//===- ConstantRange.cpp - ConstantRange implementation -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Represent a range of possible values that may occur when the program is run // for an integral value. This keeps track of a lower and upper bound for the // constant, which MAY wrap around the end of the numeric range. To do this, it // keeps track of a [lower, upper) bound, which specifies an interval just like // STL iterators. When used with boolean values, the following are important // ranges (other integral ranges use min/max values for special range values): // // [F, F) = {} = Empty set // [T, F) = {T} // [F, T) = {F} // [T, T) = {F, T} = Full set // //===----------------------------------------------------------------------===// #include "llvm/ADT/APInt.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Constants.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Operator.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cassert> #include <cstdint> using namespace llvm; ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)), Upper(Lower) {} ConstantRange::ConstantRange(APInt V) : Lower(std::move(V)), Upper(Lower + 1) {} ConstantRange::ConstantRange(APInt L, APInt U) : Lower(std::move(L)), Upper(std::move(U)) { assert(Lower.getBitWidth() == Upper.getBitWidth() && "ConstantRange with unequal bit widths"); assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) && "Lower == Upper, but they aren't min or max value!"); } ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &CR) { if (CR.isEmptySet()) return CR; uint32_t W = CR.getBitWidth(); switch (Pred) { default: llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()"); case CmpInst::ICMP_EQ: return CR; case CmpInst::ICMP_NE: if (CR.isSingleElement()) return ConstantRange(CR.getUpper(), CR.getLower()); return ConstantRange(W); case CmpInst::ICMP_ULT: { APInt UMax(CR.getUnsignedMax()); if (UMax.isMinValue()) return ConstantRange(W, /* empty */ false); return ConstantRange(APInt::getMinValue(W), std::move(UMax)); } case CmpInst::ICMP_SLT: { APInt SMax(CR.getSignedMax()); if (SMax.isMinSignedValue()) return ConstantRange(W, /* empty */ false); return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax)); } case CmpInst::ICMP_ULE: { APInt UMax(CR.getUnsignedMax()); if (UMax.isMaxValue()) return ConstantRange(W); return ConstantRange(APInt::getMinValue(W), std::move(UMax) + 1); } case CmpInst::ICMP_SLE: { APInt SMax(CR.getSignedMax()); if (SMax.isMaxSignedValue()) return ConstantRange(W); return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax) + 1); } case CmpInst::ICMP_UGT: { APInt UMin(CR.getUnsignedMin()); if (UMin.isMaxValue()) return ConstantRange(W, /* empty */ false); return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W)); } case CmpInst::ICMP_SGT: { APInt SMin(CR.getSignedMin()); if (SMin.isMaxSignedValue()) return ConstantRange(W, /* empty */ false); return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W)); } case CmpInst::ICMP_UGE: { APInt UMin(CR.getUnsignedMin()); if (UMin.isMinValue()) return ConstantRange(W); return ConstantRange(std::move(UMin), APInt::getNullValue(W)); } case CmpInst::ICMP_SGE: { APInt SMin(CR.getSignedMin()); if (SMin.isMinSignedValue()) return ConstantRange(W); return ConstantRange(std::move(SMin), APInt::getSignedMinValue(W)); } } } ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred, const ConstantRange &CR) { // Follows from De-Morgan's laws: // // ~(~A union ~B) == A intersect B. // return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR) .inverse(); } ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &C) { // Computes the exact range that is equal to both the constant ranges returned // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true // when RHS is a singleton such as an APInt and so the assert is valid. // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion // returns [0,4) but makeSatisfyICmpRegion returns [0,2). // assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C)); return makeAllowedICmpRegion(Pred, C); } bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const { bool Success = false; if (isFullSet() || isEmptySet()) { Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; RHS = APInt(getBitWidth(), 0); Success = true; } else if (auto *OnlyElt = getSingleElement()) { Pred = CmpInst::ICMP_EQ; RHS = *OnlyElt; Success = true; } else if (auto *OnlyMissingElt = getSingleMissingElement()) { Pred = CmpInst::ICMP_NE; RHS = *OnlyMissingElt; Success = true; } else if (getLower().isMinSignedValue() || getLower().isMinValue()) { Pred = getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; RHS = getUpper(); Success = true; } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) { Pred = getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE; RHS = getLower(); Success = true; } assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) && "Bad result!"); return Success; } ConstantRange ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, const ConstantRange &Other, unsigned NoWrapKind) { using OBO = OverflowingBinaryOperator; // Computes the intersection of CR0 and CR1. It is different from // intersectWith in that the ConstantRange returned will only contain elements // in both CR0 and CR1 (i.e. SubsetIntersect(X, Y) is a *subset*, proper or // not, of both X and Y). auto SubsetIntersect = [](const ConstantRange &CR0, const ConstantRange &CR1) { return CR0.inverse().unionWith(CR1.inverse()).inverse(); }; assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); assert((NoWrapKind == OBO::NoSignedWrap || NoWrapKind == OBO::NoUnsignedWrap || NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) && "NoWrapKind invalid!"); unsigned BitWidth = Other.getBitWidth(); ConstantRange Result(BitWidth); switch (BinOp) { default: // Conservative answer: empty set return ConstantRange(BitWidth, false); case Instruction::Add: if (auto *C = Other.getSingleElement()) if (C->isNullValue()) // Full set: nothing signed / unsigned wraps when added to 0. return ConstantRange(BitWidth); if (NoWrapKind & OBO::NoUnsignedWrap) Result = SubsetIntersect(Result, ConstantRange(APInt::getNullValue(BitWidth), -Other.getUnsignedMax())); if (NoWrapKind & OBO::NoSignedWrap) { const APInt &SignedMin = Other.getSignedMin(); const APInt &SignedMax = Other.getSignedMax(); if (SignedMax.isStrictlyPositive()) Result = SubsetIntersect( Result, ConstantRange(APInt::getSignedMinValue(BitWidth), APInt::getSignedMinValue(BitWidth) - SignedMax)); if (SignedMin.isNegative()) Result = SubsetIntersect( Result, ConstantRange(APInt::getSignedMinValue(BitWidth) - SignedMin, APInt::getSignedMinValue(BitWidth))); } return Result; case Instruction::Sub: if (auto *C = Other.getSingleElement()) if (C->isNullValue()) // Full set: nothing signed / unsigned wraps when subtracting 0. return ConstantRange(BitWidth); if (NoWrapKind & OBO::NoUnsignedWrap) Result = SubsetIntersect(Result, ConstantRange(Other.getUnsignedMax(), APInt::getMinValue(BitWidth))); if (NoWrapKind & OBO::NoSignedWrap) { const APInt &SignedMin = Other.getSignedMin(); const APInt &SignedMax = Other.getSignedMax(); if (SignedMax.isStrictlyPositive()) Result = SubsetIntersect( Result, ConstantRange(APInt::getSignedMinValue(BitWidth) + SignedMax, APInt::getSignedMinValue(BitWidth))); if (SignedMin.isNegative()) Result = SubsetIntersect( Result, ConstantRange(APInt::getSignedMinValue(BitWidth), APInt::getSignedMinValue(BitWidth) + SignedMin)); } return Result; case Instruction::Mul: { if (NoWrapKind == (OBO::NoSignedWrap | OBO::NoUnsignedWrap)) { return SubsetIntersect( makeGuaranteedNoWrapRegion(BinOp, Other, OBO::NoSignedWrap), makeGuaranteedNoWrapRegion(BinOp, Other, OBO::NoUnsignedWrap)); } // Equivalent to calling makeGuaranteedNoWrapRegion() on [V, V+1). const bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap; const auto makeSingleValueRegion = [Unsigned, BitWidth](APInt V) -> ConstantRange { // Handle special case for 0, -1 and 1. See the last for reason why we // specialize -1 and 1. if (V == 0 || V.isOneValue()) return ConstantRange(BitWidth, true); APInt MinValue, MaxValue; if (Unsigned) { MinValue = APInt::getMinValue(BitWidth); MaxValue = APInt::getMaxValue(BitWidth); } else { MinValue = APInt::getSignedMinValue(BitWidth); MaxValue = APInt::getSignedMaxValue(BitWidth); } // e.g. Returning [-127, 127], represented as [-127, -128). if (!Unsigned && V.isAllOnesValue()) return ConstantRange(-MaxValue, MinValue); APInt Lower, Upper; if (!Unsigned && V.isNegative()) { Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP); Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN); } else if (Unsigned) { Lower = APIntOps::RoundingUDiv(MinValue, V, APInt::Rounding::UP); Upper = APIntOps::RoundingUDiv(MaxValue, V, APInt::Rounding::DOWN); } else { Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP); Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN); } if (Unsigned) { Lower = Lower.zextOrSelf(BitWidth); Upper = Upper.zextOrSelf(BitWidth); } else { Lower = Lower.sextOrSelf(BitWidth); Upper = Upper.sextOrSelf(BitWidth); } // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1). // Upper + 1 is guanranteed not to overflow, because |divisor| > 1. 0, -1, // and 1 are already handled as special cases. return ConstantRange(Lower, Upper + 1); }; if (Unsigned) return makeSingleValueRegion(Other.getUnsignedMax()); return SubsetIntersect(makeSingleValueRegion(Other.getSignedMin()), makeSingleValueRegion(Other.getSignedMax())); } } } bool ConstantRange::isFullSet() const { return Lower == Upper && Lower.isMaxValue(); } bool ConstantRange::isEmptySet() const { return Lower == Upper && Lower.isMinValue(); } bool ConstantRange::isWrappedSet() const { return Lower.ugt(Upper); } bool ConstantRange::isSignWrappedSet() const { return contains(APInt::getSignedMaxValue(getBitWidth())) && contains(APInt::getSignedMinValue(getBitWidth())); } APInt ConstantRange::getSetSize() const { if (isFullSet()) return APInt::getOneBitSet(getBitWidth()+1, getBitWidth()); // This is also correct for wrapped sets. return (Upper - Lower).zext(getBitWidth()+1); } bool ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const { assert(getBitWidth() == Other.getBitWidth()); if (isFullSet()) return false; if (Other.isFullSet()) return true; return (Upper - Lower).ult(Other.Upper - Other.Lower); } bool ConstantRange::isSizeLargerThan(uint64_t MaxSize) const { assert(MaxSize && "MaxSize can't be 0."); // If this a full set, we need special handling to avoid needing an extra bit // to represent the size. if (isFullSet()) return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1); return (Upper - Lower).ugt(MaxSize); } APInt ConstantRange::getUnsignedMax() const { if (isFullSet() || isWrappedSet()) return APInt::getMaxValue(getBitWidth()); return getUpper() - 1; } APInt ConstantRange::getUnsignedMin() const { if (isFullSet() || (isWrappedSet() && !getUpper().isNullValue())) return APInt::getMinValue(getBitWidth()); return getLower(); } APInt ConstantRange::getSignedMax() const { if (isFullSet() || Lower.sgt(Upper)) return APInt::getSignedMaxValue(getBitWidth()); return getUpper() - 1; } APInt ConstantRange::getSignedMin() const { if (isFullSet() || (Lower.sgt(Upper) && !getUpper().isMinSignedValue())) return APInt::getSignedMinValue(getBitWidth()); return getLower(); } bool ConstantRange::contains(const APInt &V) const { if (Lower == Upper) return isFullSet(); if (!isWrappedSet()) return Lower.ule(V) && V.ult(Upper); return Lower.ule(V) || V.ult(Upper); } bool ConstantRange::contains(const ConstantRange &Other) const { if (isFullSet() || Other.isEmptySet()) return true; if (isEmptySet() || Other.isFullSet()) return false; if (!isWrappedSet()) { if (Other.isWrappedSet()) return false; return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper); } if (!Other.isWrappedSet()) return Other.getUpper().ule(Upper) || Lower.ule(Other.getLower()); return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower()); } ConstantRange ConstantRange::subtract(const APInt &Val) const { assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width"); // If the set is empty or full, don't modify the endpoints. if (Lower == Upper) return *this; return ConstantRange(Lower - Val, Upper - Val); } ConstantRange ConstantRange::difference(const ConstantRange &CR) const { return intersectWith(CR.inverse()); } ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const { assert(getBitWidth() == CR.getBitWidth() && "ConstantRange types don't agree!"); // Handle common cases. if ( isEmptySet() || CR.isFullSet()) return *this; if (CR.isEmptySet() || isFullSet()) return CR; if (!isWrappedSet() && CR.isWrappedSet()) return CR.intersectWith(*this); if (!isWrappedSet() && !CR.isWrappedSet()) { if (Lower.ult(CR.Lower)) { if (Upper.ule(CR.Lower)) return ConstantRange(getBitWidth(), false); if (Upper.ult(CR.Upper)) return ConstantRange(CR.Lower, Upper); return CR; } if (Upper.ult(CR.Upper)) return *this; if (Lower.ult(CR.Upper)) return ConstantRange(Lower, CR.Upper); return ConstantRange(getBitWidth(), false); } if (isWrappedSet() && !CR.isWrappedSet()) { if (CR.Lower.ult(Upper)) { if (CR.Upper.ult(Upper)) return CR; if (CR.Upper.ule(Lower)) return ConstantRange(CR.Lower, Upper); if (isSizeStrictlySmallerThan(CR)) return *this; return CR; } if (CR.Lower.ult(Lower)) { if (CR.Upper.ule(Lower)) return ConstantRange(getBitWidth(), false); return ConstantRange(Lower, CR.Upper); } return CR; } if (CR.Upper.ult(Upper)) { if (CR.Lower.ult(Upper)) { if (isSizeStrictlySmallerThan(CR)) return *this; return CR; } if (CR.Lower.ult(Lower)) return ConstantRange(Lower, CR.Upper); return CR; } if (CR.Upper.ule(Lower)) { if (CR.Lower.ult(Lower)) return *this; return ConstantRange(CR.Lower, Upper); } if (isSizeStrictlySmallerThan(CR)) return *this; return CR; } ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const { assert(getBitWidth() == CR.getBitWidth() && "ConstantRange types don't agree!"); if ( isFullSet() || CR.isEmptySet()) return *this; if (CR.isFullSet() || isEmptySet()) return CR; if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this); if (!isWrappedSet() && !CR.isWrappedSet()) { if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) { // If the two ranges are disjoint, find the smaller gap and bridge it. APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper; if (d1.ult(d2)) return ConstantRange(Lower, CR.Upper); return ConstantRange(CR.Lower, Upper); } APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper; if (L.isNullValue() && U.isNullValue()) return ConstantRange(getBitWidth()); return ConstantRange(std::move(L), std::move(U)); } if (!CR.isWrappedSet()) { // ------U L----- and ------U L----- : this // L--U L--U : CR if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower)) return *this; // ------U L----- : this // L---------U : CR if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) return ConstantRange(getBitWidth()); // ----U L---- : this // L---U : CR // <d1> <d2> if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) { APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper; if (d1.ult(d2)) return ConstantRange(Lower, CR.Upper); return ConstantRange(CR.Lower, Upper); } // ----U L----- : this // L----U : CR if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper)) return ConstantRange(CR.Lower, Upper); // ------U L---- : this // L-----U : CR assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) && "ConstantRange::unionWith missed a case with one range wrapped"); return ConstantRange(Lower, CR.Upper); } // ------U L---- and ------U L---- : this // -U L----------- and ------------U L : CR if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper)) return ConstantRange(getBitWidth()); APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper; return ConstantRange(std::move(L), std::move(U)); } ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp, uint32_t ResultBitWidth) const { switch (CastOp) { default: llvm_unreachable("unsupported cast type"); case Instruction::Trunc: return truncate(ResultBitWidth); case Instruction::SExt: return signExtend(ResultBitWidth); case Instruction::ZExt: return zeroExtend(ResultBitWidth); case Instruction::BitCast: return *this; case Instruction::FPToUI: case Instruction::FPToSI: if (getBitWidth() == ResultBitWidth) return *this; else return ConstantRange(getBitWidth(), /*isFullSet=*/true); case Instruction::UIToFP: { // TODO: use input range if available auto BW = getBitWidth(); APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth); APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth); return ConstantRange(std::move(Min), std::move(Max)); } case Instruction::SIToFP: { // TODO: use input range if available auto BW = getBitWidth(); APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth); APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth); return ConstantRange(std::move(SMin), std::move(SMax)); } case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::IntToPtr: case Instruction::PtrToInt: case Instruction::AddrSpaceCast: // Conservatively return full set. return ConstantRange(getBitWidth(), /*isFullSet=*/true); }; } ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false); unsigned SrcTySize = getBitWidth(); assert(SrcTySize < DstTySize && "Not a value extension"); if (isFullSet() || isWrappedSet()) { // Change into [0, 1 << src bit width) APInt LowerExt(DstTySize, 0); if (!Upper) // special case: [X, 0) -- not really wrapping around LowerExt = Lower.zext(DstTySize); return ConstantRange(std::move(LowerExt), APInt::getOneBitSet(DstTySize, SrcTySize)); } return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize)); } ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false); unsigned SrcTySize = getBitWidth(); assert(SrcTySize < DstTySize && "Not a value extension"); // special case: [X, INT_MIN) -- not really wrapping around if (Upper.isMinSignedValue()) return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize)); if (isFullSet() || isSignWrappedSet()) { return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1), APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1); } return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize)); } ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { assert(getBitWidth() > DstTySize && "Not a value truncation"); if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false); if (isFullSet()) return ConstantRange(DstTySize, /*isFullSet=*/true); APInt LowerDiv(Lower), UpperDiv(Upper); ConstantRange Union(DstTySize, /*isFullSet=*/false); // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue] // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and // then we do the union with [MaxValue, Upper) if (isWrappedSet()) { // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole // truncated range. if (Upper.getActiveBits() > DstTySize || Upper.countTrailingOnes() == DstTySize) return ConstantRange(DstTySize, /*isFullSet=*/true); Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize)); UpperDiv.setAllBits(); // Union covers the MaxValue case, so return if the remaining range is just // MaxValue(DstTy). if (LowerDiv == UpperDiv) return Union; } // Chop off the most significant bits that are past the destination bitwidth. if (LowerDiv.getActiveBits() > DstTySize) { // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv. APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize); LowerDiv -= Adjust; UpperDiv -= Adjust; } unsigned UpperDivWidth = UpperDiv.getActiveBits(); if (UpperDivWidth <= DstTySize) return ConstantRange(LowerDiv.trunc(DstTySize), UpperDiv.trunc(DstTySize)).unionWith(Union); // The truncated value wraps around. Check if we can do better than fullset. if (UpperDivWidth == DstTySize + 1) { // Clear the MSB so that UpperDiv wraps around. UpperDiv.clearBit(DstTySize); if (UpperDiv.ult(LowerDiv)) return ConstantRange(LowerDiv.trunc(DstTySize), UpperDiv.trunc(DstTySize)).unionWith(Union); } return ConstantRange(DstTySize, /*isFullSet=*/true); } ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const { unsigned SrcTySize = getBitWidth(); if (SrcTySize > DstTySize) return truncate(DstTySize); if (SrcTySize < DstTySize) return zeroExtend(DstTySize); return *this; } ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const { unsigned SrcTySize = getBitWidth(); if (SrcTySize > DstTySize) return truncate(DstTySize); if (SrcTySize < DstTySize) return signExtend(DstTySize); return *this; } ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp, const ConstantRange &Other) const { assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); switch (BinOp) { case Instruction::Add: return add(Other); case Instruction::Sub: return sub(Other); case Instruction::Mul: return multiply(Other); case Instruction::UDiv: return udiv(Other); case Instruction::Shl: return shl(Other); case Instruction::LShr: return lshr(Other); case Instruction::AShr: return ashr(Other); case Instruction::And: return binaryAnd(Other); case Instruction::Or: return binaryOr(Other); // Note: floating point operations applied to abstract ranges are just // ideal integer operations with a lossy representation case Instruction::FAdd: return add(Other); case Instruction::FSub: return sub(Other); case Instruction::FMul: return multiply(Other); default: // Conservatively return full set. return ConstantRange(getBitWidth(), /*isFullSet=*/true); } } ConstantRange ConstantRange::add(const ConstantRange &Other) const { if (isEmptySet() || Other.isEmptySet()) return ConstantRange(getBitWidth(), /*isFullSet=*/false); if (isFullSet() || Other.isFullSet()) return ConstantRange(getBitWidth(), /*isFullSet=*/true); APInt NewLower = getLower() + Other.getLower(); APInt NewUpper = getUpper() + Other.getUpper() - 1; if (NewLower == NewUpper) return ConstantRange(getBitWidth(), /*isFullSet=*/true); ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); if (X.isSizeStrictlySmallerThan(*this) || X.isSizeStrictlySmallerThan(Other)) // We've wrapped, therefore, full set. return ConstantRange(getBitWidth(), /*isFullSet=*/true); return X; } ConstantRange ConstantRange::addWithNoSignedWrap(const APInt &Other) const { // Calculate the subset of this range such that "X + Other" is // guaranteed not to wrap (overflow) for all X in this subset. // makeGuaranteedNoWrapRegion will produce an exact NSW range since we are // passing a single element range. auto NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(BinaryOperator::Add, ConstantRange(Other), OverflowingBinaryOperator::NoSignedWrap); auto NSWConstrainedRange = intersectWith(NSWRange); return NSWConstrainedRange.add(ConstantRange(Other)); } ConstantRange ConstantRange::sub(const ConstantRange &Other) const { if (isEmptySet() || Other.isEmptySet()) return ConstantRange(getBitWidth(), /*isFullSet=*/false); if (isFullSet() || Other.isFullSet()) return ConstantRange(getBitWidth(), /*isFullSet=*/true); APInt NewLower = getLower() - Other.getUpper() + 1; APInt NewUpper = getUpper() - Other.getLower(); if (NewLower == NewUpper) return ConstantRange(getBitWidth(), /*isFullSet=*/true); ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); if (X.isSizeStrictlySmallerThan(*this) || X.isSizeStrictlySmallerThan(Other)) // We've wrapped, therefore, full set. return ConstantRange(getBitWidth(), /*isFullSet=*/true); return X; } ConstantRange ConstantRange::multiply(const ConstantRange &Other) const { // TODO: If either operand is a single element and the multiply is known to // be non-wrapping, round the result min and max value to the appropriate // multiple of that element. If wrapping is possible, at least adjust the // range according to the greatest power-of-two factor of the single element. if (isEmptySet() || Other.isEmptySet()) return ConstantRange(getBitWidth(), /*isFullSet=*/false); // Multiplication is signedness-independent. However different ranges can be // obtained depending on how the input ranges are treated. These different // ranges are all conservatively correct, but one might be better than the // other. We calculate two ranges; one treating the inputs as unsigned // and the other signed, then return the smallest of these ranges. // Unsigned range first. APInt this_min = getUnsignedMin().zext(getBitWidth() * 2); APInt this_max = getUnsignedMax().zext(getBitWidth() * 2); APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2); APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2); ConstantRange Result_zext = ConstantRange(this_min * Other_min, this_max * Other_max + 1); ConstantRange UR = Result_zext.truncate(getBitWidth()); // If the unsigned range doesn't wrap, and isn't negative then it's a range // from one positive number to another which is as good as we can generate. // In this case, skip the extra work of generating signed ranges which aren't // going to be better than this range. if (!UR.isWrappedSet() && (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue())) return UR; // Now the signed range. Because we could be dealing with negative numbers // here, the lower bound is the smallest of the cartesian product of the // lower and upper ranges; for example: // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. // Similarly for the upper bound, swapping min for max. this_min = getSignedMin().sext(getBitWidth() * 2); this_max = getSignedMax().sext(getBitWidth() * 2); Other_min = Other.getSignedMin().sext(getBitWidth() * 2); Other_max = Other.getSignedMax().sext(getBitWidth() * 2); auto L = {this_min * Other_min, this_min * Other_max, this_max * Other_min, this_max * Other_max}; auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1); ConstantRange SR = Result_sext.truncate(getBitWidth()); return UR.isSizeStrictlySmallerThan(SR) ? UR : SR; } ConstantRange ConstantRange::smax(const ConstantRange &Other) const { // X smax Y is: range(smax(X_smin, Y_smin), // smax(X_smax, Y_smax)) if (isEmptySet() || Other.isEmptySet()) return ConstantRange(getBitWidth(), /*isFullSet=*/false); APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin()); APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1; if (NewU == NewL) return ConstantRange(getBitWidth(), /*isFullSet=*/true); return ConstantRange(std::move(NewL), std::move(NewU)); } ConstantRange ConstantRange::umax(const ConstantRange &Other) const { // X umax Y is: range(umax(X_umin, Y_umin), // umax(X_umax, Y_umax)) if (isEmptySet() || Other.isEmptySet()) return ConstantRange(getBitWidth(), /*isFullSet=*/false); APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1; if (NewU == NewL) return ConstantRange(getBitWidth(), /*isFullSet=*/true); return ConstantRange(std::move(NewL), std::move(NewU)); } ConstantRange ConstantRange::smin(const ConstantRange &Other) const { // X smin Y is: range(smin(X_smin, Y_smin), // smin(X_smax, Y_smax)) if (isEmptySet() || Other.isEmptySet()) return ConstantRange(getBitWidth(), /*isFullSet=*/false); APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin()); APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1; if (NewU == NewL) return ConstantRange(getBitWidth(), /*isFullSet=*/true); return ConstantRange(std::move(NewL), std::move(NewU)); } ConstantRange ConstantRange::umin(const ConstantRange &Other) const { // X umin Y is: range(umin(X_umin, Y_umin), // umin(X_umax, Y_umax)) if (isEmptySet() || Other.isEmptySet()) return ConstantRange(getBitWidth(), /*isFullSet=*/false); APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin()); APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1; if (NewU == NewL) return ConstantRange(getBitWidth(), /*isFullSet=*/true); return ConstantRange(std::move(NewL), std::move(NewU)); } ConstantRange ConstantRange::udiv(const ConstantRange &RHS) const { if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue()) return ConstantRange(getBitWidth(), /*isFullSet=*/false); if (RHS.isFullSet()) return ConstantRange(getBitWidth(), /*isFullSet=*/true); APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax()); APInt RHS_umin = RHS.getUnsignedMin(); if (RHS_umin.isNullValue()) { // We want the lowest value in RHS excluding zero. Usually that would be 1 // except for a range in the form of [X, 1) in which case it would be X. if (RHS.getUpper() == 1) RHS_umin = RHS.getLower(); else RHS_umin = 1; } APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1; // If the LHS is Full and the RHS is a wrapped interval containing 1 then // this could occur. if (Lower == Upper) return ConstantRange(getBitWidth(), /*isFullSet=*/true); return ConstantRange(std::move(Lower), std::move(Upper)); } ConstantRange ConstantRange::binaryAnd(const ConstantRange &Other) const { if (isEmptySet() || Other.isEmptySet()) return ConstantRange(getBitWidth(), /*isFullSet=*/false); // TODO: replace this with something less conservative APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()); if (umin.isAllOnesValue()) return ConstantRange(getBitWidth(), /*isFullSet=*/true); return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(umin) + 1); } ConstantRange ConstantRange::binaryOr(const ConstantRange &Other) const { if (isEmptySet() || Other.isEmptySet()) return ConstantRange(getBitWidth(), /*isFullSet=*/false); // TODO: replace this with something less conservative APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); if (umax.isNullValue()) return ConstantRange(getBitWidth(), /*isFullSet=*/true); return ConstantRange(std::move(umax), APInt::getNullValue(getBitWidth())); } ConstantRange ConstantRange::shl(const ConstantRange &Other) const { if (isEmptySet() || Other.isEmptySet()) return ConstantRange(getBitWidth(), /*isFullSet=*/false); APInt max = getUnsignedMax(); APInt Other_umax = Other.getUnsignedMax(); // there's overflow! if (Other_umax.uge(max.countLeadingZeros())) return ConstantRange(getBitWidth(), /*isFullSet=*/true); // FIXME: implement the other tricky cases APInt min = getUnsignedMin(); min <<= Other.getUnsignedMin(); max <<= Other_umax; return ConstantRange(std::move(min), std::move(max) + 1); } ConstantRange ConstantRange::lshr(const ConstantRange &Other) const { if (isEmptySet() || Other.isEmptySet()) return ConstantRange(getBitWidth(), /*isFullSet=*/false); APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1; APInt min = getUnsignedMin().lshr(Other.getUnsignedMax()); if (min == max) return ConstantRange(getBitWidth(), /*isFullSet=*/true); return ConstantRange(std::move(min), std::move(max)); } ConstantRange ConstantRange::ashr(const ConstantRange &Other) const { if (isEmptySet() || Other.isEmptySet()) return ConstantRange(getBitWidth(), /*isFullSet=*/false); // May straddle zero, so handle both positive and negative cases. // 'PosMax' is the upper bound of the result of the ashr // operation, when Upper of the LHS of ashr is a non-negative. // number. Since ashr of a non-negative number will result in a // smaller number, the Upper value of LHS is shifted right with // the minimum value of 'Other' instead of the maximum value. APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1; // 'PosMin' is the lower bound of the result of the ashr // operation, when Lower of the LHS is a non-negative number. // Since ashr of a non-negative number will result in a smaller // number, the Lower value of LHS is shifted right with the // maximum value of 'Other'. APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax()); // 'NegMax' is the upper bound of the result of the ashr // operation, when Upper of the LHS of ashr is a negative number. // Since 'ashr' of a negative number will result in a bigger // number, the Upper value of LHS is shifted right with the // maximum value of 'Other'. APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1; // 'NegMin' is the lower bound of the result of the ashr // operation, when Lower of the LHS of ashr is a negative number. // Since 'ashr' of a negative number will result in a bigger // number, the Lower value of LHS is shifted right with the // minimum value of 'Other'. APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin()); APInt max, min; if (getSignedMin().isNonNegative()) { // Upper and Lower of LHS are non-negative. min = PosMin; max = PosMax; } else if (getSignedMax().isNegative()) { // Upper and Lower of LHS are negative. min = NegMin; max = NegMax; } else { // Upper is non-negative and Lower is negative. min = NegMin; max = PosMax; } if (min == max) return ConstantRange(getBitWidth(), /*isFullSet=*/true); return ConstantRange(std::move(min), std::move(max)); } ConstantRange ConstantRange::inverse() const { if (isFullSet()) return ConstantRange(getBitWidth(), /*isFullSet=*/false); if (isEmptySet()) return ConstantRange(getBitWidth(), /*isFullSet=*/true); return ConstantRange(Upper, Lower); } void ConstantRange::print(raw_ostream &OS) const { if (isFullSet()) OS << "full-set"; else if (isEmptySet()) OS << "empty-set"; else OS << "[" << Lower << "," << Upper << ")"; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void ConstantRange::dump() const { print(dbgs()); } #endif ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { const unsigned NumRanges = Ranges.getNumOperands() / 2; assert(NumRanges >= 1 && "Must have at least one range!"); assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); for (unsigned i = 1; i < NumRanges; ++i) { auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); // Note: unionWith will potentially create a range that contains values not // contained in any of the original N ranges. CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); } return CR; }