//===-- TargetParser - Parser for target features ---------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a target parser to recognise hardware features such as // FPU/CPU/ARCH names as well as specific support such as HDIV, etc. // //===----------------------------------------------------------------------===// #include "llvm/Support/ARMBuildAttributes.h" #include "llvm/Support/TargetParser.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" #include <cctype> using namespace llvm; using namespace ARM; using namespace AArch64; namespace { // List of canonical FPU names (use getFPUSynonym) and which architectural // features they correspond to (use getFPUFeatures). // FIXME: TableGen this. // The entries must appear in the order listed in ARM::FPUKind for correct indexing static const struct { const char *NameCStr; size_t NameLength; ARM::FPUKind ID; ARM::FPUVersion FPUVersion; ARM::NeonSupportLevel NeonSupport; ARM::FPURestriction Restriction; StringRef getName() const { return StringRef(NameCStr, NameLength); } } FPUNames[] = { #define ARM_FPU(NAME, KIND, VERSION, NEON_SUPPORT, RESTRICTION) \ { NAME, sizeof(NAME) - 1, KIND, VERSION, NEON_SUPPORT, RESTRICTION }, #include "llvm/Support/ARMTargetParser.def" }; // List of canonical arch names (use getArchSynonym). // This table also provides the build attribute fields for CPU arch // and Arch ID, according to the Addenda to the ARM ABI, chapters // 2.4 and 2.3.5.2 respectively. // FIXME: SubArch values were simplified to fit into the expectations // of the triples and are not conforming with their official names. // Check to see if the expectation should be changed. // FIXME: TableGen this. template <typename T> struct ArchNames { const char *NameCStr; size_t NameLength; const char *CPUAttrCStr; size_t CPUAttrLength; const char *SubArchCStr; size_t SubArchLength; unsigned DefaultFPU; unsigned ArchBaseExtensions; T ID; ARMBuildAttrs::CPUArch ArchAttr; // Arch ID in build attributes. StringRef getName() const { return StringRef(NameCStr, NameLength); } // CPU class in build attributes. StringRef getCPUAttr() const { return StringRef(CPUAttrCStr, CPUAttrLength); } // Sub-Arch name. StringRef getSubArch() const { return StringRef(SubArchCStr, SubArchLength); } }; ArchNames<ARM::ArchKind> ARCHNames[] = { #define ARM_ARCH(NAME, ID, CPU_ATTR, SUB_ARCH, ARCH_ATTR, ARCH_FPU, ARCH_BASE_EXT) \ {NAME, sizeof(NAME) - 1, CPU_ATTR, sizeof(CPU_ATTR) - 1, SUB_ARCH, \ sizeof(SUB_ARCH) - 1, ARCH_FPU, ARCH_BASE_EXT, ARM::ArchKind::ID, ARCH_ATTR}, #include "llvm/Support/ARMTargetParser.def" }; ArchNames<AArch64::ArchKind> AArch64ARCHNames[] = { #define AARCH64_ARCH(NAME, ID, CPU_ATTR, SUB_ARCH, ARCH_ATTR, ARCH_FPU, ARCH_BASE_EXT) \ {NAME, sizeof(NAME) - 1, CPU_ATTR, sizeof(CPU_ATTR) - 1, SUB_ARCH, \ sizeof(SUB_ARCH) - 1, ARCH_FPU, ARCH_BASE_EXT, AArch64::ArchKind::ID, ARCH_ATTR}, #include "llvm/Support/AArch64TargetParser.def" }; // List of Arch Extension names. // FIXME: TableGen this. static const struct { const char *NameCStr; size_t NameLength; unsigned ID; const char *Feature; const char *NegFeature; StringRef getName() const { return StringRef(NameCStr, NameLength); } } ARCHExtNames[] = { #define ARM_ARCH_EXT_NAME(NAME, ID, FEATURE, NEGFEATURE) \ { NAME, sizeof(NAME) - 1, ID, FEATURE, NEGFEATURE }, #include "llvm/Support/ARMTargetParser.def" },AArch64ARCHExtNames[] = { #define AARCH64_ARCH_EXT_NAME(NAME, ID, FEATURE, NEGFEATURE) \ { NAME, sizeof(NAME) - 1, ID, FEATURE, NEGFEATURE }, #include "llvm/Support/AArch64TargetParser.def" }; // List of HWDiv names (use getHWDivSynonym) and which architectural // features they correspond to (use getHWDivFeatures). // FIXME: TableGen this. static const struct { const char *NameCStr; size_t NameLength; unsigned ID; StringRef getName() const { return StringRef(NameCStr, NameLength); } } HWDivNames[] = { #define ARM_HW_DIV_NAME(NAME, ID) { NAME, sizeof(NAME) - 1, ID }, #include "llvm/Support/ARMTargetParser.def" }; // List of CPU names and their arches. // The same CPU can have multiple arches and can be default on multiple arches. // When finding the Arch for a CPU, first-found prevails. Sort them accordingly. // When this becomes table-generated, we'd probably need two tables. // FIXME: TableGen this. template <typename T> struct CpuNames { const char *NameCStr; size_t NameLength; T ArchID; bool Default; // is $Name the default CPU for $ArchID ? unsigned DefaultExtensions; StringRef getName() const { return StringRef(NameCStr, NameLength); } }; CpuNames<ARM::ArchKind> CPUNames[] = { #define ARM_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \ { NAME, sizeof(NAME) - 1, ARM::ArchKind::ID, IS_DEFAULT, DEFAULT_EXT }, #include "llvm/Support/ARMTargetParser.def" }; CpuNames<AArch64::ArchKind> AArch64CPUNames[] = { #define AARCH64_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \ { NAME, sizeof(NAME) - 1, AArch64::ArchKind::ID, IS_DEFAULT, DEFAULT_EXT }, #include "llvm/Support/AArch64TargetParser.def" }; } // namespace // ======================================================= // // Information by ID // ======================================================= // StringRef ARM::getFPUName(unsigned FPUKind) { if (FPUKind >= ARM::FK_LAST) return StringRef(); return FPUNames[FPUKind].getName(); } FPUVersion ARM::getFPUVersion(unsigned FPUKind) { if (FPUKind >= ARM::FK_LAST) return FPUVersion::NONE; return FPUNames[FPUKind].FPUVersion; } ARM::NeonSupportLevel ARM::getFPUNeonSupportLevel(unsigned FPUKind) { if (FPUKind >= ARM::FK_LAST) return ARM::NeonSupportLevel::None; return FPUNames[FPUKind].NeonSupport; } ARM::FPURestriction ARM::getFPURestriction(unsigned FPUKind) { if (FPUKind >= ARM::FK_LAST) return ARM::FPURestriction::None; return FPUNames[FPUKind].Restriction; } unsigned llvm::ARM::getDefaultFPU(StringRef CPU, ArchKind AK) { if (CPU == "generic") return ARCHNames[static_cast<unsigned>(AK)].DefaultFPU; return StringSwitch<unsigned>(CPU) #define ARM_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \ .Case(NAME, DEFAULT_FPU) #include "llvm/Support/ARMTargetParser.def" .Default(ARM::FK_INVALID); } unsigned llvm::ARM::getDefaultExtensions(StringRef CPU, ArchKind AK) { if (CPU == "generic") return ARCHNames[static_cast<unsigned>(AK)].ArchBaseExtensions; return StringSwitch<unsigned>(CPU) #define ARM_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \ .Case(NAME, ARCHNames[static_cast<unsigned>(ARM::ArchKind::ID)]\ .ArchBaseExtensions | DEFAULT_EXT) #include "llvm/Support/ARMTargetParser.def" .Default(ARM::AEK_INVALID); } bool llvm::ARM::getHWDivFeatures(unsigned HWDivKind, std::vector<StringRef> &Features) { if (HWDivKind == ARM::AEK_INVALID) return false; if (HWDivKind & ARM::AEK_HWDIVARM) Features.push_back("+hwdiv-arm"); else Features.push_back("-hwdiv-arm"); if (HWDivKind & ARM::AEK_HWDIVTHUMB) Features.push_back("+hwdiv"); else Features.push_back("-hwdiv"); return true; } bool llvm::ARM::getExtensionFeatures(unsigned Extensions, std::vector<StringRef> &Features) { if (Extensions == ARM::AEK_INVALID) return false; if (Extensions & ARM::AEK_CRC) Features.push_back("+crc"); else Features.push_back("-crc"); if (Extensions & ARM::AEK_DSP) Features.push_back("+dsp"); else Features.push_back("-dsp"); if (Extensions & ARM::AEK_RAS) Features.push_back("+ras"); else Features.push_back("-ras"); if (Extensions & ARM::AEK_DOTPROD) Features.push_back("+dotprod"); else Features.push_back("-dotprod"); return getHWDivFeatures(Extensions, Features); } bool llvm::ARM::getFPUFeatures(unsigned FPUKind, std::vector<StringRef> &Features) { if (FPUKind >= ARM::FK_LAST || FPUKind == ARM::FK_INVALID) return false; // fp-only-sp and d16 subtarget features are independent of each other, so we // must enable/disable both. switch (FPUNames[FPUKind].Restriction) { case ARM::FPURestriction::SP_D16: Features.push_back("+fp-only-sp"); Features.push_back("+d16"); break; case ARM::FPURestriction::D16: Features.push_back("-fp-only-sp"); Features.push_back("+d16"); break; case ARM::FPURestriction::None: Features.push_back("-fp-only-sp"); Features.push_back("-d16"); break; } // FPU version subtarget features are inclusive of lower-numbered ones, so // enable the one corresponding to this version and disable all that are // higher. We also have to make sure to disable fp16 when vfp4 is disabled, // as +vfp4 implies +fp16 but -vfp4 does not imply -fp16. switch (FPUNames[FPUKind].FPUVersion) { case ARM::FPUVersion::VFPV5: Features.push_back("+fp-armv8"); break; case ARM::FPUVersion::VFPV4: Features.push_back("+vfp4"); Features.push_back("-fp-armv8"); break; case ARM::FPUVersion::VFPV3_FP16: Features.push_back("+vfp3"); Features.push_back("+fp16"); Features.push_back("-vfp4"); Features.push_back("-fp-armv8"); break; case ARM::FPUVersion::VFPV3: Features.push_back("+vfp3"); Features.push_back("-fp16"); Features.push_back("-vfp4"); Features.push_back("-fp-armv8"); break; case ARM::FPUVersion::VFPV2: Features.push_back("+vfp2"); Features.push_back("-vfp3"); Features.push_back("-fp16"); Features.push_back("-vfp4"); Features.push_back("-fp-armv8"); break; case ARM::FPUVersion::NONE: Features.push_back("-vfp2"); Features.push_back("-vfp3"); Features.push_back("-fp16"); Features.push_back("-vfp4"); Features.push_back("-fp-armv8"); break; } // crypto includes neon, so we handle this similarly to FPU version. switch (FPUNames[FPUKind].NeonSupport) { case ARM::NeonSupportLevel::Crypto: Features.push_back("+neon"); Features.push_back("+crypto"); break; case ARM::NeonSupportLevel::Neon: Features.push_back("+neon"); Features.push_back("-crypto"); break; case ARM::NeonSupportLevel::None: Features.push_back("-neon"); Features.push_back("-crypto"); break; } return true; } StringRef llvm::ARM::getArchName(ArchKind AK) { return ARCHNames[static_cast<unsigned>(AK)].getName(); } StringRef llvm::ARM::getCPUAttr(ArchKind AK) { return ARCHNames[static_cast<unsigned>(AK)].getCPUAttr(); } StringRef llvm::ARM::getSubArch(ArchKind AK) { return ARCHNames[static_cast<unsigned>(AK)].getSubArch(); } unsigned llvm::ARM::getArchAttr(ArchKind AK) { return ARCHNames[static_cast<unsigned>(AK)].ArchAttr; } StringRef llvm::ARM::getArchExtName(unsigned ArchExtKind) { for (const auto AE : ARCHExtNames) { if (ArchExtKind == AE.ID) return AE.getName(); } return StringRef(); } StringRef llvm::ARM::getArchExtFeature(StringRef ArchExt) { if (ArchExt.startswith("no")) { StringRef ArchExtBase(ArchExt.substr(2)); for (const auto AE : ARCHExtNames) { if (AE.NegFeature && ArchExtBase == AE.getName()) return StringRef(AE.NegFeature); } } for (const auto AE : ARCHExtNames) { if (AE.Feature && ArchExt == AE.getName()) return StringRef(AE.Feature); } return StringRef(); } StringRef llvm::ARM::getHWDivName(unsigned HWDivKind) { for (const auto D : HWDivNames) { if (HWDivKind == D.ID) return D.getName(); } return StringRef(); } StringRef llvm::ARM::getDefaultCPU(StringRef Arch) { ArchKind AK = parseArch(Arch); if (AK == ARM::ArchKind::INVALID) return StringRef(); // Look for multiple AKs to find the default for pair AK+Name. for (const auto CPU : CPUNames) { if (CPU.ArchID == AK && CPU.Default) return CPU.getName(); } // If we can't find a default then target the architecture instead return "generic"; } StringRef llvm::AArch64::getFPUName(unsigned FPUKind) { return ARM::getFPUName(FPUKind); } ARM::FPUVersion AArch64::getFPUVersion(unsigned FPUKind) { return ARM::getFPUVersion(FPUKind); } ARM::NeonSupportLevel AArch64::getFPUNeonSupportLevel(unsigned FPUKind) { return ARM::getFPUNeonSupportLevel( FPUKind); } ARM::FPURestriction AArch64::getFPURestriction(unsigned FPUKind) { return ARM::getFPURestriction(FPUKind); } unsigned llvm::AArch64::getDefaultFPU(StringRef CPU, ArchKind AK) { if (CPU == "generic") return AArch64ARCHNames[static_cast<unsigned>(AK)].DefaultFPU; return StringSwitch<unsigned>(CPU) #define AARCH64_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \ .Case(NAME, DEFAULT_FPU) #include "llvm/Support/AArch64TargetParser.def" .Default(ARM::FK_INVALID); } unsigned llvm::AArch64::getDefaultExtensions(StringRef CPU, ArchKind AK) { if (CPU == "generic") return AArch64ARCHNames[static_cast<unsigned>(AK)].ArchBaseExtensions; return StringSwitch<unsigned>(CPU) #define AARCH64_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \ .Case(NAME, \ AArch64ARCHNames[static_cast<unsigned>(AArch64::ArchKind::ID)] \ .ArchBaseExtensions | \ DEFAULT_EXT) #include "llvm/Support/AArch64TargetParser.def" .Default(AArch64::AEK_INVALID); } AArch64::ArchKind llvm::AArch64::getCPUArchKind(StringRef CPU) { if (CPU == "generic") return AArch64::ArchKind::ARMV8A; return StringSwitch<AArch64::ArchKind>(CPU) #define AARCH64_CPU_NAME(NAME, ID, DEFAULT_FPU, IS_DEFAULT, DEFAULT_EXT) \ .Case(NAME, AArch64::ArchKind:: ID) #include "llvm/Support/AArch64TargetParser.def" .Default(AArch64::ArchKind::INVALID); } bool llvm::AArch64::getExtensionFeatures(unsigned Extensions, std::vector<StringRef> &Features) { if (Extensions == AArch64::AEK_INVALID) return false; if (Extensions & AArch64::AEK_FP) Features.push_back("+fp-armv8"); if (Extensions & AArch64::AEK_SIMD) Features.push_back("+neon"); if (Extensions & AArch64::AEK_CRC) Features.push_back("+crc"); if (Extensions & AArch64::AEK_CRYPTO) Features.push_back("+crypto"); if (Extensions & AArch64::AEK_DOTPROD) Features.push_back("+dotprod"); if (Extensions & AArch64::AEK_FP16) Features.push_back("+fullfp16"); if (Extensions & AArch64::AEK_PROFILE) Features.push_back("+spe"); if (Extensions & AArch64::AEK_RAS) Features.push_back("+ras"); if (Extensions & AArch64::AEK_LSE) Features.push_back("+lse"); if (Extensions & AArch64::AEK_RDM) Features.push_back("+rdm"); if (Extensions & AArch64::AEK_SVE) Features.push_back("+sve"); if (Extensions & AArch64::AEK_RCPC) Features.push_back("+rcpc"); return true; } bool llvm::AArch64::getFPUFeatures(unsigned FPUKind, std::vector<StringRef> &Features) { return ARM::getFPUFeatures(FPUKind, Features); } bool llvm::AArch64::getArchFeatures(AArch64::ArchKind AK, std::vector<StringRef> &Features) { if (AK == AArch64::ArchKind::ARMV8_1A) Features.push_back("+v8.1a"); if (AK == AArch64::ArchKind::ARMV8_2A) Features.push_back("+v8.2a"); if (AK == AArch64::ArchKind::ARMV8_3A) Features.push_back("+v8.3a"); if (AK == AArch64::ArchKind::ARMV8_4A) Features.push_back("+v8.4a"); return AK != AArch64::ArchKind::INVALID; } StringRef llvm::AArch64::getArchName(ArchKind AK) { return AArch64ARCHNames[static_cast<unsigned>(AK)].getName(); } StringRef llvm::AArch64::getCPUAttr(ArchKind AK) { return AArch64ARCHNames[static_cast<unsigned>(AK)].getCPUAttr(); } StringRef llvm::AArch64::getSubArch(ArchKind AK) { return AArch64ARCHNames[static_cast<unsigned>(AK)].getSubArch(); } unsigned llvm::AArch64::getArchAttr(ArchKind AK) { return AArch64ARCHNames[static_cast<unsigned>(AK)].ArchAttr; } StringRef llvm::AArch64::getArchExtName(unsigned ArchExtKind) { for (const auto &AE : AArch64ARCHExtNames) if (ArchExtKind == AE.ID) return AE.getName(); return StringRef(); } StringRef llvm::AArch64::getArchExtFeature(StringRef ArchExt) { if (ArchExt.startswith("no")) { StringRef ArchExtBase(ArchExt.substr(2)); for (const auto &AE : AArch64ARCHExtNames) { if (AE.NegFeature && ArchExtBase == AE.getName()) return StringRef(AE.NegFeature); } } for (const auto &AE : AArch64ARCHExtNames) if (AE.Feature && ArchExt == AE.getName()) return StringRef(AE.Feature); return StringRef(); } StringRef llvm::AArch64::getDefaultCPU(StringRef Arch) { AArch64::ArchKind AK = parseArch(Arch); if (AK == ArchKind::INVALID) return StringRef(); // Look for multiple AKs to find the default for pair AK+Name. for (const auto &CPU : AArch64CPUNames) if (CPU.ArchID == AK && CPU.Default) return CPU.getName(); // If we can't find a default then target the architecture instead return "generic"; } unsigned llvm::AArch64::checkArchVersion(StringRef Arch) { if (Arch.size() >= 2 && Arch[0] == 'v' && std::isdigit(Arch[1])) return (Arch[1] - 48); return 0; } // ======================================================= // // Parsers // ======================================================= // static StringRef getHWDivSynonym(StringRef HWDiv) { return StringSwitch<StringRef>(HWDiv) .Case("thumb,arm", "arm,thumb") .Default(HWDiv); } static StringRef getFPUSynonym(StringRef FPU) { return StringSwitch<StringRef>(FPU) .Cases("fpa", "fpe2", "fpe3", "maverick", "invalid") // Unsupported .Case("vfp2", "vfpv2") .Case("vfp3", "vfpv3") .Case("vfp4", "vfpv4") .Case("vfp3-d16", "vfpv3-d16") .Case("vfp4-d16", "vfpv4-d16") .Cases("fp4-sp-d16", "vfpv4-sp-d16", "fpv4-sp-d16") .Cases("fp4-dp-d16", "fpv4-dp-d16", "vfpv4-d16") .Case("fp5-sp-d16", "fpv5-sp-d16") .Cases("fp5-dp-d16", "fpv5-dp-d16", "fpv5-d16") // FIXME: Clang uses it, but it's bogus, since neon defaults to vfpv3. .Case("neon-vfpv3", "neon") .Default(FPU); } static StringRef getArchSynonym(StringRef Arch) { return StringSwitch<StringRef>(Arch) .Case("v5", "v5t") .Case("v5e", "v5te") .Case("v6j", "v6") .Case("v6hl", "v6k") .Cases("v6m", "v6sm", "v6s-m", "v6-m") .Cases("v6z", "v6zk", "v6kz") .Cases("v7", "v7a", "v7hl", "v7l", "v7-a") .Case("v7r", "v7-r") .Case("v7m", "v7-m") .Case("v7em", "v7e-m") .Cases("v8", "v8a", "v8l", "aarch64", "arm64", "v8-a") .Case("v8.1a", "v8.1-a") .Case("v8.2a", "v8.2-a") .Case("v8.3a", "v8.3-a") .Case("v8.4a", "v8.4-a") .Case("v8r", "v8-r") .Case("v8m.base", "v8-m.base") .Case("v8m.main", "v8-m.main") .Default(Arch); } // MArch is expected to be of the form (arm|thumb)?(eb)?(v.+)?(eb)?, but // (iwmmxt|xscale)(eb)? is also permitted. If the former, return // "v.+", if the latter, return unmodified string, minus 'eb'. // If invalid, return empty string. StringRef llvm::ARM::getCanonicalArchName(StringRef Arch) { size_t offset = StringRef::npos; StringRef A = Arch; StringRef Error = ""; // Begins with "arm" / "thumb", move past it. if (A.startswith("arm64")) offset = 5; else if (A.startswith("arm")) offset = 3; else if (A.startswith("thumb")) offset = 5; else if (A.startswith("aarch64")) { offset = 7; // AArch64 uses "_be", not "eb" suffix. if (A.find("eb") != StringRef::npos) return Error; if (A.substr(offset, 3) == "_be") offset += 3; } // Ex. "armebv7", move past the "eb". if (offset != StringRef::npos && A.substr(offset, 2) == "eb") offset += 2; // Or, if it ends with eb ("armv7eb"), chop it off. else if (A.endswith("eb")) A = A.substr(0, A.size() - 2); // Trim the head if (offset != StringRef::npos) A = A.substr(offset); // Empty string means offset reached the end, which means it's valid. if (A.empty()) return Arch; // Only match non-marketing names if (offset != StringRef::npos) { // Must start with 'vN'. if (A.size() >= 2 && (A[0] != 'v' || !std::isdigit(A[1]))) return Error; // Can't have an extra 'eb'. if (A.find("eb") != StringRef::npos) return Error; } // Arch will either be a 'v' name (v7a) or a marketing name (xscale). return A; } unsigned llvm::ARM::parseHWDiv(StringRef HWDiv) { StringRef Syn = getHWDivSynonym(HWDiv); for (const auto D : HWDivNames) { if (Syn == D.getName()) return D.ID; } return ARM::AEK_INVALID; } unsigned llvm::ARM::parseFPU(StringRef FPU) { StringRef Syn = getFPUSynonym(FPU); for (const auto F : FPUNames) { if (Syn == F.getName()) return F.ID; } return ARM::FK_INVALID; } // Allows partial match, ex. "v7a" matches "armv7a". ARM::ArchKind ARM::parseArch(StringRef Arch) { Arch = getCanonicalArchName(Arch); StringRef Syn = getArchSynonym(Arch); for (const auto A : ARCHNames) { if (A.getName().endswith(Syn)) return A.ID; } return ARM::ArchKind::INVALID; } unsigned llvm::ARM::parseArchExt(StringRef ArchExt) { for (const auto A : ARCHExtNames) { if (ArchExt == A.getName()) return A.ID; } return ARM::AEK_INVALID; } ARM::ArchKind llvm::ARM::parseCPUArch(StringRef CPU) { for (const auto C : CPUNames) { if (CPU == C.getName()) return C.ArchID; } return ARM::ArchKind::INVALID; } void llvm::ARM::fillValidCPUArchList(SmallVectorImpl<StringRef> &Values) { for (const CpuNames<ARM::ArchKind> &Arch : CPUNames) { if (Arch.ArchID != ARM::ArchKind::INVALID) Values.push_back(Arch.getName()); } } void llvm::AArch64::fillValidCPUArchList(SmallVectorImpl<StringRef> &Values) { for (const CpuNames<AArch64::ArchKind> &Arch : AArch64CPUNames) { if (Arch.ArchID != AArch64::ArchKind::INVALID) Values.push_back(Arch.getName()); } } // ARM, Thumb, AArch64 ARM::ISAKind ARM::parseArchISA(StringRef Arch) { return StringSwitch<ARM::ISAKind>(Arch) .StartsWith("aarch64", ARM::ISAKind::AARCH64) .StartsWith("arm64", ARM::ISAKind::AARCH64) .StartsWith("thumb", ARM::ISAKind::THUMB) .StartsWith("arm", ARM::ISAKind::ARM) .Default(ARM::ISAKind::INVALID); } // Little/Big endian ARM::EndianKind ARM::parseArchEndian(StringRef Arch) { if (Arch.startswith("armeb") || Arch.startswith("thumbeb") || Arch.startswith("aarch64_be")) return ARM::EndianKind::BIG; if (Arch.startswith("arm") || Arch.startswith("thumb")) { if (Arch.endswith("eb")) return ARM::EndianKind::BIG; else return ARM::EndianKind::LITTLE; } if (Arch.startswith("aarch64")) return ARM::EndianKind::LITTLE; return ARM::EndianKind::INVALID; } // Profile A/R/M ARM::ProfileKind ARM::parseArchProfile(StringRef Arch) { Arch = getCanonicalArchName(Arch); switch (parseArch(Arch)) { case ARM::ArchKind::ARMV6M: case ARM::ArchKind::ARMV7M: case ARM::ArchKind::ARMV7EM: case ARM::ArchKind::ARMV8MMainline: case ARM::ArchKind::ARMV8MBaseline: return ARM::ProfileKind::M; case ARM::ArchKind::ARMV7R: case ARM::ArchKind::ARMV8R: return ARM::ProfileKind::R; case ARM::ArchKind::ARMV7A: case ARM::ArchKind::ARMV7VE: case ARM::ArchKind::ARMV7K: case ARM::ArchKind::ARMV8A: case ARM::ArchKind::ARMV8_1A: case ARM::ArchKind::ARMV8_2A: case ARM::ArchKind::ARMV8_3A: case ARM::ArchKind::ARMV8_4A: return ARM::ProfileKind::A; case ARM::ArchKind::ARMV2: case ARM::ArchKind::ARMV2A: case ARM::ArchKind::ARMV3: case ARM::ArchKind::ARMV3M: case ARM::ArchKind::ARMV4: case ARM::ArchKind::ARMV4T: case ARM::ArchKind::ARMV5T: case ARM::ArchKind::ARMV5TE: case ARM::ArchKind::ARMV5TEJ: case ARM::ArchKind::ARMV6: case ARM::ArchKind::ARMV6K: case ARM::ArchKind::ARMV6T2: case ARM::ArchKind::ARMV6KZ: case ARM::ArchKind::ARMV7S: case ARM::ArchKind::IWMMXT: case ARM::ArchKind::IWMMXT2: case ARM::ArchKind::XSCALE: case ARM::ArchKind::INVALID: return ARM::ProfileKind::INVALID; } llvm_unreachable("Unhandled architecture"); } // Version number (ex. v7 = 7). unsigned llvm::ARM::parseArchVersion(StringRef Arch) { Arch = getCanonicalArchName(Arch); switch (parseArch(Arch)) { case ARM::ArchKind::ARMV2: case ARM::ArchKind::ARMV2A: return 2; case ARM::ArchKind::ARMV3: case ARM::ArchKind::ARMV3M: return 3; case ARM::ArchKind::ARMV4: case ARM::ArchKind::ARMV4T: return 4; case ARM::ArchKind::ARMV5T: case ARM::ArchKind::ARMV5TE: case ARM::ArchKind::IWMMXT: case ARM::ArchKind::IWMMXT2: case ARM::ArchKind::XSCALE: case ARM::ArchKind::ARMV5TEJ: return 5; case ARM::ArchKind::ARMV6: case ARM::ArchKind::ARMV6K: case ARM::ArchKind::ARMV6T2: case ARM::ArchKind::ARMV6KZ: case ARM::ArchKind::ARMV6M: return 6; case ARM::ArchKind::ARMV7A: case ARM::ArchKind::ARMV7VE: case ARM::ArchKind::ARMV7R: case ARM::ArchKind::ARMV7M: case ARM::ArchKind::ARMV7S: case ARM::ArchKind::ARMV7EM: case ARM::ArchKind::ARMV7K: return 7; case ARM::ArchKind::ARMV8A: case ARM::ArchKind::ARMV8_1A: case ARM::ArchKind::ARMV8_2A: case ARM::ArchKind::ARMV8_3A: case ARM::ArchKind::ARMV8_4A: case ARM::ArchKind::ARMV8R: case ARM::ArchKind::ARMV8MBaseline: case ARM::ArchKind::ARMV8MMainline: return 8; case ARM::ArchKind::INVALID: return 0; } llvm_unreachable("Unhandled architecture"); } StringRef llvm::ARM::computeDefaultTargetABI(const Triple &TT, StringRef CPU) { StringRef ArchName = CPU.empty() ? TT.getArchName() : ARM::getArchName(ARM::parseCPUArch(CPU)); if (TT.isOSBinFormatMachO()) { if (TT.getEnvironment() == Triple::EABI || TT.getOS() == Triple::UnknownOS || llvm::ARM::parseArchProfile(ArchName) == ARM::ProfileKind::M) return "aapcs"; if (TT.isWatchABI()) return "aapcs16"; return "apcs-gnu"; } else if (TT.isOSWindows()) // FIXME: this is invalid for WindowsCE. return "aapcs"; // Select the default based on the platform. switch (TT.getEnvironment()) { case Triple::Android: case Triple::GNUEABI: case Triple::GNUEABIHF: case Triple::MuslEABI: case Triple::MuslEABIHF: return "aapcs-linux"; case Triple::EABIHF: case Triple::EABI: return "aapcs"; default: if (TT.isOSNetBSD()) return "apcs-gnu"; if (TT.isOSOpenBSD()) return "aapcs-linux"; return "aapcs"; } } StringRef llvm::AArch64::getCanonicalArchName(StringRef Arch) { return ARM::getCanonicalArchName(Arch); } unsigned llvm::AArch64::parseFPU(StringRef FPU) { return ARM::parseFPU(FPU); } // Allows partial match, ex. "v8a" matches "armv8a". AArch64::ArchKind AArch64::parseArch(StringRef Arch) { Arch = getCanonicalArchName(Arch); if (checkArchVersion(Arch) < 8) return ArchKind::INVALID; StringRef Syn = getArchSynonym(Arch); for (const auto A : AArch64ARCHNames) { if (A.getName().endswith(Syn)) return A.ID; } return ArchKind::INVALID; } AArch64::ArchExtKind llvm::AArch64::parseArchExt(StringRef ArchExt) { for (const auto A : AArch64ARCHExtNames) { if (ArchExt == A.getName()) return static_cast<ArchExtKind>(A.ID); } return AArch64::AEK_INVALID; } AArch64::ArchKind llvm::AArch64::parseCPUArch(StringRef CPU) { for (const auto C : AArch64CPUNames) { if (CPU == C.getName()) return C.ArchID; } return ArchKind::INVALID; } // ARM, Thumb, AArch64 ARM::ISAKind AArch64::parseArchISA(StringRef Arch) { return ARM::parseArchISA(Arch); } // Little/Big endian ARM::EndianKind AArch64::parseArchEndian(StringRef Arch) { return ARM::parseArchEndian(Arch); } // Profile A/R/M ARM::ProfileKind AArch64::parseArchProfile(StringRef Arch) { return ARM::parseArchProfile(Arch); } // Version number (ex. v8 = 8). unsigned llvm::AArch64::parseArchVersion(StringRef Arch) { return ARM::parseArchVersion(Arch); } bool llvm::AArch64::isX18ReservedByDefault(const Triple &TT) { return TT.isOSDarwin() || TT.isOSFuchsia() || TT.isOSWindows(); }