//===- OrcMCJITReplacement.h - Orc based MCJIT replacement ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Orc based MCJIT replacement. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H #define LLVM_LIB_EXECUTIONENGINE_ORC_ORCMCJITREPLACEMENT_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/ExecutionEngine/JITSymbol.h" #include "llvm/ExecutionEngine/Orc/CompileUtils.h" #include "llvm/ExecutionEngine/Orc/ExecutionUtils.h" #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h" #include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h" #include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h" #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" #include "llvm/ExecutionEngine/RuntimeDyld.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" #include "llvm/Object/Archive.h" #include "llvm/Object/Binary.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include <algorithm> #include <cassert> #include <cstddef> #include <cstdint> #include <map> #include <memory> #include <set> #include <string> #include <vector> namespace llvm { class ObjectCache; namespace orc { class OrcMCJITReplacement : public ExecutionEngine { // OrcMCJITReplacement needs to do a little extra book-keeping to ensure that // Orc's automatic finalization doesn't kick in earlier than MCJIT clients are // expecting - see finalizeMemory. class MCJITReplacementMemMgr : public MCJITMemoryManager { public: MCJITReplacementMemMgr(OrcMCJITReplacement &M, std::shared_ptr<MCJITMemoryManager> ClientMM) : M(M), ClientMM(std::move(ClientMM)) {} uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName) override { uint8_t *Addr = ClientMM->allocateCodeSection(Size, Alignment, SectionID, SectionName); M.SectionsAllocatedSinceLastLoad.insert(Addr); return Addr; } uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName, bool IsReadOnly) override { uint8_t *Addr = ClientMM->allocateDataSection(Size, Alignment, SectionID, SectionName, IsReadOnly); M.SectionsAllocatedSinceLastLoad.insert(Addr); return Addr; } void reserveAllocationSpace(uintptr_t CodeSize, uint32_t CodeAlign, uintptr_t RODataSize, uint32_t RODataAlign, uintptr_t RWDataSize, uint32_t RWDataAlign) override { return ClientMM->reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, RWDataSize, RWDataAlign); } bool needsToReserveAllocationSpace() override { return ClientMM->needsToReserveAllocationSpace(); } void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size) override { return ClientMM->registerEHFrames(Addr, LoadAddr, Size); } void deregisterEHFrames() override { return ClientMM->deregisterEHFrames(); } void notifyObjectLoaded(RuntimeDyld &RTDyld, const object::ObjectFile &O) override { return ClientMM->notifyObjectLoaded(RTDyld, O); } void notifyObjectLoaded(ExecutionEngine *EE, const object::ObjectFile &O) override { return ClientMM->notifyObjectLoaded(EE, O); } bool finalizeMemory(std::string *ErrMsg = nullptr) override { // Each set of objects loaded will be finalized exactly once, but since // symbol lookup during relocation may recursively trigger the // loading/relocation of other modules, and since we're forwarding all // finalizeMemory calls to a single underlying memory manager, we need to // defer forwarding the call on until all necessary objects have been // loaded. Otherwise, during the relocation of a leaf object, we will end // up finalizing memory, causing a crash further up the stack when we // attempt to apply relocations to finalized memory. // To avoid finalizing too early, look at how many objects have been // loaded but not yet finalized. This is a bit of a hack that relies on // the fact that we're lazily emitting object files: The only way you can // get more than one set of objects loaded but not yet finalized is if // they were loaded during relocation of another set. if (M.UnfinalizedSections.size() == 1) return ClientMM->finalizeMemory(ErrMsg); return false; } private: OrcMCJITReplacement &M; std::shared_ptr<MCJITMemoryManager> ClientMM; }; class LinkingORCResolver : public orc::SymbolResolver { public: LinkingORCResolver(OrcMCJITReplacement &M) : M(M) {} SymbolFlagsMap lookupFlags(const SymbolNameSet &Symbols) override { SymbolFlagsMap SymbolFlags; for (auto &S : Symbols) { if (auto Sym = M.findMangledSymbol(*S)) { SymbolFlags[S] = Sym.getFlags(); } else if (auto Err = Sym.takeError()) { M.reportError(std::move(Err)); return SymbolFlagsMap(); } else { if (auto Sym2 = M.ClientResolver->findSymbolInLogicalDylib(*S)) { SymbolFlags[S] = Sym2.getFlags(); } else if (auto Err = Sym2.takeError()) { M.reportError(std::move(Err)); return SymbolFlagsMap(); } } } return SymbolFlags; } SymbolNameSet lookup(std::shared_ptr<AsynchronousSymbolQuery> Query, SymbolNameSet Symbols) override { SymbolNameSet UnresolvedSymbols; bool NewSymbolsResolved = false; for (auto &S : Symbols) { if (auto Sym = M.findMangledSymbol(*S)) { if (auto Addr = Sym.getAddress()) { Query->resolve(S, JITEvaluatedSymbol(*Addr, Sym.getFlags())); Query->notifySymbolReady(); NewSymbolsResolved = true; } else { M.ES.legacyFailQuery(*Query, Addr.takeError()); return SymbolNameSet(); } } else if (auto Err = Sym.takeError()) { M.ES.legacyFailQuery(*Query, std::move(Err)); return SymbolNameSet(); } else { if (auto Sym2 = M.ClientResolver->findSymbol(*S)) { if (auto Addr = Sym2.getAddress()) { Query->resolve(S, JITEvaluatedSymbol(*Addr, Sym2.getFlags())); Query->notifySymbolReady(); NewSymbolsResolved = true; } else { M.ES.legacyFailQuery(*Query, Addr.takeError()); return SymbolNameSet(); } } else if (auto Err = Sym2.takeError()) { M.ES.legacyFailQuery(*Query, std::move(Err)); return SymbolNameSet(); } else UnresolvedSymbols.insert(S); } } if (NewSymbolsResolved && Query->isFullyResolved()) Query->handleFullyResolved(); if (NewSymbolsResolved && Query->isFullyReady()) Query->handleFullyReady(); return UnresolvedSymbols; } private: OrcMCJITReplacement &M; }; private: static ExecutionEngine * createOrcMCJITReplacement(std::string *ErrorMsg, std::shared_ptr<MCJITMemoryManager> MemMgr, std::shared_ptr<LegacyJITSymbolResolver> Resolver, std::unique_ptr<TargetMachine> TM) { return new OrcMCJITReplacement(std::move(MemMgr), std::move(Resolver), std::move(TM)); } void reportError(Error Err) { logAllUnhandledErrors(std::move(Err), errs(), "MCJIT error: "); } public: OrcMCJITReplacement(std::shared_ptr<MCJITMemoryManager> MemMgr, std::shared_ptr<LegacyJITSymbolResolver> ClientResolver, std::unique_ptr<TargetMachine> TM) : ExecutionEngine(TM->createDataLayout()), TM(std::move(TM)), MemMgr( std::make_shared<MCJITReplacementMemMgr>(*this, std::move(MemMgr))), Resolver(std::make_shared<LinkingORCResolver>(*this)), ClientResolver(std::move(ClientResolver)), NotifyObjectLoaded(*this), NotifyFinalized(*this), ObjectLayer( ES, [this](VModuleKey K) { return ObjectLayerT::Resources{this->MemMgr, this->Resolver}; }, NotifyObjectLoaded, NotifyFinalized), CompileLayer(ObjectLayer, SimpleCompiler(*this->TM), [this](VModuleKey K, std::unique_ptr<Module> M) { Modules.push_back(std::move(M)); }), LazyEmitLayer(CompileLayer) {} static void Register() { OrcMCJITReplacementCtor = createOrcMCJITReplacement; } void addModule(std::unique_ptr<Module> M) override { // If this module doesn't have a DataLayout attached then attach the // default. if (M->getDataLayout().isDefault()) { M->setDataLayout(getDataLayout()); } else { assert(M->getDataLayout() == getDataLayout() && "DataLayout Mismatch"); } // Rename, bump linkage and record static constructors and destructors. // We have to do this before we hand over ownership of the module to the // JIT. std::vector<std::string> CtorNames, DtorNames; { unsigned CtorId = 0, DtorId = 0; for (auto Ctor : orc::getConstructors(*M)) { std::string NewCtorName = ("$static_ctor." + Twine(CtorId++)).str(); Ctor.Func->setName(NewCtorName); Ctor.Func->setLinkage(GlobalValue::ExternalLinkage); Ctor.Func->setVisibility(GlobalValue::HiddenVisibility); CtorNames.push_back(mangle(NewCtorName)); } for (auto Dtor : orc::getDestructors(*M)) { std::string NewDtorName = ("$static_dtor." + Twine(DtorId++)).str(); dbgs() << "Found dtor: " << NewDtorName << "\n"; Dtor.Func->setName(NewDtorName); Dtor.Func->setLinkage(GlobalValue::ExternalLinkage); Dtor.Func->setVisibility(GlobalValue::HiddenVisibility); DtorNames.push_back(mangle(NewDtorName)); } } auto K = ES.allocateVModule(); UnexecutedConstructors[K] = std::move(CtorNames); UnexecutedDestructors[K] = std::move(DtorNames); cantFail(LazyEmitLayer.addModule(K, std::move(M))); } void addObjectFile(std::unique_ptr<object::ObjectFile> O) override { cantFail(ObjectLayer.addObject( ES.allocateVModule(), MemoryBuffer::getMemBufferCopy(O->getData()))); } void addObjectFile(object::OwningBinary<object::ObjectFile> O) override { std::unique_ptr<object::ObjectFile> Obj; std::unique_ptr<MemoryBuffer> ObjBuffer; std::tie(Obj, ObjBuffer) = O.takeBinary(); cantFail(ObjectLayer.addObject(ES.allocateVModule(), std::move(ObjBuffer))); } void addArchive(object::OwningBinary<object::Archive> A) override { Archives.push_back(std::move(A)); } bool removeModule(Module *M) override { auto I = Modules.begin(); for (auto E = Modules.end(); I != E; ++I) if (I->get() == M) break; if (I == Modules.end()) return false; Modules.erase(I); return true; } uint64_t getSymbolAddress(StringRef Name) { return cantFail(findSymbol(Name).getAddress()); } JITSymbol findSymbol(StringRef Name) { return findMangledSymbol(mangle(Name)); } void finalizeObject() override { // This is deprecated - Aim to remove in ExecutionEngine. // REMOVE IF POSSIBLE - Doesn't make sense for New JIT. } void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress) override { for (auto &P : UnfinalizedSections) if (P.second.count(LocalAddress)) ObjectLayer.mapSectionAddress(P.first, LocalAddress, TargetAddress); } uint64_t getGlobalValueAddress(const std::string &Name) override { return getSymbolAddress(Name); } uint64_t getFunctionAddress(const std::string &Name) override { return getSymbolAddress(Name); } void *getPointerToFunction(Function *F) override { uint64_t FAddr = getSymbolAddress(F->getName()); return reinterpret_cast<void *>(static_cast<uintptr_t>(FAddr)); } void *getPointerToNamedFunction(StringRef Name, bool AbortOnFailure = true) override { uint64_t Addr = getSymbolAddress(Name); if (!Addr && AbortOnFailure) llvm_unreachable("Missing symbol!"); return reinterpret_cast<void *>(static_cast<uintptr_t>(Addr)); } GenericValue runFunction(Function *F, ArrayRef<GenericValue> ArgValues) override; void setObjectCache(ObjectCache *NewCache) override { CompileLayer.getCompiler().setObjectCache(NewCache); } void setProcessAllSections(bool ProcessAllSections) override { ObjectLayer.setProcessAllSections(ProcessAllSections); } void runStaticConstructorsDestructors(bool isDtors) override; private: JITSymbol findMangledSymbol(StringRef Name) { if (auto Sym = LazyEmitLayer.findSymbol(Name, false)) return Sym; if (auto Sym = ClientResolver->findSymbol(Name)) return Sym; if (auto Sym = scanArchives(Name)) return Sym; return nullptr; } JITSymbol scanArchives(StringRef Name) { for (object::OwningBinary<object::Archive> &OB : Archives) { object::Archive *A = OB.getBinary(); // Look for our symbols in each Archive auto OptionalChildOrErr = A->findSym(Name); if (!OptionalChildOrErr) report_fatal_error(OptionalChildOrErr.takeError()); auto &OptionalChild = *OptionalChildOrErr; if (OptionalChild) { // FIXME: Support nested archives? Expected<std::unique_ptr<object::Binary>> ChildBinOrErr = OptionalChild->getAsBinary(); if (!ChildBinOrErr) { // TODO: Actually report errors helpfully. consumeError(ChildBinOrErr.takeError()); continue; } std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get(); if (ChildBin->isObject()) { cantFail(ObjectLayer.addObject( ES.allocateVModule(), MemoryBuffer::getMemBufferCopy(ChildBin->getData()))); if (auto Sym = ObjectLayer.findSymbol(Name, true)) return Sym; } } } return nullptr; } class NotifyObjectLoadedT { public: using LoadedObjInfoListT = std::vector<std::unique_ptr<RuntimeDyld::LoadedObjectInfo>>; NotifyObjectLoadedT(OrcMCJITReplacement &M) : M(M) {} void operator()(VModuleKey K, const object::ObjectFile &Obj, const RuntimeDyld::LoadedObjectInfo &Info) const { M.UnfinalizedSections[K] = std::move(M.SectionsAllocatedSinceLastLoad); M.SectionsAllocatedSinceLastLoad = SectionAddrSet(); M.MemMgr->notifyObjectLoaded(&M, Obj); } private: OrcMCJITReplacement &M; }; class NotifyFinalizedT { public: NotifyFinalizedT(OrcMCJITReplacement &M) : M(M) {} void operator()(VModuleKey K, const object::ObjectFile &Obj, const RuntimeDyld::LoadedObjectInfo &Info) { M.UnfinalizedSections.erase(K); } private: OrcMCJITReplacement &M; }; std::string mangle(StringRef Name) { std::string MangledName; { raw_string_ostream MangledNameStream(MangledName); Mang.getNameWithPrefix(MangledNameStream, Name, getDataLayout()); } return MangledName; } using ObjectLayerT = RTDyldObjectLinkingLayer; using CompileLayerT = IRCompileLayer<ObjectLayerT, orc::SimpleCompiler>; using LazyEmitLayerT = LazyEmittingLayer<CompileLayerT>; ExecutionSession ES; std::unique_ptr<TargetMachine> TM; std::shared_ptr<MCJITReplacementMemMgr> MemMgr; std::shared_ptr<LinkingORCResolver> Resolver; std::shared_ptr<LegacyJITSymbolResolver> ClientResolver; Mangler Mang; // IMPORTANT: ShouldDelete *must* come before LocalModules: The shared_ptr // delete blocks in LocalModules refer to the ShouldDelete map, so // LocalModules needs to be destructed before ShouldDelete. std::map<Module*, bool> ShouldDelete; NotifyObjectLoadedT NotifyObjectLoaded; NotifyFinalizedT NotifyFinalized; ObjectLayerT ObjectLayer; CompileLayerT CompileLayer; LazyEmitLayerT LazyEmitLayer; std::map<VModuleKey, std::vector<std::string>> UnexecutedConstructors; std::map<VModuleKey, std::vector<std::string>> UnexecutedDestructors; // We need to store ObjLayerT::ObjSetHandles for each of the object sets // that have been emitted but not yet finalized so that we can forward the // mapSectionAddress calls appropriately. using SectionAddrSet = std::set<const void *>; SectionAddrSet SectionsAllocatedSinceLastLoad; std::map<VModuleKey, SectionAddrSet> UnfinalizedSections; std::vector<object::OwningBinary<object::Archive>> Archives; }; } // end namespace orc } // end namespace llvm #endif // LLVM_LIB_EXECUTIONENGINE_ORC_MCJITREPLACEMENT_H