//===-ThinLTOCodeGenerator.cpp - LLVM Link Time Optimizer -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Thin Link Time Optimization library. This library is // intended to be used by linker to optimize code at link time. // //===----------------------------------------------------------------------===// #include "llvm/LTO/legacy/ThinLTOCodeGenerator.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/ModuleSummaryAnalysis.h" #include "llvm/Analysis/ProfileSummaryInfo.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/Bitcode/BitcodeWriter.h" #include "llvm/Bitcode/BitcodeWriterPass.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Verifier.h" #include "llvm/IRReader/IRReader.h" #include "llvm/LTO/LTO.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/Object/IRObjectFile.h" #include "llvm/Support/CachePruning.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Error.h" #include "llvm/Support/Path.h" #include "llvm/Support/SHA1.h" #include "llvm/Support/SmallVectorMemoryBuffer.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/ThreadPool.h" #include "llvm/Support/Threading.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Support/VCSRevision.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/FunctionImport.h" #include "llvm/Transforms/IPO/Internalize.h" #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm/Transforms/ObjCARC.h" #include "llvm/Transforms/Utils/FunctionImportUtils.h" #include <numeric> #if !defined(_MSC_VER) && !defined(__MINGW32__) #include <unistd.h> #else #include <io.h> #endif using namespace llvm; #define DEBUG_TYPE "thinlto" namespace llvm { // Flags -discard-value-names, defined in LTOCodeGenerator.cpp extern cl::opt<bool> LTODiscardValueNames; extern cl::opt<std::string> LTORemarksFilename; extern cl::opt<bool> LTOPassRemarksWithHotness; } namespace { static cl::opt<int> ThreadCount("threads", cl::init(llvm::heavyweight_hardware_concurrency())); // Simple helper to save temporary files for debug. static void saveTempBitcode(const Module &TheModule, StringRef TempDir, unsigned count, StringRef Suffix) { if (TempDir.empty()) return; // User asked to save temps, let dump the bitcode file after import. std::string SaveTempPath = (TempDir + llvm::Twine(count) + Suffix).str(); std::error_code EC; raw_fd_ostream OS(SaveTempPath, EC, sys::fs::F_None); if (EC) report_fatal_error(Twine("Failed to open ") + SaveTempPath + " to save optimized bitcode\n"); WriteBitcodeToFile(TheModule, OS, /* ShouldPreserveUseListOrder */ true); } static const GlobalValueSummary * getFirstDefinitionForLinker(const GlobalValueSummaryList &GVSummaryList) { // If there is any strong definition anywhere, get it. auto StrongDefForLinker = llvm::find_if( GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) { auto Linkage = Summary->linkage(); return !GlobalValue::isAvailableExternallyLinkage(Linkage) && !GlobalValue::isWeakForLinker(Linkage); }); if (StrongDefForLinker != GVSummaryList.end()) return StrongDefForLinker->get(); // Get the first *linker visible* definition for this global in the summary // list. auto FirstDefForLinker = llvm::find_if( GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) { auto Linkage = Summary->linkage(); return !GlobalValue::isAvailableExternallyLinkage(Linkage); }); // Extern templates can be emitted as available_externally. if (FirstDefForLinker == GVSummaryList.end()) return nullptr; return FirstDefForLinker->get(); } // Populate map of GUID to the prevailing copy for any multiply defined // symbols. Currently assume first copy is prevailing, or any strong // definition. Can be refined with Linker information in the future. static void computePrevailingCopies( const ModuleSummaryIndex &Index, DenseMap<GlobalValue::GUID, const GlobalValueSummary *> &PrevailingCopy) { auto HasMultipleCopies = [&](const GlobalValueSummaryList &GVSummaryList) { return GVSummaryList.size() > 1; }; for (auto &I : Index) { if (HasMultipleCopies(I.second.SummaryList)) PrevailingCopy[I.first] = getFirstDefinitionForLinker(I.second.SummaryList); } } static StringMap<MemoryBufferRef> generateModuleMap(const std::vector<ThinLTOBuffer> &Modules) { StringMap<MemoryBufferRef> ModuleMap; for (auto &ModuleBuffer : Modules) { assert(ModuleMap.find(ModuleBuffer.getBufferIdentifier()) == ModuleMap.end() && "Expect unique Buffer Identifier"); ModuleMap[ModuleBuffer.getBufferIdentifier()] = ModuleBuffer.getMemBuffer(); } return ModuleMap; } static void promoteModule(Module &TheModule, const ModuleSummaryIndex &Index) { if (renameModuleForThinLTO(TheModule, Index)) report_fatal_error("renameModuleForThinLTO failed"); } namespace { class ThinLTODiagnosticInfo : public DiagnosticInfo { const Twine &Msg; public: ThinLTODiagnosticInfo(const Twine &DiagMsg, DiagnosticSeverity Severity = DS_Error) : DiagnosticInfo(DK_Linker, Severity), Msg(DiagMsg) {} void print(DiagnosticPrinter &DP) const override { DP << Msg; } }; } /// Verify the module and strip broken debug info. static void verifyLoadedModule(Module &TheModule) { bool BrokenDebugInfo = false; if (verifyModule(TheModule, &dbgs(), &BrokenDebugInfo)) report_fatal_error("Broken module found, compilation aborted!"); if (BrokenDebugInfo) { TheModule.getContext().diagnose(ThinLTODiagnosticInfo( "Invalid debug info found, debug info will be stripped", DS_Warning)); StripDebugInfo(TheModule); } } static std::unique_ptr<Module> loadModuleFromBuffer(const MemoryBufferRef &Buffer, LLVMContext &Context, bool Lazy, bool IsImporting) { SMDiagnostic Err; Expected<std::unique_ptr<Module>> ModuleOrErr = Lazy ? getLazyBitcodeModule(Buffer, Context, /* ShouldLazyLoadMetadata */ true, IsImporting) : parseBitcodeFile(Buffer, Context); if (!ModuleOrErr) { handleAllErrors(ModuleOrErr.takeError(), [&](ErrorInfoBase &EIB) { SMDiagnostic Err = SMDiagnostic(Buffer.getBufferIdentifier(), SourceMgr::DK_Error, EIB.message()); Err.print("ThinLTO", errs()); }); report_fatal_error("Can't load module, abort."); } if (!Lazy) verifyLoadedModule(*ModuleOrErr.get()); return std::move(ModuleOrErr.get()); } static void crossImportIntoModule(Module &TheModule, const ModuleSummaryIndex &Index, StringMap<MemoryBufferRef> &ModuleMap, const FunctionImporter::ImportMapTy &ImportList) { auto Loader = [&](StringRef Identifier) { return loadModuleFromBuffer(ModuleMap[Identifier], TheModule.getContext(), /*Lazy=*/true, /*IsImporting*/ true); }; FunctionImporter Importer(Index, Loader); Expected<bool> Result = Importer.importFunctions(TheModule, ImportList); if (!Result) { handleAllErrors(Result.takeError(), [&](ErrorInfoBase &EIB) { SMDiagnostic Err = SMDiagnostic(TheModule.getModuleIdentifier(), SourceMgr::DK_Error, EIB.message()); Err.print("ThinLTO", errs()); }); report_fatal_error("importFunctions failed"); } // Verify again after cross-importing. verifyLoadedModule(TheModule); } static void optimizeModule(Module &TheModule, TargetMachine &TM, unsigned OptLevel, bool Freestanding) { // Populate the PassManager PassManagerBuilder PMB; PMB.LibraryInfo = new TargetLibraryInfoImpl(TM.getTargetTriple()); if (Freestanding) PMB.LibraryInfo->disableAllFunctions(); PMB.Inliner = createFunctionInliningPass(); // FIXME: should get it from the bitcode? PMB.OptLevel = OptLevel; PMB.LoopVectorize = true; PMB.SLPVectorize = true; // Already did this in verifyLoadedModule(). PMB.VerifyInput = false; PMB.VerifyOutput = false; legacy::PassManager PM; // Add the TTI (required to inform the vectorizer about register size for // instance) PM.add(createTargetTransformInfoWrapperPass(TM.getTargetIRAnalysis())); // Add optimizations PMB.populateThinLTOPassManager(PM); PM.run(TheModule); } // Convert the PreservedSymbols map from "Name" based to "GUID" based. static DenseSet<GlobalValue::GUID> computeGUIDPreservedSymbols(const StringSet<> &PreservedSymbols, const Triple &TheTriple) { DenseSet<GlobalValue::GUID> GUIDPreservedSymbols(PreservedSymbols.size()); for (auto &Entry : PreservedSymbols) { StringRef Name = Entry.first(); if (TheTriple.isOSBinFormatMachO() && Name.size() > 0 && Name[0] == '_') Name = Name.drop_front(); GUIDPreservedSymbols.insert(GlobalValue::getGUID(Name)); } return GUIDPreservedSymbols; } std::unique_ptr<MemoryBuffer> codegenModule(Module &TheModule, TargetMachine &TM) { SmallVector<char, 128> OutputBuffer; // CodeGen { raw_svector_ostream OS(OutputBuffer); legacy::PassManager PM; // If the bitcode files contain ARC code and were compiled with optimization, // the ObjCARCContractPass must be run, so do it unconditionally here. PM.add(createObjCARCContractPass()); // Setup the codegen now. if (TM.addPassesToEmitFile(PM, OS, nullptr, TargetMachine::CGFT_ObjectFile, /* DisableVerify */ true)) report_fatal_error("Failed to setup codegen"); // Run codegen now. resulting binary is in OutputBuffer. PM.run(TheModule); } return make_unique<SmallVectorMemoryBuffer>(std::move(OutputBuffer)); } /// Manage caching for a single Module. class ModuleCacheEntry { SmallString<128> EntryPath; public: // Create a cache entry. This compute a unique hash for the Module considering // the current list of export/import, and offer an interface to query to // access the content in the cache. ModuleCacheEntry( StringRef CachePath, const ModuleSummaryIndex &Index, StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, const FunctionImporter::ExportSetTy &ExportList, const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, const GVSummaryMapTy &DefinedFunctions, const DenseSet<GlobalValue::GUID> &PreservedSymbols, unsigned OptLevel, bool Freestanding, const TargetMachineBuilder &TMBuilder) { if (CachePath.empty()) return; if (!Index.modulePaths().count(ModuleID)) // The module does not have an entry, it can't have a hash at all return; // Compute the unique hash for this entry // This is based on the current compiler version, the module itself, the // export list, the hash for every single module in the import list, the // list of ResolvedODR for the module, and the list of preserved symbols. // Include the hash for the current module auto ModHash = Index.getModuleHash(ModuleID); if (all_of(ModHash, [](uint32_t V) { return V == 0; })) // No hash entry, no caching! return; SHA1 Hasher; // Include the parts of the LTO configuration that affect code generation. auto AddString = [&](StringRef Str) { Hasher.update(Str); Hasher.update(ArrayRef<uint8_t>{0}); }; auto AddUnsigned = [&](unsigned I) { uint8_t Data[4]; Data[0] = I; Data[1] = I >> 8; Data[2] = I >> 16; Data[3] = I >> 24; Hasher.update(ArrayRef<uint8_t>{Data, 4}); }; // Start with the compiler revision Hasher.update(LLVM_VERSION_STRING); #ifdef LLVM_REVISION Hasher.update(LLVM_REVISION); #endif // Hash the optimization level and the target machine settings. AddString(TMBuilder.MCpu); // FIXME: Hash more of Options. For now all clients initialize Options from // command-line flags (which is unsupported in production), but may set // RelaxELFRelocations. The clang driver can also pass FunctionSections, // DataSections and DebuggerTuning via command line flags. AddUnsigned(TMBuilder.Options.RelaxELFRelocations); AddUnsigned(TMBuilder.Options.FunctionSections); AddUnsigned(TMBuilder.Options.DataSections); AddUnsigned((unsigned)TMBuilder.Options.DebuggerTuning); AddString(TMBuilder.MAttr); if (TMBuilder.RelocModel) AddUnsigned(*TMBuilder.RelocModel); AddUnsigned(TMBuilder.CGOptLevel); AddUnsigned(OptLevel); AddUnsigned(Freestanding); Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); for (auto F : ExportList) // The export list can impact the internalization, be conservative here Hasher.update(ArrayRef<uint8_t>((uint8_t *)&F, sizeof(F))); // Include the hash for every module we import functions from for (auto &Entry : ImportList) { auto ModHash = Index.getModuleHash(Entry.first()); Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); } // Include the hash for the resolved ODR. for (auto &Entry : ResolvedODR) { Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first, sizeof(GlobalValue::GUID))); Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second, sizeof(GlobalValue::LinkageTypes))); } // Include the hash for the preserved symbols. for (auto &Entry : PreservedSymbols) { if (DefinedFunctions.count(Entry)) Hasher.update( ArrayRef<uint8_t>((const uint8_t *)&Entry, sizeof(GlobalValue::GUID))); } // This choice of file name allows the cache to be pruned (see pruneCache() // in include/llvm/Support/CachePruning.h). sys::path::append(EntryPath, CachePath, "llvmcache-" + toHex(Hasher.result())); } // Access the path to this entry in the cache. StringRef getEntryPath() { return EntryPath; } // Try loading the buffer for this cache entry. ErrorOr<std::unique_ptr<MemoryBuffer>> tryLoadingBuffer() { if (EntryPath.empty()) return std::error_code(); int FD; SmallString<64> ResultPath; std::error_code EC = sys::fs::openFileForRead( Twine(EntryPath), FD, sys::fs::OF_UpdateAtime, &ResultPath); if (EC) return EC; ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = MemoryBuffer::getOpenFile(FD, EntryPath, /*FileSize*/ -1, /*RequiresNullTerminator*/ false); close(FD); return MBOrErr; } // Cache the Produced object file void write(const MemoryBuffer &OutputBuffer) { if (EntryPath.empty()) return; // Write to a temporary to avoid race condition SmallString<128> TempFilename; SmallString<128> CachePath(EntryPath); int TempFD; llvm::sys::path::remove_filename(CachePath); sys::path::append(TempFilename, CachePath, "Thin-%%%%%%.tmp.o"); std::error_code EC = sys::fs::createUniqueFile(TempFilename, TempFD, TempFilename); if (EC) { errs() << "Error: " << EC.message() << "\n"; report_fatal_error("ThinLTO: Can't get a temporary file"); } { raw_fd_ostream OS(TempFD, /* ShouldClose */ true); OS << OutputBuffer.getBuffer(); } // Rename temp file to final destination; rename is atomic EC = sys::fs::rename(TempFilename, EntryPath); if (EC) sys::fs::remove(TempFilename); } }; static std::unique_ptr<MemoryBuffer> ProcessThinLTOModule(Module &TheModule, ModuleSummaryIndex &Index, StringMap<MemoryBufferRef> &ModuleMap, TargetMachine &TM, const FunctionImporter::ImportMapTy &ImportList, const FunctionImporter::ExportSetTy &ExportList, const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, const GVSummaryMapTy &DefinedGlobals, const ThinLTOCodeGenerator::CachingOptions &CacheOptions, bool DisableCodeGen, StringRef SaveTempsDir, bool Freestanding, unsigned OptLevel, unsigned count) { // "Benchmark"-like optimization: single-source case bool SingleModule = (ModuleMap.size() == 1); if (!SingleModule) { promoteModule(TheModule, Index); // Apply summary-based LinkOnce/Weak resolution decisions. thinLTOResolveWeakForLinkerModule(TheModule, DefinedGlobals); // Save temps: after promotion. saveTempBitcode(TheModule, SaveTempsDir, count, ".1.promoted.bc"); } // Be friendly and don't nuke totally the module when the client didn't // supply anything to preserve. if (!ExportList.empty() || !GUIDPreservedSymbols.empty()) { // Apply summary-based internalization decisions. thinLTOInternalizeModule(TheModule, DefinedGlobals); } // Save internalized bitcode saveTempBitcode(TheModule, SaveTempsDir, count, ".2.internalized.bc"); if (!SingleModule) { crossImportIntoModule(TheModule, Index, ModuleMap, ImportList); // Save temps: after cross-module import. saveTempBitcode(TheModule, SaveTempsDir, count, ".3.imported.bc"); } optimizeModule(TheModule, TM, OptLevel, Freestanding); saveTempBitcode(TheModule, SaveTempsDir, count, ".4.opt.bc"); if (DisableCodeGen) { // Configured to stop before CodeGen, serialize the bitcode and return. SmallVector<char, 128> OutputBuffer; { raw_svector_ostream OS(OutputBuffer); ProfileSummaryInfo PSI(TheModule); auto Index = buildModuleSummaryIndex(TheModule, nullptr, &PSI); WriteBitcodeToFile(TheModule, OS, true, &Index); } return make_unique<SmallVectorMemoryBuffer>(std::move(OutputBuffer)); } return codegenModule(TheModule, TM); } /// Resolve LinkOnce/Weak symbols. Record resolutions in the \p ResolvedODR map /// for caching, and in the \p Index for application during the ThinLTO /// backends. This is needed for correctness for exported symbols (ensure /// at least one copy kept) and a compile-time optimization (to drop duplicate /// copies when possible). static void resolveWeakForLinkerInIndex( ModuleSummaryIndex &Index, StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> &ResolvedODR) { DenseMap<GlobalValue::GUID, const GlobalValueSummary *> PrevailingCopy; computePrevailingCopies(Index, PrevailingCopy); auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) { const auto &Prevailing = PrevailingCopy.find(GUID); // Not in map means that there was only one copy, which must be prevailing. if (Prevailing == PrevailingCopy.end()) return true; return Prevailing->second == S; }; auto recordNewLinkage = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID, GlobalValue::LinkageTypes NewLinkage) { ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; }; thinLTOResolveWeakForLinkerInIndex(Index, isPrevailing, recordNewLinkage); } // Initialize the TargetMachine builder for a given Triple static void initTMBuilder(TargetMachineBuilder &TMBuilder, const Triple &TheTriple) { // Set a default CPU for Darwin triples (copied from LTOCodeGenerator). // FIXME this looks pretty terrible... if (TMBuilder.MCpu.empty() && TheTriple.isOSDarwin()) { if (TheTriple.getArch() == llvm::Triple::x86_64) TMBuilder.MCpu = "core2"; else if (TheTriple.getArch() == llvm::Triple::x86) TMBuilder.MCpu = "yonah"; else if (TheTriple.getArch() == llvm::Triple::aarch64) TMBuilder.MCpu = "cyclone"; } TMBuilder.TheTriple = std::move(TheTriple); } } // end anonymous namespace void ThinLTOCodeGenerator::addModule(StringRef Identifier, StringRef Data) { ThinLTOBuffer Buffer(Data, Identifier); LLVMContext Context; StringRef TripleStr; ErrorOr<std::string> TripleOrErr = expectedToErrorOrAndEmitErrors( Context, getBitcodeTargetTriple(Buffer.getMemBuffer())); if (TripleOrErr) TripleStr = *TripleOrErr; Triple TheTriple(TripleStr); if (Modules.empty()) initTMBuilder(TMBuilder, Triple(TheTriple)); else if (TMBuilder.TheTriple != TheTriple) { if (!TMBuilder.TheTriple.isCompatibleWith(TheTriple)) report_fatal_error("ThinLTO modules with incompatible triples not " "supported"); initTMBuilder(TMBuilder, Triple(TMBuilder.TheTriple.merge(TheTriple))); } Modules.push_back(Buffer); } void ThinLTOCodeGenerator::preserveSymbol(StringRef Name) { PreservedSymbols.insert(Name); } void ThinLTOCodeGenerator::crossReferenceSymbol(StringRef Name) { // FIXME: At the moment, we don't take advantage of this extra information, // we're conservatively considering cross-references as preserved. // CrossReferencedSymbols.insert(Name); PreservedSymbols.insert(Name); } // TargetMachine factory std::unique_ptr<TargetMachine> TargetMachineBuilder::create() const { std::string ErrMsg; const Target *TheTarget = TargetRegistry::lookupTarget(TheTriple.str(), ErrMsg); if (!TheTarget) { report_fatal_error("Can't load target for this Triple: " + ErrMsg); } // Use MAttr as the default set of features. SubtargetFeatures Features(MAttr); Features.getDefaultSubtargetFeatures(TheTriple); std::string FeatureStr = Features.getString(); return std::unique_ptr<TargetMachine>( TheTarget->createTargetMachine(TheTriple.str(), MCpu, FeatureStr, Options, RelocModel, None, CGOptLevel)); } /** * Produce the combined summary index from all the bitcode files: * "thin-link". */ std::unique_ptr<ModuleSummaryIndex> ThinLTOCodeGenerator::linkCombinedIndex() { std::unique_ptr<ModuleSummaryIndex> CombinedIndex = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); uint64_t NextModuleId = 0; for (auto &ModuleBuffer : Modules) { if (Error Err = readModuleSummaryIndex(ModuleBuffer.getMemBuffer(), *CombinedIndex, NextModuleId++)) { // FIXME diagnose logAllUnhandledErrors( std::move(Err), errs(), "error: can't create module summary index for buffer: "); return nullptr; } } return CombinedIndex; } static void internalizeAndPromoteInIndex( const StringMap<FunctionImporter::ExportSetTy> &ExportLists, const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols, ModuleSummaryIndex &Index) { auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) { const auto &ExportList = ExportLists.find(ModuleIdentifier); return (ExportList != ExportLists.end() && ExportList->second.count(GUID)) || GUIDPreservedSymbols.count(GUID); }; thinLTOInternalizeAndPromoteInIndex(Index, isExported); } static void computeDeadSymbolsInIndex( ModuleSummaryIndex &Index, const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { // We have no symbols resolution available. And can't do any better now in the // case where the prevailing symbol is in a native object. It can be refined // with linker information in the future. auto isPrevailing = [&](GlobalValue::GUID G) { return PrevailingType::Unknown; }; computeDeadSymbols(Index, GUIDPreservedSymbols, isPrevailing); } /** * Perform promotion and renaming of exported internal functions. * Index is updated to reflect linkage changes from weak resolution. */ void ThinLTOCodeGenerator::promote(Module &TheModule, ModuleSummaryIndex &Index) { auto ModuleCount = Index.modulePaths().size(); auto ModuleIdentifier = TheModule.getModuleIdentifier(); // Collect for each module the list of function it defines (GUID -> Summary). StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries; Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); // Convert the preserved symbols set from string to GUID auto GUIDPreservedSymbols = computeGUIDPreservedSymbols( PreservedSymbols, Triple(TheModule.getTargetTriple())); // Compute "dead" symbols, we don't want to import/export these! computeDeadSymbolsInIndex(Index, GUIDPreservedSymbols); // Generate import/export list StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount); StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount); ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists, ExportLists); // Resolve LinkOnce/Weak symbols. StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; resolveWeakForLinkerInIndex(Index, ResolvedODR); thinLTOResolveWeakForLinkerModule( TheModule, ModuleToDefinedGVSummaries[ModuleIdentifier]); // Promote the exported values in the index, so that they are promoted // in the module. internalizeAndPromoteInIndex(ExportLists, GUIDPreservedSymbols, Index); promoteModule(TheModule, Index); } /** * Perform cross-module importing for the module identified by ModuleIdentifier. */ void ThinLTOCodeGenerator::crossModuleImport(Module &TheModule, ModuleSummaryIndex &Index) { auto ModuleMap = generateModuleMap(Modules); auto ModuleCount = Index.modulePaths().size(); // Collect for each module the list of function it defines (GUID -> Summary). StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount); Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); // Convert the preserved symbols set from string to GUID auto GUIDPreservedSymbols = computeGUIDPreservedSymbols( PreservedSymbols, Triple(TheModule.getTargetTriple())); // Compute "dead" symbols, we don't want to import/export these! computeDeadSymbolsInIndex(Index, GUIDPreservedSymbols); // Generate import/export list StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount); StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount); ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists, ExportLists); auto &ImportList = ImportLists[TheModule.getModuleIdentifier()]; crossImportIntoModule(TheModule, Index, ModuleMap, ImportList); } /** * Compute the list of summaries needed for importing into module. */ void ThinLTOCodeGenerator::gatherImportedSummariesForModule( StringRef ModulePath, ModuleSummaryIndex &Index, std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex) { auto ModuleCount = Index.modulePaths().size(); // Collect for each module the list of function it defines (GUID -> Summary). StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount); Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); // Generate import/export list StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount); StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount); ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists, ExportLists); llvm::gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, ImportLists[ModulePath], ModuleToSummariesForIndex); } /** * Emit the list of files needed for importing into module. */ void ThinLTOCodeGenerator::emitImports(StringRef ModulePath, StringRef OutputName, ModuleSummaryIndex &Index) { auto ModuleCount = Index.modulePaths().size(); // Collect for each module the list of function it defines (GUID -> Summary). StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount); Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); // Generate import/export list StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount); StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount); ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists, ExportLists); std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; llvm::gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, ImportLists[ModulePath], ModuleToSummariesForIndex); std::error_code EC; if ((EC = EmitImportsFiles(ModulePath, OutputName, ModuleToSummariesForIndex))) report_fatal_error(Twine("Failed to open ") + OutputName + " to save imports lists\n"); } /** * Perform internalization. Index is updated to reflect linkage changes. */ void ThinLTOCodeGenerator::internalize(Module &TheModule, ModuleSummaryIndex &Index) { initTMBuilder(TMBuilder, Triple(TheModule.getTargetTriple())); auto ModuleCount = Index.modulePaths().size(); auto ModuleIdentifier = TheModule.getModuleIdentifier(); // Convert the preserved symbols set from string to GUID auto GUIDPreservedSymbols = computeGUIDPreservedSymbols(PreservedSymbols, TMBuilder.TheTriple); // Collect for each module the list of function it defines (GUID -> Summary). StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount); Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); // Compute "dead" symbols, we don't want to import/export these! computeDeadSymbolsInIndex(Index, GUIDPreservedSymbols); // Generate import/export list StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount); StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount); ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists, ExportLists); auto &ExportList = ExportLists[ModuleIdentifier]; // Be friendly and don't nuke totally the module when the client didn't // supply anything to preserve. if (ExportList.empty() && GUIDPreservedSymbols.empty()) return; // Internalization internalizeAndPromoteInIndex(ExportLists, GUIDPreservedSymbols, Index); thinLTOInternalizeModule(TheModule, ModuleToDefinedGVSummaries[ModuleIdentifier]); } /** * Perform post-importing ThinLTO optimizations. */ void ThinLTOCodeGenerator::optimize(Module &TheModule) { initTMBuilder(TMBuilder, Triple(TheModule.getTargetTriple())); // Optimize now optimizeModule(TheModule, *TMBuilder.create(), OptLevel, Freestanding); } /** * Perform ThinLTO CodeGen. */ std::unique_ptr<MemoryBuffer> ThinLTOCodeGenerator::codegen(Module &TheModule) { initTMBuilder(TMBuilder, Triple(TheModule.getTargetTriple())); return codegenModule(TheModule, *TMBuilder.create()); } /// Write out the generated object file, either from CacheEntryPath or from /// OutputBuffer, preferring hard-link when possible. /// Returns the path to the generated file in SavedObjectsDirectoryPath. static std::string writeGeneratedObject(int count, StringRef CacheEntryPath, StringRef SavedObjectsDirectoryPath, const MemoryBuffer &OutputBuffer) { SmallString<128> OutputPath(SavedObjectsDirectoryPath); llvm::sys::path::append(OutputPath, Twine(count) + ".thinlto.o"); OutputPath.c_str(); // Ensure the string is null terminated. if (sys::fs::exists(OutputPath)) sys::fs::remove(OutputPath); // We don't return a memory buffer to the linker, just a list of files. if (!CacheEntryPath.empty()) { // Cache is enabled, hard-link the entry (or copy if hard-link fails). auto Err = sys::fs::create_hard_link(CacheEntryPath, OutputPath); if (!Err) return OutputPath.str(); // Hard linking failed, try to copy. Err = sys::fs::copy_file(CacheEntryPath, OutputPath); if (!Err) return OutputPath.str(); // Copy failed (could be because the CacheEntry was removed from the cache // in the meantime by another process), fall back and try to write down the // buffer to the output. errs() << "error: can't link or copy from cached entry '" << CacheEntryPath << "' to '" << OutputPath << "'\n"; } // No cache entry, just write out the buffer. std::error_code Err; raw_fd_ostream OS(OutputPath, Err, sys::fs::F_None); if (Err) report_fatal_error("Can't open output '" + OutputPath + "'\n"); OS << OutputBuffer.getBuffer(); return OutputPath.str(); } // Main entry point for the ThinLTO processing void ThinLTOCodeGenerator::run() { // Prepare the resulting object vector assert(ProducedBinaries.empty() && "The generator should not be reused"); if (SavedObjectsDirectoryPath.empty()) ProducedBinaries.resize(Modules.size()); else { sys::fs::create_directories(SavedObjectsDirectoryPath); bool IsDir; sys::fs::is_directory(SavedObjectsDirectoryPath, IsDir); if (!IsDir) report_fatal_error("Unexistent dir: '" + SavedObjectsDirectoryPath + "'"); ProducedBinaryFiles.resize(Modules.size()); } if (CodeGenOnly) { // Perform only parallel codegen and return. ThreadPool Pool; int count = 0; for (auto &ModuleBuffer : Modules) { Pool.async([&](int count) { LLVMContext Context; Context.setDiscardValueNames(LTODiscardValueNames); // Parse module now auto TheModule = loadModuleFromBuffer(ModuleBuffer.getMemBuffer(), Context, false, /*IsImporting*/ false); // CodeGen auto OutputBuffer = codegen(*TheModule); if (SavedObjectsDirectoryPath.empty()) ProducedBinaries[count] = std::move(OutputBuffer); else ProducedBinaryFiles[count] = writeGeneratedObject( count, "", SavedObjectsDirectoryPath, *OutputBuffer); }, count++); } return; } // Sequential linking phase auto Index = linkCombinedIndex(); // Save temps: index. if (!SaveTempsDir.empty()) { auto SaveTempPath = SaveTempsDir + "index.bc"; std::error_code EC; raw_fd_ostream OS(SaveTempPath, EC, sys::fs::F_None); if (EC) report_fatal_error(Twine("Failed to open ") + SaveTempPath + " to save optimized bitcode\n"); WriteIndexToFile(*Index, OS); } // Prepare the module map. auto ModuleMap = generateModuleMap(Modules); auto ModuleCount = Modules.size(); // Collect for each module the list of function it defines (GUID -> Summary). StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount); Index->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); // Convert the preserved symbols set from string to GUID, this is needed for // computing the caching hash and the internalization. auto GUIDPreservedSymbols = computeGUIDPreservedSymbols(PreservedSymbols, TMBuilder.TheTriple); // Compute "dead" symbols, we don't want to import/export these! computeDeadSymbolsInIndex(*Index, GUIDPreservedSymbols); // Collect the import/export lists for all modules from the call-graph in the // combined index. StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount); StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount); ComputeCrossModuleImport(*Index, ModuleToDefinedGVSummaries, ImportLists, ExportLists); // We use a std::map here to be able to have a defined ordering when // producing a hash for the cache entry. // FIXME: we should be able to compute the caching hash for the entry based // on the index, and nuke this map. StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; // Resolve LinkOnce/Weak symbols, this has to be computed early because it // impacts the caching. resolveWeakForLinkerInIndex(*Index, ResolvedODR); // Use global summary-based analysis to identify symbols that can be // internalized (because they aren't exported or preserved as per callback). // Changes are made in the index, consumed in the ThinLTO backends. internalizeAndPromoteInIndex(ExportLists, GUIDPreservedSymbols, *Index); // Make sure that every module has an entry in the ExportLists and // ResolvedODR maps to enable threaded access to these maps below. for (auto &DefinedGVSummaries : ModuleToDefinedGVSummaries) { ExportLists[DefinedGVSummaries.first()]; ResolvedODR[DefinedGVSummaries.first()]; } // Compute the ordering we will process the inputs: the rough heuristic here // is to sort them per size so that the largest module get schedule as soon as // possible. This is purely a compile-time optimization. std::vector<int> ModulesOrdering; ModulesOrdering.resize(Modules.size()); std::iota(ModulesOrdering.begin(), ModulesOrdering.end(), 0); llvm::sort(ModulesOrdering.begin(), ModulesOrdering.end(), [&](int LeftIndex, int RightIndex) { auto LSize = Modules[LeftIndex].getBuffer().size(); auto RSize = Modules[RightIndex].getBuffer().size(); return LSize > RSize; }); // Parallel optimizer + codegen { ThreadPool Pool(ThreadCount); for (auto IndexCount : ModulesOrdering) { auto &ModuleBuffer = Modules[IndexCount]; Pool.async([&](int count) { auto ModuleIdentifier = ModuleBuffer.getBufferIdentifier(); auto &ExportList = ExportLists[ModuleIdentifier]; auto &DefinedFunctions = ModuleToDefinedGVSummaries[ModuleIdentifier]; // The module may be cached, this helps handling it. ModuleCacheEntry CacheEntry(CacheOptions.Path, *Index, ModuleIdentifier, ImportLists[ModuleIdentifier], ExportList, ResolvedODR[ModuleIdentifier], DefinedFunctions, GUIDPreservedSymbols, OptLevel, Freestanding, TMBuilder); auto CacheEntryPath = CacheEntry.getEntryPath(); { auto ErrOrBuffer = CacheEntry.tryLoadingBuffer(); LLVM_DEBUG(dbgs() << "Cache " << (ErrOrBuffer ? "hit" : "miss") << " '" << CacheEntryPath << "' for buffer " << count << " " << ModuleIdentifier << "\n"); if (ErrOrBuffer) { // Cache Hit! if (SavedObjectsDirectoryPath.empty()) ProducedBinaries[count] = std::move(ErrOrBuffer.get()); else ProducedBinaryFiles[count] = writeGeneratedObject( count, CacheEntryPath, SavedObjectsDirectoryPath, *ErrOrBuffer.get()); return; } } LLVMContext Context; Context.setDiscardValueNames(LTODiscardValueNames); Context.enableDebugTypeODRUniquing(); auto DiagFileOrErr = lto::setupOptimizationRemarks( Context, LTORemarksFilename, LTOPassRemarksWithHotness, count); if (!DiagFileOrErr) { errs() << "Error: " << toString(DiagFileOrErr.takeError()) << "\n"; report_fatal_error("ThinLTO: Can't get an output file for the " "remarks"); } // Parse module now auto TheModule = loadModuleFromBuffer(ModuleBuffer.getMemBuffer(), Context, false, /*IsImporting*/ false); // Save temps: original file. saveTempBitcode(*TheModule, SaveTempsDir, count, ".0.original.bc"); auto &ImportList = ImportLists[ModuleIdentifier]; // Run the main process now, and generates a binary auto OutputBuffer = ProcessThinLTOModule( *TheModule, *Index, ModuleMap, *TMBuilder.create(), ImportList, ExportList, GUIDPreservedSymbols, ModuleToDefinedGVSummaries[ModuleIdentifier], CacheOptions, DisableCodeGen, SaveTempsDir, Freestanding, OptLevel, count); // Commit to the cache (if enabled) CacheEntry.write(*OutputBuffer); if (SavedObjectsDirectoryPath.empty()) { // We need to generated a memory buffer for the linker. if (!CacheEntryPath.empty()) { // When cache is enabled, reload from the cache if possible. // Releasing the buffer from the heap and reloading it from the // cache file with mmap helps us to lower memory pressure. // The freed memory can be used for the next input file. // The final binary link will read from the VFS cache (hopefully!) // or from disk (if the memory pressure was too high). auto ReloadedBufferOrErr = CacheEntry.tryLoadingBuffer(); if (auto EC = ReloadedBufferOrErr.getError()) { // On error, keep the preexisting buffer and print a diagnostic. errs() << "error: can't reload cached file '" << CacheEntryPath << "': " << EC.message() << "\n"; } else { OutputBuffer = std::move(*ReloadedBufferOrErr); } } ProducedBinaries[count] = std::move(OutputBuffer); return; } ProducedBinaryFiles[count] = writeGeneratedObject( count, CacheEntryPath, SavedObjectsDirectoryPath, *OutputBuffer); }, IndexCount); } } pruneCache(CacheOptions.Path, CacheOptions.Policy); // If statistics were requested, print them out now. if (llvm::AreStatisticsEnabled()) llvm::PrintStatistics(); reportAndResetTimings(); }