//===- SetTheory.cpp - Generate ordered sets from DAG expressions ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SetTheory class that computes ordered sets of // Records from DAG expressions. // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Format.h" #include "llvm/Support/SMLoc.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/SetTheory.h" #include <algorithm> #include <cstdint> #include <string> #include <utility> using namespace llvm; // Define the standard operators. namespace { using RecSet = SetTheory::RecSet; using RecVec = SetTheory::RecVec; // (add a, b, ...) Evaluate and union all arguments. struct AddOp : public SetTheory::Operator { void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts, ArrayRef<SMLoc> Loc) override { ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); } }; // (sub Add, Sub, ...) Set difference. struct SubOp : public SetTheory::Operator { void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts, ArrayRef<SMLoc> Loc) override { if (Expr->arg_size() < 2) PrintFatalError(Loc, "Set difference needs at least two arguments: " + Expr->getAsString()); RecSet Add, Sub; ST.evaluate(*Expr->arg_begin(), Add, Loc); ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Sub, Loc); for (RecSet::iterator I = Add.begin(), E = Add.end(); I != E; ++I) if (!Sub.count(*I)) Elts.insert(*I); } }; // (and S1, S2) Set intersection. struct AndOp : public SetTheory::Operator { void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts, ArrayRef<SMLoc> Loc) override { if (Expr->arg_size() != 2) PrintFatalError(Loc, "Set intersection requires two arguments: " + Expr->getAsString()); RecSet S1, S2; ST.evaluate(Expr->arg_begin()[0], S1, Loc); ST.evaluate(Expr->arg_begin()[1], S2, Loc); for (RecSet::iterator I = S1.begin(), E = S1.end(); I != E; ++I) if (S2.count(*I)) Elts.insert(*I); } }; // SetIntBinOp - Abstract base class for (Op S, N) operators. struct SetIntBinOp : public SetTheory::Operator { virtual void apply2(SetTheory &ST, DagInit *Expr, RecSet &Set, int64_t N, RecSet &Elts, ArrayRef<SMLoc> Loc) = 0; void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts, ArrayRef<SMLoc> Loc) override { if (Expr->arg_size() != 2) PrintFatalError(Loc, "Operator requires (Op Set, Int) arguments: " + Expr->getAsString()); RecSet Set; ST.evaluate(Expr->arg_begin()[0], Set, Loc); IntInit *II = dyn_cast<IntInit>(Expr->arg_begin()[1]); if (!II) PrintFatalError(Loc, "Second argument must be an integer: " + Expr->getAsString()); apply2(ST, Expr, Set, II->getValue(), Elts, Loc); } }; // (shl S, N) Shift left, remove the first N elements. struct ShlOp : public SetIntBinOp { void apply2(SetTheory &ST, DagInit *Expr, RecSet &Set, int64_t N, RecSet &Elts, ArrayRef<SMLoc> Loc) override { if (N < 0) PrintFatalError(Loc, "Positive shift required: " + Expr->getAsString()); if (unsigned(N) < Set.size()) Elts.insert(Set.begin() + N, Set.end()); } }; // (trunc S, N) Truncate after the first N elements. struct TruncOp : public SetIntBinOp { void apply2(SetTheory &ST, DagInit *Expr, RecSet &Set, int64_t N, RecSet &Elts, ArrayRef<SMLoc> Loc) override { if (N < 0) PrintFatalError(Loc, "Positive length required: " + Expr->getAsString()); if (unsigned(N) > Set.size()) N = Set.size(); Elts.insert(Set.begin(), Set.begin() + N); } }; // Left/right rotation. struct RotOp : public SetIntBinOp { const bool Reverse; RotOp(bool Rev) : Reverse(Rev) {} void apply2(SetTheory &ST, DagInit *Expr, RecSet &Set, int64_t N, RecSet &Elts, ArrayRef<SMLoc> Loc) override { if (Reverse) N = -N; // N > 0 -> rotate left, N < 0 -> rotate right. if (Set.empty()) return; if (N < 0) N = Set.size() - (-N % Set.size()); else N %= Set.size(); Elts.insert(Set.begin() + N, Set.end()); Elts.insert(Set.begin(), Set.begin() + N); } }; // (decimate S, N) Pick every N'th element of S. struct DecimateOp : public SetIntBinOp { void apply2(SetTheory &ST, DagInit *Expr, RecSet &Set, int64_t N, RecSet &Elts, ArrayRef<SMLoc> Loc) override { if (N <= 0) PrintFatalError(Loc, "Positive stride required: " + Expr->getAsString()); for (unsigned I = 0; I < Set.size(); I += N) Elts.insert(Set[I]); } }; // (interleave S1, S2, ...) Interleave elements of the arguments. struct InterleaveOp : public SetTheory::Operator { void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts, ArrayRef<SMLoc> Loc) override { // Evaluate the arguments individually. SmallVector<RecSet, 4> Args(Expr->getNumArgs()); unsigned MaxSize = 0; for (unsigned i = 0, e = Expr->getNumArgs(); i != e; ++i) { ST.evaluate(Expr->getArg(i), Args[i], Loc); MaxSize = std::max(MaxSize, unsigned(Args[i].size())); } // Interleave arguments into Elts. for (unsigned n = 0; n != MaxSize; ++n) for (unsigned i = 0, e = Expr->getNumArgs(); i != e; ++i) if (n < Args[i].size()) Elts.insert(Args[i][n]); } }; // (sequence "Format", From, To) Generate a sequence of records by name. struct SequenceOp : public SetTheory::Operator { void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts, ArrayRef<SMLoc> Loc) override { int Step = 1; if (Expr->arg_size() > 4) PrintFatalError(Loc, "Bad args to (sequence \"Format\", From, To): " + Expr->getAsString()); else if (Expr->arg_size() == 4) { if (IntInit *II = dyn_cast<IntInit>(Expr->arg_begin()[3])) { Step = II->getValue(); } else PrintFatalError(Loc, "Stride must be an integer: " + Expr->getAsString()); } std::string Format; if (StringInit *SI = dyn_cast<StringInit>(Expr->arg_begin()[0])) Format = SI->getValue(); else PrintFatalError(Loc, "Format must be a string: " + Expr->getAsString()); int64_t From, To; if (IntInit *II = dyn_cast<IntInit>(Expr->arg_begin()[1])) From = II->getValue(); else PrintFatalError(Loc, "From must be an integer: " + Expr->getAsString()); if (From < 0 || From >= (1 << 30)) PrintFatalError(Loc, "From out of range"); if (IntInit *II = dyn_cast<IntInit>(Expr->arg_begin()[2])) To = II->getValue(); else PrintFatalError(Loc, "To must be an integer: " + Expr->getAsString()); if (To < 0 || To >= (1 << 30)) PrintFatalError(Loc, "To out of range"); RecordKeeper &Records = cast<DefInit>(Expr->getOperator())->getDef()->getRecords(); Step *= From <= To ? 1 : -1; while (true) { if (Step > 0 && From > To) break; else if (Step < 0 && From < To) break; std::string Name; raw_string_ostream OS(Name); OS << format(Format.c_str(), unsigned(From)); Record *Rec = Records.getDef(OS.str()); if (!Rec) PrintFatalError(Loc, "No def named '" + Name + "': " + Expr->getAsString()); // Try to reevaluate Rec in case it is a set. if (const RecVec *Result = ST.expand(Rec)) Elts.insert(Result->begin(), Result->end()); else Elts.insert(Rec); From += Step; } } }; // Expand a Def into a set by evaluating one of its fields. struct FieldExpander : public SetTheory::Expander { StringRef FieldName; FieldExpander(StringRef fn) : FieldName(fn) {} void expand(SetTheory &ST, Record *Def, RecSet &Elts) override { ST.evaluate(Def->getValueInit(FieldName), Elts, Def->getLoc()); } }; } // end anonymous namespace // Pin the vtables to this file. void SetTheory::Operator::anchor() {} void SetTheory::Expander::anchor() {} SetTheory::SetTheory() { addOperator("add", llvm::make_unique<AddOp>()); addOperator("sub", llvm::make_unique<SubOp>()); addOperator("and", llvm::make_unique<AndOp>()); addOperator("shl", llvm::make_unique<ShlOp>()); addOperator("trunc", llvm::make_unique<TruncOp>()); addOperator("rotl", llvm::make_unique<RotOp>(false)); addOperator("rotr", llvm::make_unique<RotOp>(true)); addOperator("decimate", llvm::make_unique<DecimateOp>()); addOperator("interleave", llvm::make_unique<InterleaveOp>()); addOperator("sequence", llvm::make_unique<SequenceOp>()); } void SetTheory::addOperator(StringRef Name, std::unique_ptr<Operator> Op) { Operators[Name] = std::move(Op); } void SetTheory::addExpander(StringRef ClassName, std::unique_ptr<Expander> E) { Expanders[ClassName] = std::move(E); } void SetTheory::addFieldExpander(StringRef ClassName, StringRef FieldName) { addExpander(ClassName, llvm::make_unique<FieldExpander>(FieldName)); } void SetTheory::evaluate(Init *Expr, RecSet &Elts, ArrayRef<SMLoc> Loc) { // A def in a list can be a just an element, or it may expand. if (DefInit *Def = dyn_cast<DefInit>(Expr)) { if (const RecVec *Result = expand(Def->getDef())) return Elts.insert(Result->begin(), Result->end()); Elts.insert(Def->getDef()); return; } // Lists simply expand. if (ListInit *LI = dyn_cast<ListInit>(Expr)) return evaluate(LI->begin(), LI->end(), Elts, Loc); // Anything else must be a DAG. DagInit *DagExpr = dyn_cast<DagInit>(Expr); if (!DagExpr) PrintFatalError(Loc, "Invalid set element: " + Expr->getAsString()); DefInit *OpInit = dyn_cast<DefInit>(DagExpr->getOperator()); if (!OpInit) PrintFatalError(Loc, "Bad set expression: " + Expr->getAsString()); auto I = Operators.find(OpInit->getDef()->getName()); if (I == Operators.end()) PrintFatalError(Loc, "Unknown set operator: " + Expr->getAsString()); I->second->apply(*this, DagExpr, Elts, Loc); } const RecVec *SetTheory::expand(Record *Set) { // Check existing entries for Set and return early. ExpandMap::iterator I = Expansions.find(Set); if (I != Expansions.end()) return &I->second; // This is the first time we see Set. Find a suitable expander. ArrayRef<std::pair<Record *, SMRange>> SC = Set->getSuperClasses(); for (const auto &SCPair : SC) { // Skip unnamed superclasses. if (!isa<StringInit>(SCPair.first->getNameInit())) continue; auto I = Expanders.find(SCPair.first->getName()); if (I != Expanders.end()) { // This breaks recursive definitions. RecVec &EltVec = Expansions[Set]; RecSet Elts; I->second->expand(*this, Set, Elts); EltVec.assign(Elts.begin(), Elts.end()); return &EltVec; } } // Set is not expandable. return nullptr; }