static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) MASK_VECTOR_NANS(Ty, Src1, Src2, true) IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE) return executeFCMP_OLE(Src1, Src2, Ty); } static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) MASK_VECTOR_NANS(Ty, Src1, Src2, true) IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE) return executeFCMP_OGE(Src1, Src2, Ty); } static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) MASK_VECTOR_NANS(Ty, Src1, Src2, true) IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT) return executeFCMP_OLT(Src1, Src2, Ty); } static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; IMPLEMENT_UNORDERED(Ty, Src1, Src2) MASK_VECTOR_NANS(Ty, Src1, Src2, true) IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT) return executeFCMP_OGT(Src1, Src2, Ty); } static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; if(Ty->isVectorTy()) { assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); Dest.AggregateVal.resize( Src1.AggregateVal.size() ); if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) Dest.AggregateVal[_i].IntVal = APInt(1, ( (Src1.AggregateVal[_i].FloatVal == Src1.AggregateVal[_i].FloatVal) && (Src2.AggregateVal[_i].FloatVal == Src2.AggregateVal[_i].FloatVal))); } else { for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) Dest.AggregateVal[_i].IntVal = APInt(1, ( (Src1.AggregateVal[_i].DoubleVal == Src1.AggregateVal[_i].DoubleVal) && (Src2.AggregateVal[_i].DoubleVal == Src2.AggregateVal[_i].DoubleVal))); } } else if (Ty->isFloatTy()) Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && Src2.FloatVal == Src2.FloatVal)); else { Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && Src2.DoubleVal == Src2.DoubleVal)); } return Dest; } static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Dest; if(Ty->isVectorTy()) { assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); Dest.AggregateVal.resize( Src1.AggregateVal.size() ); if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) Dest.AggregateVal[_i].IntVal = APInt(1, ( (Src1.AggregateVal[_i].FloatVal != Src1.AggregateVal[_i].FloatVal) || (Src2.AggregateVal[_i].FloatVal != Src2.AggregateVal[_i].FloatVal))); } else { for( size_t _i=0;_i<Src1.AggregateVal.size();_i++) Dest.AggregateVal[_i].IntVal = APInt(1, ( (Src1.AggregateVal[_i].DoubleVal != Src1.AggregateVal[_i].DoubleVal) || (Src2.AggregateVal[_i].DoubleVal != Src2.AggregateVal[_i].DoubleVal))); } } else if (Ty->isFloatTy()) Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || Src2.FloatVal != Src2.FloatVal)); else { Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || Src2.DoubleVal != Src2.DoubleVal)); } return Dest; } static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2, Type *Ty, const bool val) { GenericValue Dest; if(Ty->isVectorTy()) { assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); Dest.AggregateVal.resize( Src1.AggregateVal.size() ); for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) Dest.AggregateVal[_i].IntVal = APInt(1,val); } else { Dest.IntVal = APInt(1, val); } return Dest; } void Interpreter::visitFCmpInst(FCmpInst &I) { ExecutionContext &SF = ECStack.back(); Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue R; // Result switch (I.getPredicate()) { default: dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I; llvm_unreachable(nullptr); break; case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false); break; case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true); break; case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break; case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break; case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break; case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break; case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break; case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break; case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break; case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break; case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break; case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break; case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break; case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break; case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break; case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break; } SetValue(&I, R, SF); } static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, GenericValue Src2, Type *Ty) { GenericValue Result; switch (predicate) { case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty); case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty); case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty); case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty); case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty); case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty); case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty); case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty); case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty); case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty); case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty); case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty); case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty); case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty); case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty); case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty); case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty); case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty); case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty); case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty); case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty); case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty); case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty); case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty); case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false); case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true); default: dbgs() << "Unhandled Cmp predicate\n"; llvm_unreachable(nullptr); } } void Interpreter::visitBinaryOperator(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); Type *Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue R; // Result // First process vector operation if (Ty->isVectorTy()) { assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); R.AggregateVal.resize(Src1.AggregateVal.size()); // Macros to execute binary operation 'OP' over integer vectors #define INTEGER_VECTOR_OPERATION(OP) \ for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ R.AggregateVal[i].IntVal = \ Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal; // Additional macros to execute binary operations udiv/sdiv/urem/srem since // they have different notation. #define INTEGER_VECTOR_FUNCTION(OP) \ for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ R.AggregateVal[i].IntVal = \ Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal); // Macros to execute binary operation 'OP' over floating point type TY // (float or double) vectors #define FLOAT_VECTOR_FUNCTION(OP, TY) \ for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \ R.AggregateVal[i].TY = \ Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY; // Macros to choose appropriate TY: float or double and run operation // execution #define FLOAT_VECTOR_OP(OP) { \ if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \ FLOAT_VECTOR_FUNCTION(OP, FloatVal) \ else { \ if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \ FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \ else { \ dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \ llvm_unreachable(0); \ } \ } \ } switch(I.getOpcode()){ default: dbgs() << "Don't know how to handle this binary operator!\n-->" << I; llvm_unreachable(nullptr); break; case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break; case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break; case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break; case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break; case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break; case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break; case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break; case Instruction::And: INTEGER_VECTOR_OPERATION(&) break; case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break; case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break; case Instruction::FAdd: FLOAT_VECTOR_OP(+) break; case Instruction::FSub: FLOAT_VECTOR_OP(-) break; case Instruction::FMul: FLOAT_VECTOR_OP(*) break; case Instruction::FDiv: FLOAT_VECTOR_OP(/) break; case Instruction::FRem: if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) for (unsigned i = 0; i < R.AggregateVal.size(); ++i) R.AggregateVal[i].FloatVal = fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal); else { if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) for (unsigned i = 0; i < R.AggregateVal.size(); ++i) R.AggregateVal[i].DoubleVal = fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal); else { dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n"; llvm_unreachable(nullptr); } } break; } } else { switch (I.getOpcode()) { default: dbgs() << "Don't know how to handle this binary operator!\n-->" << I; llvm_unreachable(nullptr); break; case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break; case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break; case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break; case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break; case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break; case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break; case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break; case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break; case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break; case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break; case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break; case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break; case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break; case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break; case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break; } } SetValue(&I, R, SF); } static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, GenericValue Src3, Type *Ty) { GenericValue Dest; if(Ty->isVectorTy()) { assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); assert(Src2.AggregateVal.size() == Src3.AggregateVal.size()); Dest.AggregateVal.resize( Src1.AggregateVal.size() ); for (size_t i = 0; i < Src1.AggregateVal.size(); ++i) Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ? Src3.AggregateVal[i] : Src2.AggregateVal[i]; } else { Dest = (Src1.IntVal == 0) ? Src3 : Src2; } return Dest; } void Interpreter::visitSelectInst(SelectInst &I) { ExecutionContext &SF = ECStack.back(); Type * Ty = I.getOperand(0)->getType(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Src3 = getOperandValue(I.getOperand(2), SF); GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty); SetValue(&I, R, SF); } //===----------------------------------------------------------------------===// // Terminator Instruction Implementations //===----------------------------------------------------------------------===// void Interpreter::exitCalled(GenericValue GV) { // runAtExitHandlers() assumes there are no stack frames, but // if exit() was called, then it had a stack frame. Blow away // the stack before interpreting atexit handlers. ECStack.clear(); runAtExitHandlers(); exit(GV.IntVal.zextOrTrunc(32).getZExtValue()); } /// Pop the last stack frame off of ECStack and then copy the result /// back into the result variable if we are not returning void. The /// result variable may be the ExitValue, or the Value of the calling /// CallInst if there was a previous stack frame. This method may /// invalidate any ECStack iterators you have. This method also takes /// care of switching to the normal destination BB, if we are returning /// from an invoke. /// void Interpreter::popStackAndReturnValueToCaller(Type *RetTy, GenericValue Result) { // Pop the current stack frame. ECStack.pop_back(); if (ECStack.empty()) { // Finished main. Put result into exit code... if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type? ExitValue = Result; // Capture the exit value of the program } else { memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped)); } } else { // If we have a previous stack frame, and we have a previous call, // fill in the return value... ExecutionContext &CallingSF = ECStack.back(); if (Instruction *I = CallingSF.Caller.getInstruction()) { // Save result... if (!CallingSF.Caller.getType()->isVoidTy()) SetValue(I, Result, CallingSF); if (InvokeInst *II = dyn_cast<InvokeInst> (I)) SwitchToNewBasicBlock (II->getNormalDest (), CallingSF); CallingSF.Caller = CallSite(); // We returned from the call... } } } void Interpreter::visitReturnInst(ReturnInst &I) { ExecutionContext &SF = ECStack.back(); Type *RetTy = Type::getVoidTy(I.getContext()); GenericValue Result; // Save away the return value... (if we are not 'ret void') if (I.getNumOperands()) { RetTy = I.getReturnValue()->getType(); Result = getOperandValue(I.getReturnValue(), SF); } popStackAndReturnValueToCaller(RetTy, Result); } void Interpreter::visitUnreachableInst(UnreachableInst &I) { report_fatal_error("Program executed an 'unreachable' instruction!"); } void Interpreter::visitBranchInst(BranchInst &I) { ExecutionContext &SF = ECStack.back(); BasicBlock *Dest; Dest = I.getSuccessor(0); // Uncond branches have a fixed dest... if (!I.isUnconditional()) { Value *Cond = I.getCondition(); if (getOperandValue(Cond, SF).IntVal == 0) // If false cond... Dest = I.getSuccessor(1); } SwitchToNewBasicBlock(Dest, SF); } void Interpreter::visitSwitchInst(SwitchInst &I) { ExecutionContext &SF = ECStack.back(); Value* Cond = I.getCondition(); Type *ElTy = Cond->getType(); GenericValue CondVal = getOperandValue(Cond, SF); // Check to see if any of the cases match... BasicBlock *Dest = nullptr; for (auto Case : I.cases()) { GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF); if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) { Dest = cast<BasicBlock>(Case.getCaseSuccessor()); break; } } if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default SwitchToNewBasicBlock(Dest, SF); } void Interpreter::visitIndirectBrInst(IndirectBrInst &I) { ExecutionContext &SF = ECStack.back(); void *Dest = GVTOP(getOperandValue(I.getAddress(), SF)); SwitchToNewBasicBlock((BasicBlock*)Dest, SF); } // SwitchToNewBasicBlock - This method is used to jump to a new basic block. // This function handles the actual updating of block and instruction iterators // as well as execution of all of the PHI nodes in the destination block. // // This method does this because all of the PHI nodes must be executed // atomically, reading their inputs before any of the results are updated. Not // doing this can cause problems if the PHI nodes depend on other PHI nodes for // their inputs. If the input PHI node is updated before it is read, incorrect // results can happen. Thus we use a two phase approach. // void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){ BasicBlock *PrevBB = SF.CurBB; // Remember where we came from... SF.CurBB = Dest; // Update CurBB to branch destination SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr... if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do // Loop over all of the PHI nodes in the current block, reading their inputs. std::vector<GenericValue> ResultValues; for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) { // Search for the value corresponding to this previous bb... int i = PN->getBasicBlockIndex(PrevBB); assert(i != -1 && "PHINode doesn't contain entry for predecessor??"); Value *IncomingValue = PN->getIncomingValue(i); // Save the incoming value for this PHI node... ResultValues.push_back(getOperandValue(IncomingValue, SF)); } // Now loop over all of the PHI nodes setting their values... SF.CurInst = SF.CurBB->begin(); for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) { PHINode *PN = cast<PHINode>(SF.CurInst); SetValue(PN, ResultValues[i], SF); } } //===----------------------------------------------------------------------===// // Memory Instruction Implementations //===----------------------------------------------------------------------===// void Interpreter::visitAllocaInst(AllocaInst &I) { ExecutionContext &SF = ECStack.back(); Type *Ty = I.getType()->getElementType(); // Type to be allocated // Get the number of elements being allocated by the array... unsigned NumElements = getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue(); unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty); // Avoid malloc-ing zero bytes, use max()... unsigned MemToAlloc = std::max(1U, NumElements * TypeSize); // Allocate enough memory to hold the type... void *Memory = safe_malloc(MemToAlloc); LLVM_DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x " << NumElements << " (Total: " << MemToAlloc << ") at " << uintptr_t(Memory) << '\n'); GenericValue Result = PTOGV(Memory); assert(Result.PointerVal && "Null pointer returned by malloc!"); SetValue(&I, Result, SF); if (I.getOpcode() == Instruction::Alloca) ECStack.back().Allocas.add(Memory); } // getElementOffset - The workhorse for getelementptr. // GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I, gep_type_iterator E, ExecutionContext &SF) { assert(Ptr->getType()->isPointerTy() && "Cannot getElementOffset of a nonpointer type!"); uint64_t Total = 0; for (; I != E; ++I) { if (StructType *STy = I.getStructTypeOrNull()) { const StructLayout *SLO = getDataLayout().getStructLayout(STy); const ConstantInt *CPU = cast<ConstantInt>(I.getOperand()); unsigned Index = unsigned(CPU->getZExtValue()); Total += SLO->getElementOffset(Index); } else { // Get the index number for the array... which must be long type... GenericValue IdxGV = getOperandValue(I.getOperand(), SF); int64_t Idx; unsigned BitWidth = cast<IntegerType>(I.getOperand()->getType())->getBitWidth(); if (BitWidth == 32) Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue(); else { assert(BitWidth == 64 && "Invalid index type for getelementptr"); Idx = (int64_t)IdxGV.IntVal.getZExtValue(); } Total += getDataLayout().getTypeAllocSize(I.getIndexedType()) * Idx; } } GenericValue Result; Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total; LLVM_DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n"); return Result; } void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeGEPOperation(I.getPointerOperand(), gep_type_begin(I), gep_type_end(I), SF), SF); } void Interpreter::visitLoadInst(LoadInst &I) { ExecutionContext &SF = ECStack.back(); GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); GenericValue *Ptr = (GenericValue*)GVTOP(SRC); GenericValue Result; LoadValueFromMemory(Result, Ptr, I.getType()); SetValue(&I, Result, SF); if (I.isVolatile() && PrintVolatile) dbgs() << "Volatile load " << I; } void Interpreter::visitStoreInst(StoreInst &I) { ExecutionContext &SF = ECStack.back(); GenericValue Val = getOperandValue(I.getOperand(0), SF); GenericValue SRC = getOperandValue(I.getPointerOperand(), SF); StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC), I.getOperand(0)->getType()); if (I.isVolatile() && PrintVolatile) dbgs() << "Volatile store: " << I; } //===----------------------------------------------------------------------===// // Miscellaneous Instruction Implementations //===----------------------------------------------------------------------===// void Interpreter::visitCallSite(CallSite CS) { ExecutionContext &SF = ECStack.back(); // Check to see if this is an intrinsic function call... Function *F = CS.getCalledFunction(); if (F && F->isDeclaration()) switch (F->getIntrinsicID()) { case Intrinsic::not_intrinsic: break; case Intrinsic::vastart: { // va_start GenericValue ArgIndex; ArgIndex.UIntPairVal.first = ECStack.size() - 1; ArgIndex.UIntPairVal.second = 0; SetValue(CS.getInstruction(), ArgIndex, SF); return; } case Intrinsic::vaend: // va_end is a noop for the interpreter return; case Intrinsic::vacopy: // va_copy: dest = src SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF); return; default: // If it is an unknown intrinsic function, use the intrinsic lowering // class to transform it into hopefully tasty LLVM code. // BasicBlock::iterator me(CS.getInstruction()); BasicBlock *Parent = CS.getInstruction()->getParent(); bool atBegin(Parent->begin() == me); if (!atBegin) --me; IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction())); // Restore the CurInst pointer to the first instruction newly inserted, if // any. if (atBegin) { SF.CurInst = Parent->begin(); } else { SF.CurInst = me; ++SF.CurInst; } return; } SF.Caller = CS; std::vector<GenericValue> ArgVals; const unsigned NumArgs = SF.Caller.arg_size(); ArgVals.reserve(NumArgs); uint16_t pNum = 1; for (CallSite::arg_iterator i = SF.Caller.arg_begin(), e = SF.Caller.arg_end(); i != e; ++i, ++pNum) { Value *V = *i; ArgVals.push_back(getOperandValue(V, SF)); } // To handle indirect calls, we must get the pointer value from the argument // and treat it as a function pointer. GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF); callFunction((Function*)GVTOP(SRC), ArgVals); } // auxiliary function for shift operations static unsigned getShiftAmount(uint64_t orgShiftAmount, llvm::APInt valueToShift) { unsigned valueWidth = valueToShift.getBitWidth(); if (orgShiftAmount < (uint64_t)valueWidth) return orgShiftAmount; // according to the llvm documentation, if orgShiftAmount > valueWidth, // the result is undfeined. but we do shift by this rule: return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount; } void Interpreter::visitShl(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; Type *Ty = I.getType(); if (Ty->isVectorTy()) { uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); assert(src1Size == Src2.AggregateVal.size()); for (unsigned i = 0; i < src1Size; i++) { GenericValue Result; uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift)); Dest.AggregateVal.push_back(Result); } } else { // scalar uint64_t shiftAmount = Src2.IntVal.getZExtValue(); llvm::APInt valueToShift = Src1.IntVal; Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift)); } SetValue(&I, Dest, SF); } void Interpreter::visitLShr(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; Type *Ty = I.getType(); if (Ty->isVectorTy()) { uint32_t src1Size = uint32_t(Src1.AggregateVal.size()); assert(src1Size == Src2.AggregateVal.size()); for (unsigned i = 0; i < src1Size; i++) { GenericValue Result; uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift)); Dest.AggregateVal.push_back(Result); } } else { // scalar uint64_t shiftAmount = Src2.IntVal.getZExtValue(); llvm::APInt valueToShift = Src1.IntVal; Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift)); } SetValue(&I, Dest, SF); } void Interpreter::visitAShr(BinaryOperator &I) { ExecutionContext &SF = ECStack.back(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; Type *Ty = I.getType(); if (Ty->isVectorTy()) { size_t src1Size = Src1.AggregateVal.size(); assert(src1Size == Src2.AggregateVal.size()); for (unsigned i = 0; i < src1Size; i++) { GenericValue Result; uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue(); llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal; Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift)); Dest.AggregateVal.push_back(Result); } } else { // scalar uint64_t shiftAmount = Src2.IntVal.getZExtValue(); llvm::APInt valueToShift = Src1.IntVal; Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift)); } SetValue(&I, Dest, SF); } GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { GenericValue Dest, Src = getOperandValue(SrcVal, SF); Type *SrcTy = SrcVal->getType(); if (SrcTy->isVectorTy()) { Type *DstVecTy = DstTy->getScalarType(); unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); unsigned NumElts = Src.AggregateVal.size(); // the sizes of src and dst vectors must be equal Dest.AggregateVal.resize(NumElts); for (unsigned i = 0; i < NumElts; i++) Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth); } else { IntegerType *DITy = cast<IntegerType>(DstTy); unsigned DBitWidth = DITy->getBitWidth(); Dest.IntVal = Src.IntVal.trunc(DBitWidth); } return Dest; } GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); if (SrcTy->isVectorTy()) { Type *DstVecTy = DstTy->getScalarType(); unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); unsigned size = Src.AggregateVal.size(); // the sizes of src and dst vectors must be equal. Dest.AggregateVal.resize(size); for (unsigned i = 0; i < size; i++) Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth); } else { auto *DITy = cast<IntegerType>(DstTy); unsigned DBitWidth = DITy->getBitWidth(); Dest.IntVal = Src.IntVal.sext(DBitWidth); } return Dest; } GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); if (SrcTy->isVectorTy()) { Type *DstVecTy = DstTy->getScalarType(); unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); unsigned size = Src.AggregateVal.size(); // the sizes of src and dst vectors must be equal. Dest.AggregateVal.resize(size); for (unsigned i = 0; i < size; i++) Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth); } else { auto *DITy = cast<IntegerType>(DstTy); unsigned DBitWidth = DITy->getBitWidth(); Dest.IntVal = Src.IntVal.zext(DBitWidth); } return Dest; } GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { GenericValue Dest, Src = getOperandValue(SrcVal, SF); if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { assert(SrcVal->getType()->getScalarType()->isDoubleTy() && DstTy->getScalarType()->isFloatTy() && "Invalid FPTrunc instruction"); unsigned size = Src.AggregateVal.size(); // the sizes of src and dst vectors must be equal. Dest.AggregateVal.resize(size); for (unsigned i = 0; i < size; i++) Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal; } else { assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() && "Invalid FPTrunc instruction"); Dest.FloatVal = (float)Src.DoubleVal; } return Dest; } GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { GenericValue Dest, Src = getOperandValue(SrcVal, SF); if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { assert(SrcVal->getType()->getScalarType()->isFloatTy() && DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction"); unsigned size = Src.AggregateVal.size(); // the sizes of src and dst vectors must be equal. Dest.AggregateVal.resize(size); for (unsigned i = 0; i < size; i++) Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal; } else { assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() && "Invalid FPExt instruction"); Dest.DoubleVal = (double)Src.FloatVal; } return Dest; } GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); if (SrcTy->getTypeID() == Type::VectorTyID) { Type *DstVecTy = DstTy->getScalarType(); Type *SrcVecTy = SrcTy->getScalarType(); uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); unsigned size = Src.AggregateVal.size(); // the sizes of src and dst vectors must be equal. Dest.AggregateVal.resize(size); if (SrcVecTy->getTypeID() == Type::FloatTyID) { assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction"); for (unsigned i = 0; i < size; i++) Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( Src.AggregateVal[i].FloatVal, DBitWidth); } else { for (unsigned i = 0; i < size; i++) Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( Src.AggregateVal[i].DoubleVal, DBitWidth); } } else { // scalar uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction"); if (SrcTy->getTypeID() == Type::FloatTyID) Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); else { Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); } } return Dest; } GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); if (SrcTy->getTypeID() == Type::VectorTyID) { Type *DstVecTy = DstTy->getScalarType(); Type *SrcVecTy = SrcTy->getScalarType(); uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth(); unsigned size = Src.AggregateVal.size(); // the sizes of src and dst vectors must be equal Dest.AggregateVal.resize(size); if (SrcVecTy->getTypeID() == Type::FloatTyID) { assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction"); for (unsigned i = 0; i < size; i++) Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt( Src.AggregateVal[i].FloatVal, DBitWidth); } else { for (unsigned i = 0; i < size; i++) Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt( Src.AggregateVal[i].DoubleVal, DBitWidth); } } else { // scalar unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction"); if (SrcTy->getTypeID() == Type::FloatTyID) Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth); else { Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth); } } return Dest; } GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { GenericValue Dest, Src = getOperandValue(SrcVal, SF); if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { Type *DstVecTy = DstTy->getScalarType(); unsigned size = Src.AggregateVal.size(); // the sizes of src and dst vectors must be equal Dest.AggregateVal.resize(size); if (DstVecTy->getTypeID() == Type::FloatTyID) { assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction"); for (unsigned i = 0; i < size; i++) Dest.AggregateVal[i].FloatVal = APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal); } else { for (unsigned i = 0; i < size; i++) Dest.AggregateVal[i].DoubleVal = APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal); } } else { // scalar assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction"); if (DstTy->getTypeID() == Type::FloatTyID) Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal); else { Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal); } } return Dest; } GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { GenericValue Dest, Src = getOperandValue(SrcVal, SF); if (SrcVal->getType()->getTypeID() == Type::VectorTyID) { Type *DstVecTy = DstTy->getScalarType(); unsigned size = Src.AggregateVal.size(); // the sizes of src and dst vectors must be equal Dest.AggregateVal.resize(size); if (DstVecTy->getTypeID() == Type::FloatTyID) { assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction"); for (unsigned i = 0; i < size; i++) Dest.AggregateVal[i].FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal); } else { for (unsigned i = 0; i < size; i++) Dest.AggregateVal[i].DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal); } } else { // scalar assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction"); if (DstTy->getTypeID() == Type::FloatTyID) Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal); else { Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal); } } return Dest; } GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction"); Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal); return Dest; } GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { GenericValue Dest, Src = getOperandValue(SrcVal, SF); assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction"); uint32_t PtrSize = getDataLayout().getPointerSizeInBits(); if (PtrSize != Src.IntVal.getBitWidth()) Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize); Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue())); return Dest; } GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy, ExecutionContext &SF) { // This instruction supports bitwise conversion of vectors to integers and // to vectors of other types (as long as they have the same size) Type *SrcTy = SrcVal->getType(); GenericValue Dest, Src = getOperandValue(SrcVal, SF); if ((SrcTy->getTypeID() == Type::VectorTyID) || (DstTy->getTypeID() == Type::VectorTyID)) { // vector src bitcast to vector dst or vector src bitcast to scalar dst or // scalar src bitcast to vector dst bool isLittleEndian = getDataLayout().isLittleEndian(); GenericValue TempDst, TempSrc, SrcVec; Type *SrcElemTy; Type *DstElemTy; unsigned SrcBitSize; unsigned DstBitSize; unsigned SrcNum; unsigned DstNum; if (SrcTy->getTypeID() == Type::VectorTyID) { SrcElemTy = SrcTy->getScalarType(); SrcBitSize = SrcTy->getScalarSizeInBits(); SrcNum = Src.AggregateVal.size(); SrcVec = Src; } else { // if src is scalar value, make it vector <1 x type> SrcElemTy = SrcTy; SrcBitSize = SrcTy->getPrimitiveSizeInBits(); SrcNum = 1; SrcVec.AggregateVal.push_back(Src); } if (DstTy->getTypeID() == Type::VectorTyID) { DstElemTy = DstTy->getScalarType(); DstBitSize = DstTy->getScalarSizeInBits(); DstNum = (SrcNum * SrcBitSize) / DstBitSize; } else { DstElemTy = DstTy; DstBitSize = DstTy->getPrimitiveSizeInBits(); DstNum = 1; } if (SrcNum * SrcBitSize != DstNum * DstBitSize) llvm_unreachable("Invalid BitCast"); // If src is floating point, cast to integer first. TempSrc.AggregateVal.resize(SrcNum); if (SrcElemTy->isFloatTy()) { for (unsigned i = 0; i < SrcNum; i++) TempSrc.AggregateVal[i].IntVal = APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal); } else if (SrcElemTy->isDoubleTy()) { for (unsigned i = 0; i < SrcNum; i++) TempSrc.AggregateVal[i].IntVal = APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal); } else if (SrcElemTy->isIntegerTy()) { for (unsigned i = 0; i < SrcNum; i++) TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal; } else { // Pointers are not allowed as the element type of vector. llvm_unreachable("Invalid Bitcast"); } // now TempSrc is integer type vector if (DstNum < SrcNum) { // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64> unsigned Ratio = SrcNum / DstNum; unsigned SrcElt = 0; for (unsigned i = 0; i < DstNum; i++) { GenericValue Elt; Elt.IntVal = 0; Elt.IntVal = Elt.IntVal.zext(DstBitSize); unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1); for (unsigned j = 0; j < Ratio; j++) { APInt Tmp; Tmp = Tmp.zext(SrcBitSize); Tmp = TempSrc.AggregateVal[SrcElt++].IntVal; Tmp = Tmp.zext(DstBitSize); Tmp <<= ShiftAmt; ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; Elt.IntVal |= Tmp; } TempDst.AggregateVal.push_back(Elt); } } else { // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32> unsigned Ratio = DstNum / SrcNum; for (unsigned i = 0; i < SrcNum; i++) { unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1); for (unsigned j = 0; j < Ratio; j++) { GenericValue Elt; Elt.IntVal = Elt.IntVal.zext(SrcBitSize); Elt.IntVal = TempSrc.AggregateVal[i].IntVal; Elt.IntVal.lshrInPlace(ShiftAmt); // it could be DstBitSize == SrcBitSize, so check it if (DstBitSize < SrcBitSize) Elt.IntVal = Elt.IntVal.trunc(DstBitSize); ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; TempDst.AggregateVal.push_back(Elt); } } } // convert result from integer to specified type if (DstTy->getTypeID() == Type::VectorTyID) { if (DstElemTy->isDoubleTy()) { Dest.AggregateVal.resize(DstNum); for (unsigned i = 0; i < DstNum; i++) Dest.AggregateVal[i].DoubleVal = TempDst.AggregateVal[i].IntVal.bitsToDouble(); } else if (DstElemTy->isFloatTy()) { Dest.AggregateVal.resize(DstNum); for (unsigned i = 0; i < DstNum; i++) Dest.AggregateVal[i].FloatVal = TempDst.AggregateVal[i].IntVal.bitsToFloat(); } else { Dest = TempDst; } } else { if (DstElemTy->isDoubleTy()) Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble(); else if (DstElemTy->isFloatTy()) { Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat(); } else { Dest.IntVal = TempDst.AggregateVal[0].IntVal; } } } else { // if ((SrcTy->getTypeID() == Type::VectorTyID) || // (DstTy->getTypeID() == Type::VectorTyID)) // scalar src bitcast to scalar dst if (DstTy->isPointerTy()) { assert(SrcTy->isPointerTy() && "Invalid BitCast"); Dest.PointerVal = Src.PointerVal; } else if (DstTy->isIntegerTy()) { if (SrcTy->isFloatTy()) Dest.IntVal = APInt::floatToBits(Src.FloatVal); else if (SrcTy->isDoubleTy()) { Dest.IntVal = APInt::doubleToBits(Src.DoubleVal); } else if (SrcTy->isIntegerTy()) { Dest.IntVal = Src.IntVal; } else { llvm_unreachable("Invalid BitCast"); } } else if (DstTy->isFloatTy()) { if (SrcTy->isIntegerTy()) Dest.FloatVal = Src.IntVal.bitsToFloat(); else { Dest.FloatVal = Src.FloatVal; } } else if (DstTy->isDoubleTy()) { if (SrcTy->isIntegerTy()) Dest.DoubleVal = Src.IntVal.bitsToDouble(); else { Dest.DoubleVal = Src.DoubleVal; } } else { llvm_unreachable("Invalid Bitcast"); } } return Dest; } void Interpreter::visitTruncInst(TruncInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitSExtInst(SExtInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitZExtInst(ZExtInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitFPTruncInst(FPTruncInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitFPExtInst(FPExtInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitUIToFPInst(UIToFPInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitSIToFPInst(SIToFPInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitFPToUIInst(FPToUIInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitFPToSIInst(FPToSIInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitPtrToIntInst(PtrToIntInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitIntToPtrInst(IntToPtrInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF); } void Interpreter::visitBitCastInst(BitCastInst &I) { ExecutionContext &SF = ECStack.back(); SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF); } #define IMPLEMENT_VAARG(TY) \ case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break void Interpreter::visitVAArgInst(VAArgInst &I) { ExecutionContext &SF = ECStack.back(); // Get the incoming valist parameter. LLI treats the valist as a // (ec-stack-depth var-arg-index) pair. GenericValue VAList = getOperandValue(I.getOperand(0), SF); GenericValue Dest; GenericValue Src = ECStack[VAList.UIntPairVal.first] .VarArgs[VAList.UIntPairVal.second]; Type *Ty = I.getType(); switch (Ty->getTypeID()) { case Type::IntegerTyID: Dest.IntVal = Src.IntVal; break; IMPLEMENT_VAARG(Pointer); IMPLEMENT_VAARG(Float); IMPLEMENT_VAARG(Double); default: dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n"; llvm_unreachable(nullptr); } // Set the Value of this Instruction. SetValue(&I, Dest, SF); // Move the pointer to the next vararg. ++VAList.UIntPairVal.second; } void Interpreter::visitExtractElementInst(ExtractElementInst &I) { ExecutionContext &SF = ECStack.back(); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest; Type *Ty = I.getType(); const unsigned indx = unsigned(Src2.IntVal.getZExtValue()); if(Src1.AggregateVal.size() > indx) { switch (Ty->getTypeID()) { default: dbgs() << "Unhandled destination type for extractelement instruction: " << *Ty << "\n"; llvm_unreachable(nullptr); break; case Type::IntegerTyID: Dest.IntVal = Src1.AggregateVal[indx].IntVal; break; case Type::FloatTyID: Dest.FloatVal = Src1.AggregateVal[indx].FloatVal; break; case Type::DoubleTyID: Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal; break; } } else { dbgs() << "Invalid index in extractelement instruction\n"; } SetValue(&I, Dest, SF); } void Interpreter::visitInsertElementInst(InsertElementInst &I) { ExecutionContext &SF = ECStack.back(); Type *Ty = I.getType(); if(!(Ty->isVectorTy()) ) llvm_unreachable("Unhandled dest type for insertelement instruction"); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Src3 = getOperandValue(I.getOperand(2), SF); GenericValue Dest; Type *TyContained = Ty->getContainedType(0); const unsigned indx = unsigned(Src3.IntVal.getZExtValue()); Dest.AggregateVal = Src1.AggregateVal; if(Src1.AggregateVal.size() <= indx) llvm_unreachable("Invalid index in insertelement instruction"); switch (TyContained->getTypeID()) { default: llvm_unreachable("Unhandled dest type for insertelement instruction"); case Type::IntegerTyID: Dest.AggregateVal[indx].IntVal = Src2.IntVal; break; case Type::FloatTyID: Dest.AggregateVal[indx].FloatVal = Src2.FloatVal; break; case Type::DoubleTyID: Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal; break; } SetValue(&I, Dest, SF); } void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){ ExecutionContext &SF = ECStack.back(); Type *Ty = I.getType(); if(!(Ty->isVectorTy())) llvm_unreachable("Unhandled dest type for shufflevector instruction"); GenericValue Src1 = getOperandValue(I.getOperand(0), SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Src3 = getOperandValue(I.getOperand(2), SF); GenericValue Dest; // There is no need to check types of src1 and src2, because the compiled // bytecode can't contain different types for src1 and src2 for a // shufflevector instruction. Type *TyContained = Ty->getContainedType(0); unsigned src1Size = (unsigned)Src1.AggregateVal.size(); unsigned src2Size = (unsigned)Src2.AggregateVal.size(); unsigned src3Size = (unsigned)Src3.AggregateVal.size(); Dest.AggregateVal.resize(src3Size); switch (TyContained->getTypeID()) { default: llvm_unreachable("Unhandled dest type for insertelement instruction"); break; case Type::IntegerTyID: for( unsigned i=0; i<src3Size; i++) { unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue(); if(j < src1Size) Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal; else if(j < src1Size + src2Size) Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal; else // The selector may not be greater than sum of lengths of first and // second operands and llasm should not allow situation like // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef, // <2 x i32> < i32 0, i32 5 >, // where i32 5 is invalid, but let it be additional check here: llvm_unreachable("Invalid mask in shufflevector instruction"); } break; case Type::FloatTyID: for( unsigned i=0; i<src3Size; i++) { unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue(); if(j < src1Size) Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal; else if(j < src1Size + src2Size) Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal; else llvm_unreachable("Invalid mask in shufflevector instruction"); } break; case Type::DoubleTyID: for( unsigned i=0; i<src3Size; i++) { unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue(); if(j < src1Size) Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal; else if(j < src1Size + src2Size) Dest.AggregateVal[i].DoubleVal = Src2.AggregateVal[j-src1Size].DoubleVal; else llvm_unreachable("Invalid mask in shufflevector instruction"); } break; } SetValue(&I, Dest, SF); } void Interpreter::visitExtractValueInst(ExtractValueInst &I) { ExecutionContext &SF = ECStack.back(); Value *Agg = I.getAggregateOperand(); GenericValue Dest; GenericValue Src = getOperandValue(Agg, SF); ExtractValueInst::idx_iterator IdxBegin = I.idx_begin(); unsigned Num = I.getNumIndices(); GenericValue *pSrc = &Src; for (unsigned i = 0 ; i < Num; ++i) { pSrc = &pSrc->AggregateVal[*IdxBegin]; ++IdxBegin; } Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices()); switch (IndexedType->getTypeID()) { default: llvm_unreachable("Unhandled dest type for extractelement instruction"); break; case Type::IntegerTyID: Dest.IntVal = pSrc->IntVal; break; case Type::FloatTyID: Dest.FloatVal = pSrc->FloatVal; break; case Type::DoubleTyID: Dest.DoubleVal = pSrc->DoubleVal; break; case Type::ArrayTyID: case Type::StructTyID: case Type::VectorTyID: Dest.AggregateVal = pSrc->AggregateVal; break; case Type::PointerTyID: Dest.PointerVal = pSrc->PointerVal; break; } SetValue(&I, Dest, SF); } void Interpreter::visitInsertValueInst(InsertValueInst &I) { ExecutionContext &SF = ECStack.back(); Value *Agg = I.getAggregateOperand(); GenericValue Src1 = getOperandValue(Agg, SF); GenericValue Src2 = getOperandValue(I.getOperand(1), SF); GenericValue Dest = Src1; // Dest is a slightly changed Src1 ExtractValueInst::idx_iterator IdxBegin = I.idx_begin(); unsigned Num = I.getNumIndices(); GenericValue *pDest = &Dest; for (unsigned i = 0 ; i < Num; ++i) { pDest = &pDest->AggregateVal[*IdxBegin]; ++IdxBegin; } // pDest points to the target value in the Dest now Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices()); switch (IndexedType->getTypeID()) { default: llvm_unreachable("Unhandled dest type for insertelement instruction"); break; case Type::IntegerTyID: pDest->IntVal = Src2.IntVal; break; case Type::FloatTyID: pDest->FloatVal = Src2.FloatVal; break; case Type::DoubleTyID: pDest->DoubleVal = Src2.DoubleVal; break; case Type::ArrayTyID: case Type::StructTyID: case Type::VectorTyID: pDest->AggregateVal = Src2.AggregateVal; break; case Type::PointerTyID: pDest->PointerVal = Src2.PointerVal; break; } SetValue(&I, Dest, SF); } GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE, ExecutionContext &SF) { switch (CE->getOpcode()) { case Instruction::Trunc: return executeTruncInst(CE->getOperand(0), CE->getType(), SF); case Instruction::ZExt: return executeZExtInst(CE->getOperand(0), CE->getType(), SF); case Instruction::SExt: return executeSExtInst(CE->getOperand(0), CE->getType(), SF); case Instruction::FPTrunc: return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF); case Instruction::FPExt: return executeFPExtInst(CE->getOperand(0), CE->getType(), SF); case Instruction::UIToFP: return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF); case Instruction::SIToFP: return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF); case Instruction::FPToUI: return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF); case Instruction::FPToSI: return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF); case Instruction::PtrToInt: return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF); case Instruction::IntToPtr: return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF); case Instruction::BitCast: return executeBitCastInst(CE->getOperand(0), CE->getType(), SF); case Instruction::GetElementPtr: return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE), gep_type_end(CE), SF); case Instruction::FCmp: case Instruction::ICmp: return executeCmpInst(CE->getPredicate(), getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), CE->getOperand(0)->getType()); case Instruction::Select: return executeSelectInst(getOperandValue(CE->getOperand(0), SF), getOperandValue(CE->getOperand(1), SF), getOperandValue(CE->getOperand(2), SF), CE->getOperand(0)->getType()); default : break; } // The cases below here require a GenericValue parameter for the result // so we initialize one, compute it and then return it. GenericValue Op0 = getOperandValue(CE->getOperand(0), SF); GenericValue Op1 = getOperandValue(CE->getOperand(1), SF); GenericValue Dest; Type * Ty = CE->getOperand(0)->getType(); switch (CE->getOpcode()) { case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break; case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break; case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break; case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break; case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break; case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break; case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break; case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break; case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break; case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break; case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break; case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break; case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break; case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break; case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break; case Instruction::Shl: Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue()); break; case Instruction::LShr: Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue()); break; case Instruction::AShr: Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue()); break; default: dbgs() << "Unhandled ConstantExpr: " << *CE << "\n"; llvm_unreachable("Unhandled ConstantExpr"); } return Dest; } GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) { if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { return getConstantExprValue(CE, SF); } else if (Constant *CPV = dyn_cast<Constant>(V)) { return getConstantValue(CPV); } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { return PTOGV(getPointerToGlobal(GV)); } else { return SF.Values[V]; } } //===----------------------------------------------------------------------===// // Dispatch and Execution Code //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // callFunction - Execute the specified function... // void Interpreter::callFunction(Function *F, ArrayRef<GenericValue> ArgVals) { assert((ECStack.empty() || !ECStack.back().Caller.getInstruction() || ECStack.back().Caller.arg_size() == ArgVals.size()) && "Incorrect number of arguments passed into function call!"); // Make a new stack frame... and fill it in. ECStack.emplace_back(); ExecutionContext &StackFrame = ECStack.back(); StackFrame.CurFunction = F; // Special handling for external functions. if (F->isDeclaration()) { GenericValue Result = callExternalFunction (F, ArgVals); // Simulate a 'ret' instruction of the appropriate type. popStackAndReturnValueToCaller (F->getReturnType (), Result); return; } // Get pointers to first LLVM BB & Instruction in function. StackFrame.CurBB = &F->front(); StackFrame.CurInst = StackFrame.CurBB->begin(); // Run through the function arguments and initialize their values... assert((ArgVals.size() == F->arg_size() || (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&& "Invalid number of values passed to function invocation!"); // Handle non-varargs arguments... unsigned i = 0; for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI, ++i) SetValue(&*AI, ArgVals[i], StackFrame); // Handle varargs arguments... StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end()); } void Interpreter::run() { while (!ECStack.empty()) { // Interpret a single instruction & increment the "PC". ExecutionContext &SF = ECStack.back(); // Current stack frame Instruction &I = *SF.CurInst++; // Increment before execute // Track the number of dynamic instructions executed. ++NumDynamicInsts; LLVM_DEBUG(dbgs() << "About to interpret: " << I); visit(I); // Dispatch to one of the visit* methods... } }