//===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //==-----------------------------------------------------------------------===// // /// \file /// Defines an instruction selector for the AMDGPU target. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUArgumentUsageInfo.h" #include "AMDGPUISelLowering.h" // For AMDGPUISD #include "AMDGPUInstrInfo.h" #include "AMDGPUPerfHintAnalysis.h" #include "AMDGPURegisterInfo.h" #include "AMDGPUSubtarget.h" #include "AMDGPUTargetMachine.h" #include "SIDefines.h" #include "SIISelLowering.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "SIRegisterInfo.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Analysis/DivergenceAnalysis.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Instruction.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/MathExtras.h" #include <cassert> #include <cstdint> #include <new> #include <vector> using namespace llvm; namespace llvm { class R600InstrInfo; } // end namespace llvm //===----------------------------------------------------------------------===// // Instruction Selector Implementation //===----------------------------------------------------------------------===// namespace { /// AMDGPU specific code to select AMDGPU machine instructions for /// SelectionDAG operations. class AMDGPUDAGToDAGISel : public SelectionDAGISel { // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can // make the right decision when generating code for different targets. const GCNSubtarget *Subtarget; AMDGPUAS AMDGPUASI; bool EnableLateStructurizeCFG; public: explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr, CodeGenOpt::Level OptLevel = CodeGenOpt::Default) : SelectionDAGISel(*TM, OptLevel) { AMDGPUASI = AMDGPU::getAMDGPUAS(*TM); EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; } ~AMDGPUDAGToDAGISel() override = default; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<AMDGPUArgumentUsageInfo>(); AU.addRequired<AMDGPUPerfHintAnalysis>(); AU.addRequired<DivergenceAnalysis>(); SelectionDAGISel::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) override; void Select(SDNode *N) override; StringRef getPassName() const override; void PostprocessISelDAG() override; protected: void SelectBuildVector(SDNode *N, unsigned RegClassID); private: std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const; bool isNoNanSrc(SDValue N) const; bool isInlineImmediate(const SDNode *N) const; bool isUniformBr(const SDNode *N) const; SDNode *glueCopyToM0(SDNode *N) const; const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const; virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset); virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset); bool isDSOffsetLegal(const SDValue &Base, unsigned Offset, unsigned OffsetBits) const; bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const; bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0, SDValue &Offset1) const; bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, SDValue &SOffset, SDValue &Offset, SDValue &Offen, SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC, SDValue &TFE) const; bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, SDValue &SOffset, SDValue &Offset, SDValue &GLC, SDValue &SLC, SDValue &TFE) const; bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, SDValue &SOffset, SDValue &Offset, SDValue &SLC) const; bool SelectMUBUFScratchOffen(SDNode *Parent, SDValue Addr, SDValue &RSrc, SDValue &VAddr, SDValue &SOffset, SDValue &ImmOffset) const; bool SelectMUBUFScratchOffset(SDNode *Parent, SDValue Addr, SDValue &SRsrc, SDValue &Soffset, SDValue &Offset) const; bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset, SDValue &Offset, SDValue &GLC, SDValue &SLC, SDValue &TFE) const; bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, SDValue &Offset, SDValue &SLC) const; bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, SDValue &Offset) const; bool SelectMUBUFConstant(SDValue Constant, SDValue &SOffset, SDValue &ImmOffset) const; bool SelectMUBUFIntrinsicOffset(SDValue Offset, SDValue &SOffset, SDValue &ImmOffset) const; bool SelectMUBUFIntrinsicVOffset(SDValue Offset, SDValue &SOffset, SDValue &ImmOffset, SDValue &VOffset) const; bool SelectFlatAtomic(SDValue Addr, SDValue &VAddr, SDValue &Offset, SDValue &SLC) const; bool SelectFlatAtomicSigned(SDValue Addr, SDValue &VAddr, SDValue &Offset, SDValue &SLC) const; template <bool IsSigned> bool SelectFlatOffset(SDValue Addr, SDValue &VAddr, SDValue &Offset, SDValue &SLC) const; bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset, bool &Imm) const; SDValue Expand32BitAddress(SDValue Addr) const; bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset, bool &Imm) const; bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const; bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const; bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const; bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const; bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const; bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const; bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const; bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods) const; bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const; bool SelectVOP3NoMods(SDValue In, SDValue &Src) const; bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Clamp, SDValue &Omod) const; bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Clamp, SDValue &Omod) const; bool SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Clamp, SDValue &Omod) const; bool SelectVOP3OMods(SDValue In, SDValue &Src, SDValue &Clamp, SDValue &Omod) const; bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; bool SelectVOP3PMods0(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Clamp) const; bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const; bool SelectVOP3OpSel0(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Clamp) const; bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; bool SelectVOP3OpSelMods0(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Clamp) const; bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const; bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; bool SelectHi16Elt(SDValue In, SDValue &Src) const; void SelectADD_SUB_I64(SDNode *N); void SelectUADDO_USUBO(SDNode *N); void SelectDIV_SCALE(SDNode *N); void SelectMAD_64_32(SDNode *N); void SelectFMA_W_CHAIN(SDNode *N); void SelectFMUL_W_CHAIN(SDNode *N); SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val, uint32_t Offset, uint32_t Width); void SelectS_BFEFromShifts(SDNode *N); void SelectS_BFE(SDNode *N); bool isCBranchSCC(const SDNode *N) const; void SelectBRCOND(SDNode *N); void SelectFMAD_FMA(SDNode *N); void SelectATOMIC_CMP_SWAP(SDNode *N); protected: // Include the pieces autogenerated from the target description. #include "AMDGPUGenDAGISel.inc" }; class R600DAGToDAGISel : public AMDGPUDAGToDAGISel { const R600Subtarget *Subtarget; AMDGPUAS AMDGPUASI; bool isConstantLoad(const MemSDNode *N, int cbID) const; bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr); bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg, SDValue& Offset); public: explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) : AMDGPUDAGToDAGISel(TM, OptLevel) { AMDGPUASI = AMDGPU::getAMDGPUAS(*TM); } void Select(SDNode *N) override; bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset) override; bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset) override; bool runOnMachineFunction(MachineFunction &MF) override; protected: // Include the pieces autogenerated from the target description. #include "R600GenDAGISel.inc" }; } // end anonymous namespace INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "isel", "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis) INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "isel", "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) /// This pass converts a legalized DAG into a AMDGPU-specific // DAG, ready for instruction scheduling. FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM, CodeGenOpt::Level OptLevel) { return new AMDGPUDAGToDAGISel(TM, OptLevel); } /// This pass converts a legalized DAG into a R600-specific // DAG, ready for instruction scheduling. FunctionPass *llvm::createR600ISelDag(TargetMachine *TM, CodeGenOpt::Level OptLevel) { return new R600DAGToDAGISel(TM, OptLevel); } bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { Subtarget = &MF.getSubtarget<GCNSubtarget>(); return SelectionDAGISel::runOnMachineFunction(MF); } bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const { if (TM.Options.NoNaNsFPMath) return true; // TODO: Move into isKnownNeverNaN if (N->getFlags().isDefined()) return N->getFlags().hasNoNaNs(); return CurDAG->isKnownNeverNaN(N); } bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N) const { const SIInstrInfo *TII = Subtarget->getInstrInfo(); if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) return TII->isInlineConstant(C->getAPIntValue()); if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); return false; } /// Determine the register class for \p OpNo /// \returns The register class of the virtual register that will be used for /// the given operand number \OpNo or NULL if the register class cannot be /// determined. const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, unsigned OpNo) const { if (!N->isMachineOpcode()) { if (N->getOpcode() == ISD::CopyToReg) { unsigned Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); if (TargetRegisterInfo::isVirtualRegister(Reg)) { MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); return MRI.getRegClass(Reg); } const SIRegisterInfo *TRI = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); return TRI->getPhysRegClass(Reg); } return nullptr; } switch (N->getMachineOpcode()) { default: { const MCInstrDesc &Desc = Subtarget->getInstrInfo()->get(N->getMachineOpcode()); unsigned OpIdx = Desc.getNumDefs() + OpNo; if (OpIdx >= Desc.getNumOperands()) return nullptr; int RegClass = Desc.OpInfo[OpIdx].RegClass; if (RegClass == -1) return nullptr; return Subtarget->getRegisterInfo()->getRegClass(RegClass); } case AMDGPU::REG_SEQUENCE: { unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); const TargetRegisterClass *SuperRC = Subtarget->getRegisterInfo()->getRegClass(RCID); SDValue SubRegOp = N->getOperand(OpNo + 1); unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue(); return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, SubRegIdx); } } } SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N) const { if (cast<MemSDNode>(N)->getAddressSpace() != AMDGPUASI.LOCAL_ADDRESS || !Subtarget->ldsRequiresM0Init()) return N; const SITargetLowering& Lowering = *static_cast<const SITargetLowering*>(getTargetLowering()); // Write max value to m0 before each load operation SDValue M0 = Lowering.copyToM0(*CurDAG, CurDAG->getEntryNode(), SDLoc(N), CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); SDValue Glue = M0.getValue(1); SmallVector <SDValue, 8> Ops; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { Ops.push_back(N->getOperand(i)); } Ops.push_back(Glue); return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); } static unsigned selectSGPRVectorRegClassID(unsigned NumVectorElts) { switch (NumVectorElts) { case 1: return AMDGPU::SReg_32_XM0RegClassID; case 2: return AMDGPU::SReg_64RegClassID; case 4: return AMDGPU::SReg_128RegClassID; case 8: return AMDGPU::SReg_256RegClassID; case 16: return AMDGPU::SReg_512RegClassID; } llvm_unreachable("invalid vector size"); } static bool getConstantValue(SDValue N, uint32_t &Out) { if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) { Out = C->getAPIntValue().getZExtValue(); return true; } if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) { Out = C->getValueAPF().bitcastToAPInt().getZExtValue(); return true; } return false; } void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { EVT VT = N->getValueType(0); unsigned NumVectorElts = VT.getVectorNumElements(); EVT EltVT = VT.getVectorElementType(); SDLoc DL(N); SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); if (NumVectorElts == 1) { CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), RegClass); return; } assert(NumVectorElts <= 16 && "Vectors with more than 16 elements not " "supported yet"); // 16 = Max Num Vector Elements // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) // 1 = Vector Register Class SmallVector<SDValue, 16 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); bool IsRegSeq = true; unsigned NOps = N->getNumOperands(); for (unsigned i = 0; i < NOps; i++) { // XXX: Why is this here? if (isa<RegisterSDNode>(N->getOperand(i))) { IsRegSeq = false; break; } unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i); RegSeqArgs[1 + (2 * i)] = N->getOperand(i); RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); } if (NOps != NumVectorElts) { // Fill in the missing undef elements if this was a scalar_to_vector. assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, EltVT); for (unsigned i = NOps; i < NumVectorElts; ++i) { unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i); RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); } } if (!IsRegSeq) SelectCode(N); CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); } void AMDGPUDAGToDAGISel::Select(SDNode *N) { unsigned int Opc = N->getOpcode(); if (N->isMachineOpcode()) { N->setNodeId(-1); return; // Already selected. } if (isa<AtomicSDNode>(N) || (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC || Opc == AMDGPUISD::ATOMIC_LOAD_FADD || Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) N = glueCopyToM0(N); switch (Opc) { default: break; // We are selecting i64 ADD here instead of custom lower it during // DAG legalization, so we can fold some i64 ADDs used for address // calculation into the LOAD and STORE instructions. case ISD::ADDC: case ISD::ADDE: case ISD::SUBC: case ISD::SUBE: { if (N->getValueType(0) != MVT::i64) break; SelectADD_SUB_I64(N); return; } case ISD::UADDO: case ISD::USUBO: { SelectUADDO_USUBO(N); return; } case AMDGPUISD::FMUL_W_CHAIN: { SelectFMUL_W_CHAIN(N); return; } case AMDGPUISD::FMA_W_CHAIN: { SelectFMA_W_CHAIN(N); return; } case ISD::SCALAR_TO_VECTOR: case ISD::BUILD_VECTOR: { EVT VT = N->getValueType(0); unsigned NumVectorElts = VT.getVectorNumElements(); if (VT.getScalarSizeInBits() == 16) { if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { uint32_t LHSVal, RHSVal; if (getConstantValue(N->getOperand(0), LHSVal) && getConstantValue(N->getOperand(1), RHSVal)) { uint32_t K = LHSVal | (RHSVal << 16); CurDAG->SelectNodeTo(N, AMDGPU::S_MOV_B32, VT, CurDAG->getTargetConstant(K, SDLoc(N), MVT::i32)); return; } } break; } assert(VT.getVectorElementType().bitsEq(MVT::i32)); unsigned RegClassID = selectSGPRVectorRegClassID(NumVectorElts); SelectBuildVector(N, RegClassID); return; } case ISD::BUILD_PAIR: { SDValue RC, SubReg0, SubReg1; SDLoc DL(N); if (N->getValueType(0) == MVT::i128) { RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); } else if (N->getValueType(0) == MVT::i64) { RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); } else { llvm_unreachable("Unhandled value type for BUILD_PAIR"); } const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, N->getOperand(1), SubReg1 }; ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, N->getValueType(0), Ops)); return; } case ISD::Constant: case ISD::ConstantFP: { if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) break; uint64_t Imm; if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); else { ConstantSDNode *C = cast<ConstantSDNode>(N); Imm = C->getZExtValue(); } SDLoc DL(N); SDNode *Lo = CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, CurDAG->getConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); SDNode *Hi = CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, CurDAG->getConstant(Imm >> 32, DL, MVT::i32)); const SDValue Ops[] = { CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32) }; ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, N->getValueType(0), Ops)); return; } case ISD::LOAD: case ISD::STORE: case ISD::ATOMIC_LOAD: case ISD::ATOMIC_STORE: { N = glueCopyToM0(N); break; } case AMDGPUISD::BFE_I32: case AMDGPUISD::BFE_U32: { // There is a scalar version available, but unlike the vector version which // has a separate operand for the offset and width, the scalar version packs // the width and offset into a single operand. Try to move to the scalar // version if the offsets are constant, so that we can try to keep extended // loads of kernel arguments in SGPRs. // TODO: Technically we could try to pattern match scalar bitshifts of // dynamic values, but it's probably not useful. ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); if (!Offset) break; ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); if (!Width) break; bool Signed = Opc == AMDGPUISD::BFE_I32; uint32_t OffsetVal = Offset->getZExtValue(); uint32_t WidthVal = Width->getZExtValue(); ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32, SDLoc(N), N->getOperand(0), OffsetVal, WidthVal)); return; } case AMDGPUISD::DIV_SCALE: { SelectDIV_SCALE(N); return; } case AMDGPUISD::MAD_I64_I32: case AMDGPUISD::MAD_U64_U32: { SelectMAD_64_32(N); return; } case ISD::CopyToReg: { const SITargetLowering& Lowering = *static_cast<const SITargetLowering*>(getTargetLowering()); N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); break; } case ISD::AND: case ISD::SRL: case ISD::SRA: case ISD::SIGN_EXTEND_INREG: if (N->getValueType(0) != MVT::i32) break; SelectS_BFE(N); return; case ISD::BRCOND: SelectBRCOND(N); return; case ISD::FMAD: case ISD::FMA: SelectFMAD_FMA(N); return; case AMDGPUISD::ATOMIC_CMP_SWAP: SelectATOMIC_CMP_SWAP(N); return; } SelectCode(N); } bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); const Instruction *Term = BB->getTerminator(); return Term->getMetadata("amdgpu.uniform") || Term->getMetadata("structurizecfg.uniform"); } StringRef AMDGPUDAGToDAGISel::getPassName() const { return "AMDGPU DAG->DAG Pattern Instruction Selection"; } //===----------------------------------------------------------------------===// // Complex Patterns //===----------------------------------------------------------------------===// bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset) { return false; } bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset) { ConstantSDNode *C; SDLoc DL(Addr); if ((C = dyn_cast<ConstantSDNode>(Addr))) { Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { Base = Addr.getOperand(0); Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); } else { Base = Addr; Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); } return true; } // FIXME: Should only handle addcarry/subcarry void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { SDLoc DL(N); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); unsigned Opcode = N->getOpcode(); bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); bool ProduceCarry = ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, LHS, Sub0); SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, LHS, Sub1); SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, RHS, Sub0); SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i32, RHS, Sub1); SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); unsigned Opc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; unsigned CarryOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; SDNode *AddLo; if (!ConsumeCarry) { SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); } else { SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); } SDValue AddHiArgs[] = { SDValue(Hi0, 0), SDValue(Hi1, 0), SDValue(AddLo, 1) }; SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); SDValue RegSequenceArgs[] = { CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), SDValue(AddLo,0), Sub0, SDValue(AddHi,0), Sub1, }; SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::i64, RegSequenceArgs); if (ProduceCarry) { // Replace the carry-use ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); } // Replace the remaining uses. ReplaceNode(N, RegSequence); } void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned // carry out despite the _i32 name. These were renamed in VI to _U32. // FIXME: We should probably rename the opcodes here. unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64; CurDAG->SelectNodeTo(N, Opc, N->getVTList(), { N->getOperand(0), N->getOperand(1) }); } void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { SDLoc SL(N); // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod SDValue Ops[10]; SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); Ops[8] = N->getOperand(0); Ops[9] = N->getOperand(4); CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops); } void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { SDLoc SL(N); // src0_modifiers, src0, src1_modifiers, src1, clamp, omod SDValue Ops[8]; SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); Ops[6] = N->getOperand(0); Ops[7] = N->getOperand(3); CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); } // We need to handle this here because tablegen doesn't support matching // instructions with multiple outputs. void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { SDLoc SL(N); EVT VT = N->getValueType(0); assert(VT == MVT::f32 || VT == MVT::f64); unsigned Opc = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32; SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) }; CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); } // We need to handle this here because tablegen doesn't support matching // instructions with multiple outputs. void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { SDLoc SL(N); bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32; SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), Clamp }; CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); } bool AMDGPUDAGToDAGISel::isDSOffsetLegal(const SDValue &Base, unsigned Offset, unsigned OffsetBits) const { if ((OffsetBits == 16 && !isUInt<16>(Offset)) || (OffsetBits == 8 && !isUInt<8>(Offset))) return false; if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS || Subtarget->unsafeDSOffsetFoldingEnabled()) return true; // On Southern Islands instruction with a negative base value and an offset // don't seem to work. return CurDAG->SignBitIsZero(Base); } bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, SDValue &Offset) const { SDLoc DL(Addr); if (CurDAG->isBaseWithConstantOffset(Addr)) { SDValue N0 = Addr.getOperand(0); SDValue N1 = Addr.getOperand(1); ConstantSDNode *C1 = cast<ConstantSDNode>(N1); if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) { // (add n0, c0) Base = N0; Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); return true; } } else if (Addr.getOpcode() == ISD::SUB) { // sub C, x -> add (sub 0, x), C if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { int64_t ByteOffset = C->getSExtValue(); if (isUInt<16>(ByteOffset)) { SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); // XXX - This is kind of hacky. Create a dummy sub node so we can check // the known bits in isDSOffsetLegal. We need to emit the selected node // here, so this is thrown away. SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); if (isDSOffsetLegal(Sub, ByteOffset, 16)) { // FIXME: Select to VOP3 version for with-carry. unsigned SubOp = Subtarget->hasAddNoCarry() ? AMDGPU::V_SUB_U32_e64 : AMDGPU::V_SUB_I32_e32; MachineSDNode *MachineSub = CurDAG->getMachineNode(SubOp, DL, MVT::i32, Zero, Addr.getOperand(1)); Base = SDValue(MachineSub, 0); Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); return true; } } } } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { // If we have a constant address, prefer to put the constant into the // offset. This can save moves to load the constant address since multiple // operations can share the zero base address register, and enables merging // into read2 / write2 instructions. SDLoc DL(Addr); if (isUInt<16>(CAddr->getZExtValue())) { SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); Base = SDValue(MovZero, 0); Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); return true; } } // default case Base = Addr; Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); return true; } // TODO: If offset is too big, put low 16-bit into offset. bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, SDValue &Offset0, SDValue &Offset1) const { SDLoc DL(Addr); if (CurDAG->isBaseWithConstantOffset(Addr)) { SDValue N0 = Addr.getOperand(0); SDValue N1 = Addr.getOperand(1); ConstantSDNode *C1 = cast<ConstantSDNode>(N1); unsigned DWordOffset0 = C1->getZExtValue() / 4; unsigned DWordOffset1 = DWordOffset0 + 1; // (add n0, c0) if (isDSOffsetLegal(N0, DWordOffset1, 8)) { Base = N0; Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8); Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8); return true; } } else if (Addr.getOpcode() == ISD::SUB) { // sub C, x -> add (sub 0, x), C if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { unsigned DWordOffset0 = C->getZExtValue() / 4; unsigned DWordOffset1 = DWordOffset0 + 1; if (isUInt<8>(DWordOffset0)) { SDLoc DL(Addr); SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); // XXX - This is kind of hacky. Create a dummy sub node so we can check // the known bits in isDSOffsetLegal. We need to emit the selected node // here, so this is thrown away. SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); if (isDSOffsetLegal(Sub, DWordOffset1, 8)) { unsigned SubOp = Subtarget->hasAddNoCarry() ? AMDGPU::V_SUB_U32_e64 : AMDGPU::V_SUB_I32_e32; MachineSDNode *MachineSub = CurDAG->getMachineNode(SubOp, DL, MVT::i32, Zero, Addr.getOperand(1)); Base = SDValue(MachineSub, 0); Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8); Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8); return true; } } } } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { unsigned DWordOffset0 = CAddr->getZExtValue() / 4; unsigned DWordOffset1 = DWordOffset0 + 1; assert(4 * DWordOffset0 == CAddr->getZExtValue()); if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) { SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); Base = SDValue(MovZero, 0); Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8); Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8); return true; } } // default case // FIXME: This is broken on SI where we still need to check if the base // pointer is positive here. Base = Addr; Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); return true; } bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr, SDValue &SOffset, SDValue &Offset, SDValue &Offen, SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC, SDValue &TFE) const { // Subtarget prefers to use flat instruction if (Subtarget->useFlatForGlobal()) return false; SDLoc DL(Addr); if (!GLC.getNode()) GLC = CurDAG->getTargetConstant(0, DL, MVT::i1); if (!SLC.getNode()) SLC = CurDAG->getTargetConstant(0, DL, MVT::i1); TFE = CurDAG->getTargetConstant(0, DL, MVT::i1); Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); if (CurDAG->isBaseWithConstantOffset(Addr)) { SDValue N0 = Addr.getOperand(0); SDValue N1 = Addr.getOperand(1); ConstantSDNode *C1 = cast<ConstantSDNode>(N1); if (N0.getOpcode() == ISD::ADD) { // (add (add N2, N3), C1) -> addr64 SDValue N2 = N0.getOperand(0); SDValue N3 = N0.getOperand(1); Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); Ptr = N2; VAddr = N3; } else { // (add N0, C1) -> offset VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); Ptr = N0; } if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) { Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); return true; } if (isUInt<32>(C1->getZExtValue())) { // Illegal offset, store it in soffset. Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); SOffset = SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 0); return true; } } if (Addr.getOpcode() == ISD::ADD) { // (add N0, N1) -> addr64 SDValue N0 = Addr.getOperand(0); SDValue N1 = Addr.getOperand(1); Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); Ptr = N0; VAddr = N1; Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); return true; } // default case -> offset VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); Ptr = Addr; Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); return true; } bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, SDValue &SOffset, SDValue &Offset, SDValue &GLC, SDValue &SLC, SDValue &TFE) const { SDValue Ptr, Offen, Idxen, Addr64; // addr64 bit was removed for volcanic islands. if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) return false; if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, GLC, SLC, TFE)) return false; ConstantSDNode *C = cast<ConstantSDNode>(Addr64); if (C->getSExtValue()) { SDLoc DL(Addr); const SITargetLowering& Lowering = *static_cast<const SITargetLowering*>(getTargetLowering()); SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); return true; } return false; } bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, SDValue &SOffset, SDValue &Offset, SDValue &SLC) const { SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1); SDValue GLC, TFE; return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE); } static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) { auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>(); return PSV && PSV->isStack(); } std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { const MachineFunction &MF = CurDAG->getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); if (auto FI = dyn_cast<FrameIndexSDNode>(N)) { SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)); // If we can resolve this to a frame index access, this is relative to the // frame pointer SGPR. return std::make_pair(TFI, CurDAG->getRegister(Info->getFrameOffsetReg(), MVT::i32)); } // If we don't know this private access is a local stack object, it needs to // be relative to the entry point's scratch wave offset register. return std::make_pair(N, CurDAG->getRegister(Info->getScratchWaveOffsetReg(), MVT::i32)); } bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, SDValue Addr, SDValue &Rsrc, SDValue &VAddr, SDValue &SOffset, SDValue &ImmOffset) const { SDLoc DL(Addr); MachineFunction &MF = CurDAG->getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { unsigned Imm = CAddr->getZExtValue(); SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32); MachineSDNode *MovHighBits = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); VAddr = SDValue(MovHighBits, 0); // In a call sequence, stores to the argument stack area are relative to the // stack pointer. const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo(); unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ? Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg(); SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32); ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16); return true; } if (CurDAG->isBaseWithConstantOffset(Addr)) { // (add n0, c1) SDValue N0 = Addr.getOperand(0); SDValue N1 = Addr.getOperand(1); // Offsets in vaddr must be positive if range checking is enabled. // // The total computation of vaddr + soffset + offset must not overflow. If // vaddr is negative, even if offset is 0 the sgpr offset add will end up // overflowing. // // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would // always perform a range check. If a negative vaddr base index was used, // this would fail the range check. The overall address computation would // compute a valid address, but this doesn't happen due to the range // check. For out-of-bounds MUBUF loads, a 0 is returned. // // Therefore it should be safe to fold any VGPR offset on gfx9 into the // MUBUF vaddr, but not on older subtargets which can only do this if the // sign bit is known 0. ConstantSDNode *C1 = cast<ConstantSDNode>(N1); if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) && (!Subtarget->privateMemoryResourceIsRangeChecked() || CurDAG->SignBitIsZero(N0))) { std::tie(VAddr, SOffset) = foldFrameIndex(N0); ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); return true; } } // (node) std::tie(VAddr, SOffset) = foldFrameIndex(Addr); ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); return true; } bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, SDValue Addr, SDValue &SRsrc, SDValue &SOffset, SDValue &Offset) const { ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr); if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) return false; SDLoc DL(Addr); MachineFunction &MF = CurDAG->getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo(); unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ? Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg(); // FIXME: Get from MachinePointerInfo? We should only be using the frame // offset if we know this is in a call sequence. SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32); Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); return true; } bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset, SDValue &Offset, SDValue &GLC, SDValue &SLC, SDValue &TFE) const { SDValue Ptr, VAddr, Offen, Idxen, Addr64; const SIInstrInfo *TII = static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, GLC, SLC, TFE)) return false; if (!cast<ConstantSDNode>(Offen)->getSExtValue() && !cast<ConstantSDNode>(Idxen)->getSExtValue() && !cast<ConstantSDNode>(Addr64)->getSExtValue()) { uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | APInt::getAllOnesValue(32).getZExtValue(); // Size SDLoc DL(Addr); const SITargetLowering& Lowering = *static_cast<const SITargetLowering*>(getTargetLowering()); SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); return true; } return false; } bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, SDValue &Offset ) const { SDValue GLC, SLC, TFE; return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE); } bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, SDValue &Offset, SDValue &SLC) const { SDValue GLC, TFE; return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE); } bool AMDGPUDAGToDAGISel::SelectMUBUFConstant(SDValue Constant, SDValue &SOffset, SDValue &ImmOffset) const { SDLoc DL(Constant); const uint32_t Align = 4; const uint32_t MaxImm = alignDown(4095, Align); uint32_t Imm = cast<ConstantSDNode>(Constant)->getZExtValue(); uint32_t Overflow = 0; if (Imm > MaxImm) { if (Imm <= MaxImm + 64) { // Use an SOffset inline constant for 4..64 Overflow = Imm - MaxImm; Imm = MaxImm; } else { // Try to keep the same value in SOffset for adjacent loads, so that // the corresponding register contents can be re-used. // // Load values with all low-bits (except for alignment bits) set into // SOffset, so that a larger range of values can be covered using // s_movk_i32. // // Atomic operations fail to work correctly when individual address // components are unaligned, even if their sum is aligned. uint32_t High = (Imm + Align) & ~4095; uint32_t Low = (Imm + Align) & 4095; Imm = Low; Overflow = High - Align; } } // There is a hardware bug in SI and CI which prevents address clamping in // MUBUF instructions from working correctly with SOffsets. The immediate // offset is unaffected. if (Overflow > 0 && Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) return false; ImmOffset = CurDAG->getTargetConstant(Imm, DL, MVT::i16); if (Overflow <= 64) SOffset = CurDAG->getTargetConstant(Overflow, DL, MVT::i32); else SOffset = SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, CurDAG->getTargetConstant(Overflow, DL, MVT::i32)), 0); return true; } bool AMDGPUDAGToDAGISel::SelectMUBUFIntrinsicOffset(SDValue Offset, SDValue &SOffset, SDValue &ImmOffset) const { SDLoc DL(Offset); if (!isa<ConstantSDNode>(Offset)) return false; return SelectMUBUFConstant(Offset, SOffset, ImmOffset); } bool AMDGPUDAGToDAGISel::SelectMUBUFIntrinsicVOffset(SDValue Offset, SDValue &SOffset, SDValue &ImmOffset, SDValue &VOffset) const { SDLoc DL(Offset); // Don't generate an unnecessary voffset for constant offsets. if (isa<ConstantSDNode>(Offset)) { SDValue Tmp1, Tmp2; // When necessary, use a voffset in <= CI anyway to work around a hardware // bug. if (Subtarget->getGeneration() > AMDGPUSubtarget::SEA_ISLANDS || SelectMUBUFConstant(Offset, Tmp1, Tmp2)) return false; } if (CurDAG->isBaseWithConstantOffset(Offset)) { SDValue N0 = Offset.getOperand(0); SDValue N1 = Offset.getOperand(1); if (cast<ConstantSDNode>(N1)->getSExtValue() >= 0 && SelectMUBUFConstant(N1, SOffset, ImmOffset)) { VOffset = N0; return true; } } SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); VOffset = Offset; return true; } template <bool IsSigned> bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDValue Addr, SDValue &VAddr, SDValue &Offset, SDValue &SLC) const { int64_t OffsetVal = 0; if (Subtarget->hasFlatInstOffsets() && CurDAG->isBaseWithConstantOffset(Addr)) { SDValue N0 = Addr.getOperand(0); SDValue N1 = Addr.getOperand(1); int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); if ((IsSigned && isInt<13>(COffsetVal)) || (!IsSigned && isUInt<12>(COffsetVal))) { Addr = N0; OffsetVal = COffsetVal; } } VAddr = Addr; Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16); SLC = CurDAG->getTargetConstant(0, SDLoc(), MVT::i1); return true; } bool AMDGPUDAGToDAGISel::SelectFlatAtomic(SDValue Addr, SDValue &VAddr, SDValue &Offset, SDValue &SLC) const { return SelectFlatOffset<false>(Addr, VAddr, Offset, SLC); } bool AMDGPUDAGToDAGISel::SelectFlatAtomicSigned(SDValue Addr, SDValue &VAddr, SDValue &Offset, SDValue &SLC) const { return SelectFlatOffset<true>(Addr, VAddr, Offset, SLC); } bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset, bool &Imm) const { // FIXME: Handle non-constant offsets. ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); if (!C) return false; SDLoc SL(ByteOffsetNode); GCNSubtarget::Generation Gen = Subtarget->getGeneration(); int64_t ByteOffset = C->getSExtValue(); int64_t EncodedOffset = AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset); if (AMDGPU::isLegalSMRDImmOffset(*Subtarget, ByteOffset)) { Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32); Imm = true; return true; } if (!isUInt<32>(EncodedOffset) || !isUInt<32>(ByteOffset)) return false; if (Gen == AMDGPUSubtarget::SEA_ISLANDS && isUInt<32>(EncodedOffset)) { // 32-bit Immediates are supported on Sea Islands. Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32); } else { SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); Offset = SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); } Imm = false; return true; } SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { if (Addr.getValueType() != MVT::i32) return Addr; // Zero-extend a 32-bit address. SDLoc SL(Addr); const MachineFunction &MF = CurDAG->getMachineFunction(); const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); unsigned AddrHiVal = Info->get32BitAddressHighBits(); SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); const SDValue Ops[] = { CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), Addr, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 0), CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), }; return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, Ops), 0); } bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset, bool &Imm) const { SDLoc SL(Addr); // A 32-bit (address + offset) should not cause unsigned 32-bit integer // wraparound, because s_load instructions perform the addition in 64 bits. if ((Addr.getValueType() != MVT::i32 || Addr->getFlags().hasNoUnsignedWrap()) && CurDAG->isBaseWithConstantOffset(Addr)) { SDValue N0 = Addr.getOperand(0); SDValue N1 = Addr.getOperand(1); if (SelectSMRDOffset(N1, Offset, Imm)) { SBase = Expand32BitAddress(N0); return true; } } SBase = Expand32BitAddress(Addr); Offset = CurDAG->getTargetConstant(0, SL, MVT::i32); Imm = true; return true; } bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const { bool Imm; return SelectSMRD(Addr, SBase, Offset, Imm) && Imm; } bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const { if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS) return false; bool Imm; if (!SelectSMRD(Addr, SBase, Offset, Imm)) return false; return !Imm && isa<ConstantSDNode>(Offset); } bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const { bool Imm; return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm && !isa<ConstantSDNode>(Offset); } bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const { bool Imm; return SelectSMRDOffset(Addr, Offset, Imm) && Imm; } bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const { if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS) return false; bool Imm; if (!SelectSMRDOffset(Addr, Offset, Imm)) return false; return !Imm && isa<ConstantSDNode>(Offset); } bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const { SDLoc DL(Index); if (CurDAG->isBaseWithConstantOffset(Index)) { SDValue N0 = Index.getOperand(0); SDValue N1 = Index.getOperand(1); ConstantSDNode *C1 = cast<ConstantSDNode>(N1); // (add n0, c0) Base = N0; Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); return true; } if (isa<ConstantSDNode>(Index)) return false; Base = Index; Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); return true; } SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val, uint32_t Offset, uint32_t Width) { // Transformation function, pack the offset and width of a BFE into // the format expected by the S_BFE_I32 / S_BFE_U32. In the second // source, bits [5:0] contain the offset and bits [22:16] the width. uint32_t PackedVal = Offset | (Width << 16); SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); } void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) // Predicate: 0 < b <= c < 32 const SDValue &Shl = N->getOperand(0); ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); if (B && C) { uint32_t BVal = B->getZExtValue(); uint32_t CVal = C->getZExtValue(); if (0 < BVal && BVal <= CVal && CVal < 32) { bool Signed = N->getOpcode() == ISD::SRA; unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal, 32 - CVal)); return; } } SelectCode(N); } void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { switch (N->getOpcode()) { case ISD::AND: if (N->getOperand(0).getOpcode() == ISD::SRL) { // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" // Predicate: isMask(mask) const SDValue &Srl = N->getOperand(0); ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); if (Shift && Mask) { uint32_t ShiftVal = Shift->getZExtValue(); uint32_t MaskVal = Mask->getZExtValue(); if (isMask_32(MaskVal)) { uint32_t WidthVal = countPopulation(MaskVal); ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), Srl.getOperand(0), ShiftVal, WidthVal)); return; } } } break; case ISD::SRL: if (N->getOperand(0).getOpcode() == ISD::AND) { // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" // Predicate: isMask(mask >> b) const SDValue &And = N->getOperand(0); ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); if (Shift && Mask) { uint32_t ShiftVal = Shift->getZExtValue(); uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; if (isMask_32(MaskVal)) { uint32_t WidthVal = countPopulation(MaskVal); ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), And.getOperand(0), ShiftVal, WidthVal)); return; } } } else if (N->getOperand(0).getOpcode() == ISD::SHL) { SelectS_BFEFromShifts(N); return; } break; case ISD::SRA: if (N->getOperand(0).getOpcode() == ISD::SHL) { SelectS_BFEFromShifts(N); return; } break; case ISD::SIGN_EXTEND_INREG: { // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 SDValue Src = N->getOperand(0); if (Src.getOpcode() != ISD::SRL) break; const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); if (!Amt) break; unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0), Amt->getZExtValue(), Width)); return; } } SelectCode(N); } bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { assert(N->getOpcode() == ISD::BRCOND); if (!N->hasOneUse()) return false; SDValue Cond = N->getOperand(1); if (Cond.getOpcode() == ISD::CopyToReg) Cond = Cond.getOperand(2); if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) return false; MVT VT = Cond.getOperand(0).getSimpleValueType(); if (VT == MVT::i32) return true; if (VT == MVT::i64) { auto ST = static_cast<const GCNSubtarget *>(Subtarget); ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); } return false; } void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { SDValue Cond = N->getOperand(1); if (Cond.isUndef()) { CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, N->getOperand(2), N->getOperand(0)); return; } bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ; unsigned CondReg = UseSCCBr ? AMDGPU::SCC : AMDGPU::VCC; SDLoc SL(N); if (!UseSCCBr) { // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not // analyzed what generates the vcc value, so we do not know whether vcc // bits for disabled lanes are 0. Thus we need to mask out bits for // disabled lanes. // // For the case that we select S_CBRANCH_SCC1 and it gets // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls // SIInstrInfo::moveToVALU which inserts the S_AND). // // We could add an analysis of what generates the vcc value here and omit // the S_AND when is unnecessary. But it would be better to add a separate // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it // catches both cases. Cond = SDValue(CurDAG->getMachineNode(AMDGPU::S_AND_B64, SL, MVT::i1, CurDAG->getRegister(AMDGPU::EXEC, MVT::i1), Cond), 0); } SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); CurDAG->SelectNodeTo(N, BrOp, MVT::Other, N->getOperand(2), // Basic Block VCC.getValue(0)); } void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) { MVT VT = N->getSimpleValueType(0); bool IsFMA = N->getOpcode() == ISD::FMA; if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() && !Subtarget->hasFmaMixInsts()) || ((IsFMA && Subtarget->hasMadMixInsts()) || (!IsFMA && Subtarget->hasFmaMixInsts()))) { SelectCode(N); return; } SDValue Src0 = N->getOperand(0); SDValue Src1 = N->getOperand(1); SDValue Src2 = N->getOperand(2); unsigned Src0Mods, Src1Mods, Src2Mods; // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand // using the conversion from f16. bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods); bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods); bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods); assert((IsFMA || !Subtarget->hasFP32Denormals()) && "fmad selected with denormals enabled"); // TODO: We can select this with f32 denormals enabled if all the sources are // converted from f16 (in which case fmad isn't legal). if (Sel0 || Sel1 || Sel2) { // For dummy operands. SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); SDValue Ops[] = { CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0, CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1, CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2, CurDAG->getTargetConstant(0, SDLoc(), MVT::i1), Zero, Zero }; CurDAG->SelectNodeTo(N, IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32, MVT::f32, Ops); } else { SelectCode(N); } } // This is here because there isn't a way to use the generated sub0_sub1 as the // subreg index to EXTRACT_SUBREG in tablegen. void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) { MemSDNode *Mem = cast<MemSDNode>(N); unsigned AS = Mem->getAddressSpace(); if (AS == AMDGPUASI.FLAT_ADDRESS) { SelectCode(N); return; } MVT VT = N->getSimpleValueType(0); bool Is32 = (VT == MVT::i32); SDLoc SL(N); MachineSDNode *CmpSwap = nullptr; if (Subtarget->hasAddr64()) { SDValue SRsrc, VAddr, SOffset, Offset, SLC; if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) { unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN : AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN; SDValue CmpVal = Mem->getOperand(2); // XXX - Do we care about glue operands? SDValue Ops[] = { CmpVal, VAddr, SRsrc, SOffset, Offset, SLC, Mem->getChain() }; CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); } } if (!CmpSwap) { SDValue SRsrc, SOffset, Offset, SLC; if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) { unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN : AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN; SDValue CmpVal = Mem->getOperand(2); SDValue Ops[] = { CmpVal, SRsrc, SOffset, Offset, SLC, Mem->getChain() }; CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); } } if (!CmpSwap) { SelectCode(N); return; } MachineSDNode::mmo_iterator MMOs = MF->allocateMemRefsArray(1); *MMOs = Mem->getMemOperand(); CmpSwap->setMemRefs(MMOs, MMOs + 1); unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1; SDValue Extract = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0)); ReplaceUses(SDValue(N, 0), Extract); ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1)); CurDAG->RemoveDeadNode(N); } bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const { Mods = 0; Src = In; if (Src.getOpcode() == ISD::FNEG) { Mods |= SISrcMods::NEG; Src = Src.getOperand(0); } if (Src.getOpcode() == ISD::FABS) { Mods |= SISrcMods::ABS; Src = Src.getOperand(0); } return true; } bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const { unsigned Mods; if (SelectVOP3ModsImpl(In, Src, Mods)) { SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); return true; } return false; } bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const { SelectVOP3Mods(In, Src, SrcMods); return isNoNanSrc(Src); } bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) return false; Src = In; return true; } bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Clamp, SDValue &Omod) const { SDLoc DL(In); Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); return SelectVOP3Mods(In, Src, SrcMods); } bool AMDGPUDAGToDAGISel::SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Clamp, SDValue &Omod) const { Clamp = Omod = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); return SelectVOP3Mods(In, Src, SrcMods); } bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, SDValue &Clamp, SDValue &Omod) const { Src = In; SDLoc DL(In); Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); return true; } static SDValue stripBitcast(SDValue Val) { return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; } // Figure out if this is really an extract of the high 16-bits of a dword. static bool isExtractHiElt(SDValue In, SDValue &Out) { In = stripBitcast(In); if (In.getOpcode() != ISD::TRUNCATE) return false; SDValue Srl = In.getOperand(0); if (Srl.getOpcode() == ISD::SRL) { if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { if (ShiftAmt->getZExtValue() == 16) { Out = stripBitcast(Srl.getOperand(0)); return true; } } } return false; } // Look through operations that obscure just looking at the low 16-bits of the // same register. static SDValue stripExtractLoElt(SDValue In) { if (In.getOpcode() == ISD::TRUNCATE) { SDValue Src = In.getOperand(0); if (Src.getValueType().getSizeInBits() == 32) return stripBitcast(Src); } return In; } bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const { unsigned Mods = 0; Src = In; if (Src.getOpcode() == ISD::FNEG) { Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); Src = Src.getOperand(0); } if (Src.getOpcode() == ISD::BUILD_VECTOR) { unsigned VecMods = Mods; SDValue Lo = stripBitcast(Src.getOperand(0)); SDValue Hi = stripBitcast(Src.getOperand(1)); if (Lo.getOpcode() == ISD::FNEG) { Lo = stripBitcast(Lo.getOperand(0)); Mods ^= SISrcMods::NEG; } if (Hi.getOpcode() == ISD::FNEG) { Hi = stripBitcast(Hi.getOperand(0)); Mods ^= SISrcMods::NEG_HI; } if (isExtractHiElt(Lo, Lo)) Mods |= SISrcMods::OP_SEL_0; if (isExtractHiElt(Hi, Hi)) Mods |= SISrcMods::OP_SEL_1; Lo = stripExtractLoElt(Lo); Hi = stripExtractLoElt(Hi); if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { // Really a scalar input. Just select from the low half of the register to // avoid packing. Src = Lo; SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); return true; } Mods = VecMods; } // Packed instructions do not have abs modifiers. Mods |= SISrcMods::OP_SEL_1; SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); return true; } bool AMDGPUDAGToDAGISel::SelectVOP3PMods0(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Clamp) const { SDLoc SL(In); // FIXME: Handle clamp and op_sel Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32); return SelectVOP3PMods(In, Src, SrcMods); } bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const { Src = In; // FIXME: Handle op_sel SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); return true; } bool AMDGPUDAGToDAGISel::SelectVOP3OpSel0(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Clamp) const { SDLoc SL(In); // FIXME: Handle clamp Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32); return SelectVOP3OpSel(In, Src, SrcMods); } bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const { // FIXME: Handle op_sel return SelectVOP3Mods(In, Src, SrcMods); } bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods0(SDValue In, SDValue &Src, SDValue &SrcMods, SDValue &Clamp) const { SDLoc SL(In); // FIXME: Handle clamp Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32); return SelectVOP3OpSelMods(In, Src, SrcMods); } // The return value is not whether the match is possible (which it always is), // but whether or not it a conversion is really used. bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const { Mods = 0; SelectVOP3ModsImpl(In, Src, Mods); if (Src.getOpcode() == ISD::FP_EXTEND) { Src = Src.getOperand(0); assert(Src.getValueType() == MVT::f16); Src = stripBitcast(Src); // Be careful about folding modifiers if we already have an abs. fneg is // applied last, so we don't want to apply an earlier fneg. if ((Mods & SISrcMods::ABS) == 0) { unsigned ModsTmp; SelectVOP3ModsImpl(Src, Src, ModsTmp); if ((ModsTmp & SISrcMods::NEG) != 0) Mods ^= SISrcMods::NEG; if ((ModsTmp & SISrcMods::ABS) != 0) Mods |= SISrcMods::ABS; } // op_sel/op_sel_hi decide the source type and source. // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. // If the sources's op_sel is set, it picks the high half of the source // register. Mods |= SISrcMods::OP_SEL_1; if (isExtractHiElt(Src, Src)) { Mods |= SISrcMods::OP_SEL_0; // TODO: Should we try to look for neg/abs here? } return true; } return false; } bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const { unsigned Mods = 0; SelectVOP3PMadMixModsImpl(In, Src, Mods); SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); return true; } // TODO: Can we identify things like v_mad_mixhi_f16? bool AMDGPUDAGToDAGISel::SelectHi16Elt(SDValue In, SDValue &Src) const { if (In.isUndef()) { Src = In; return true; } if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { SDLoc SL(In); SDValue K = CurDAG->getTargetConstant(C->getZExtValue() << 16, SL, MVT::i32); MachineSDNode *MovK = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SL, MVT::i32, K); Src = SDValue(MovK, 0); return true; } if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { SDLoc SL(In); SDValue K = CurDAG->getTargetConstant( C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); MachineSDNode *MovK = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SL, MVT::i32, K); Src = SDValue(MovK, 0); return true; } return isExtractHiElt(In, Src); } void AMDGPUDAGToDAGISel::PostprocessISelDAG() { const AMDGPUTargetLowering& Lowering = *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); bool IsModified = false; do { IsModified = false; // Go over all selected nodes and try to fold them a bit more SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); while (Position != CurDAG->allnodes_end()) { SDNode *Node = &*Position++; MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); if (!MachineNode) continue; SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); if (ResNode != Node) { if (ResNode) ReplaceUses(Node, ResNode); IsModified = true; } } CurDAG->RemoveDeadNodes(); } while (IsModified); } bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { Subtarget = &MF.getSubtarget<R600Subtarget>(); return SelectionDAGISel::runOnMachineFunction(MF); } bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const { if (!N->readMem()) return false; if (CbId == -1) return N->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS || N->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS_32BIT; return N->getAddressSpace() == AMDGPUASI.CONSTANT_BUFFER_0 + CbId; } bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr) { if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) { IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr), true); return true; } return false; } bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr, SDValue& BaseReg, SDValue &Offset) { if (!isa<ConstantSDNode>(Addr)) { BaseReg = Addr; Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true); return true; } return false; } void R600DAGToDAGISel::Select(SDNode *N) { unsigned int Opc = N->getOpcode(); if (N->isMachineOpcode()) { N->setNodeId(-1); return; // Already selected. } switch (Opc) { default: break; case AMDGPUISD::BUILD_VERTICAL_VECTOR: case ISD::SCALAR_TO_VECTOR: case ISD::BUILD_VECTOR: { EVT VT = N->getValueType(0); unsigned NumVectorElts = VT.getVectorNumElements(); unsigned RegClassID; // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG // that adds a 128 bits reg copy when going through TwoAddressInstructions // pass. We want to avoid 128 bits copies as much as possible because they // can't be bundled by our scheduler. switch(NumVectorElts) { case 2: RegClassID = R600::R600_Reg64RegClassID; break; case 4: if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR) RegClassID = R600::R600_Reg128VerticalRegClassID; else RegClassID = R600::R600_Reg128RegClassID; break; default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); } SelectBuildVector(N, RegClassID); return; } } SelectCode(N); } bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset) { ConstantSDNode *C; SDLoc DL(Addr); if ((C = dyn_cast<ConstantSDNode>(Addr))) { Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { Base = Addr.getOperand(0); Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); } else { Base = Addr; Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); } return true; } bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset) { ConstantSDNode *IMMOffset; if (Addr.getOpcode() == ISD::ADD && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) && isInt<16>(IMMOffset->getZExtValue())) { Base = Addr.getOperand(0); Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), MVT::i32); return true; // If the pointer address is constant, we can move it to the offset field. } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr)) && isInt<16>(IMMOffset->getZExtValue())) { Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(CurDAG->getEntryNode()), R600::ZERO, MVT::i32); Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), MVT::i32); return true; } // Default case, no offset Base = Addr; Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); return true; }