//===-- AMDGPUInstructions.td - Common instruction defs ---*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains instruction defs that are common to all hw codegen // targets. // //===----------------------------------------------------------------------===// class AMDGPUInst <dag outs, dag ins, string asm = "", list<dag> pattern = []> : Instruction { field bit isRegisterLoad = 0; field bit isRegisterStore = 0; let Namespace = "AMDGPU"; let OutOperandList = outs; let InOperandList = ins; let AsmString = asm; let Pattern = pattern; let Itinerary = NullALU; // SoftFail is a field the disassembler can use to provide a way for // instructions to not match without killing the whole decode process. It is // mainly used for ARM, but Tablegen expects this field to exist or it fails // to build the decode table. field bits<64> SoftFail = 0; let DecoderNamespace = Namespace; let TSFlags{63} = isRegisterLoad; let TSFlags{62} = isRegisterStore; } class AMDGPUShaderInst <dag outs, dag ins, string asm = "", list<dag> pattern = []> : AMDGPUInst<outs, ins, asm, pattern> { field bits<32> Inst = 0xffffffff; } //===---------------------------------------------------------------------===// // Return instruction //===---------------------------------------------------------------------===// class ILFormat<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction { let Namespace = "AMDGPU"; dag OutOperandList = outs; dag InOperandList = ins; let Pattern = pattern; let AsmString = !strconcat(asmstr, "\n"); let isPseudo = 1; let Itinerary = NullALU; bit hasIEEEFlag = 0; bit hasZeroOpFlag = 0; let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let isCodeGenOnly = 1; } def TruePredicate : Predicate<"true">; // Exists to help track down where SubtargetPredicate isn't set rather // than letting tablegen crash with an unhelpful error. def InvalidPred : Predicate<"predicate not set on instruction or pattern">; class PredicateControl { Predicate SubtargetPredicate = InvalidPred; list<Predicate> AssemblerPredicates = []; Predicate AssemblerPredicate = TruePredicate; list<Predicate> OtherPredicates = []; list<Predicate> Predicates = !listconcat([SubtargetPredicate, AssemblerPredicate], AssemblerPredicates, OtherPredicates); } class AMDGPUPat<dag pattern, dag result> : Pat<pattern, result>, PredicateControl; def FP16Denormals : Predicate<"Subtarget->hasFP16Denormals()">; def FP32Denormals : Predicate<"Subtarget->hasFP32Denormals()">; def FP64Denormals : Predicate<"Subtarget->hasFP64Denormals()">; def NoFP16Denormals : Predicate<"!Subtarget->hasFP16Denormals()">; def NoFP32Denormals : Predicate<"!Subtarget->hasFP32Denormals()">; def NoFP64Denormals : Predicate<"!Subtarget->hasFP64Denormals()">; def UnsafeFPMath : Predicate<"TM.Options.UnsafeFPMath">; def FMA : Predicate<"Subtarget->hasFMA()">; def InstFlag : OperandWithDefaultOps <i32, (ops (i32 0))>; def u16ImmTarget : AsmOperandClass { let Name = "U16Imm"; let RenderMethod = "addImmOperands"; } def s16ImmTarget : AsmOperandClass { let Name = "S16Imm"; let RenderMethod = "addImmOperands"; } let OperandType = "OPERAND_IMMEDIATE" in { def u32imm : Operand<i32> { let PrintMethod = "printU32ImmOperand"; } def u16imm : Operand<i16> { let PrintMethod = "printU16ImmOperand"; let ParserMatchClass = u16ImmTarget; } def s16imm : Operand<i16> { let PrintMethod = "printU16ImmOperand"; let ParserMatchClass = s16ImmTarget; } def u8imm : Operand<i8> { let PrintMethod = "printU8ImmOperand"; } } // End OperandType = "OPERAND_IMMEDIATE" //===--------------------------------------------------------------------===// // Custom Operands //===--------------------------------------------------------------------===// def brtarget : Operand<OtherVT>; //===----------------------------------------------------------------------===// // Misc. PatFrags //===----------------------------------------------------------------------===// class HasOneUseBinOp<SDPatternOperator op> : PatFrag< (ops node:$src0, node:$src1), (op $src0, $src1), [{ return N->hasOneUse(); }] >; class HasOneUseTernaryOp<SDPatternOperator op> : PatFrag< (ops node:$src0, node:$src1, node:$src2), (op $src0, $src1, $src2), [{ return N->hasOneUse(); }] >; let Properties = [SDNPCommutative, SDNPAssociative] in { def smax_oneuse : HasOneUseBinOp<smax>; def smin_oneuse : HasOneUseBinOp<smin>; def umax_oneuse : HasOneUseBinOp<umax>; def umin_oneuse : HasOneUseBinOp<umin>; def fminnum_oneuse : HasOneUseBinOp<fminnum>; def fmaxnum_oneuse : HasOneUseBinOp<fmaxnum>; def and_oneuse : HasOneUseBinOp<and>; def or_oneuse : HasOneUseBinOp<or>; def xor_oneuse : HasOneUseBinOp<xor>; } // Properties = [SDNPCommutative, SDNPAssociative] def add_oneuse : HasOneUseBinOp<add>; def sub_oneuse : HasOneUseBinOp<sub>; def srl_oneuse : HasOneUseBinOp<srl>; def shl_oneuse : HasOneUseBinOp<shl>; def select_oneuse : HasOneUseTernaryOp<select>; def srl_16 : PatFrag< (ops node:$src0), (srl_oneuse node:$src0, (i32 16)) >; def hi_i16_elt : PatFrag< (ops node:$src0), (i16 (trunc (i32 (srl_16 node:$src0)))) >; def hi_f16_elt : PatLeaf< (vt), [{ if (N->getOpcode() != ISD::BITCAST) return false; SDValue Tmp = N->getOperand(0); if (Tmp.getOpcode() != ISD::SRL) return false; if (const auto *RHS = dyn_cast<ConstantSDNode>(Tmp.getOperand(1)) return RHS->getZExtValue() == 16; return false; }]>; //===----------------------------------------------------------------------===// // PatLeafs for floating-point comparisons //===----------------------------------------------------------------------===// def COND_OEQ : PatLeaf < (cond), [{return N->get() == ISD::SETOEQ || N->get() == ISD::SETEQ;}] >; def COND_ONE : PatLeaf < (cond), [{return N->get() == ISD::SETONE || N->get() == ISD::SETNE;}] >; def COND_OGT : PatLeaf < (cond), [{return N->get() == ISD::SETOGT || N->get() == ISD::SETGT;}] >; def COND_OGE : PatLeaf < (cond), [{return N->get() == ISD::SETOGE || N->get() == ISD::SETGE;}] >; def COND_OLT : PatLeaf < (cond), [{return N->get() == ISD::SETOLT || N->get() == ISD::SETLT;}] >; def COND_OLE : PatLeaf < (cond), [{return N->get() == ISD::SETOLE || N->get() == ISD::SETLE;}] >; def COND_O : PatLeaf <(cond), [{return N->get() == ISD::SETO;}]>; def COND_UO : PatLeaf <(cond), [{return N->get() == ISD::SETUO;}]>; //===----------------------------------------------------------------------===// // PatLeafs for unsigned / unordered comparisons //===----------------------------------------------------------------------===// def COND_UEQ : PatLeaf <(cond), [{return N->get() == ISD::SETUEQ;}]>; def COND_UNE : PatLeaf <(cond), [{return N->get() == ISD::SETUNE;}]>; def COND_UGT : PatLeaf <(cond), [{return N->get() == ISD::SETUGT;}]>; def COND_UGE : PatLeaf <(cond), [{return N->get() == ISD::SETUGE;}]>; def COND_ULT : PatLeaf <(cond), [{return N->get() == ISD::SETULT;}]>; def COND_ULE : PatLeaf <(cond), [{return N->get() == ISD::SETULE;}]>; // XXX - For some reason R600 version is preferring to use unordered // for setne? def COND_UNE_NE : PatLeaf < (cond), [{return N->get() == ISD::SETUNE || N->get() == ISD::SETNE;}] >; //===----------------------------------------------------------------------===// // PatLeafs for signed comparisons //===----------------------------------------------------------------------===// def COND_SGT : PatLeaf <(cond), [{return N->get() == ISD::SETGT;}]>; def COND_SGE : PatLeaf <(cond), [{return N->get() == ISD::SETGE;}]>; def COND_SLT : PatLeaf <(cond), [{return N->get() == ISD::SETLT;}]>; def COND_SLE : PatLeaf <(cond), [{return N->get() == ISD::SETLE;}]>; //===----------------------------------------------------------------------===// // PatLeafs for integer equality //===----------------------------------------------------------------------===// def COND_EQ : PatLeaf < (cond), [{return N->get() == ISD::SETEQ || N->get() == ISD::SETUEQ;}] >; def COND_NE : PatLeaf < (cond), [{return N->get() == ISD::SETNE || N->get() == ISD::SETUNE;}] >; def COND_NULL : PatLeaf < (cond), [{(void)N; return false;}] >; //===----------------------------------------------------------------------===// // PatLeafs for Texture Constants //===----------------------------------------------------------------------===// def TEX_ARRAY : PatLeaf< (imm), [{uint32_t TType = (uint32_t)N->getZExtValue(); return TType == 9 || TType == 10 || TType == 16; }] >; def TEX_RECT : PatLeaf< (imm), [{uint32_t TType = (uint32_t)N->getZExtValue(); return TType == 5; }] >; def TEX_SHADOW : PatLeaf< (imm), [{uint32_t TType = (uint32_t)N->getZExtValue(); return (TType >= 6 && TType <= 8) || TType == 13; }] >; def TEX_SHADOW_ARRAY : PatLeaf< (imm), [{uint32_t TType = (uint32_t)N->getZExtValue(); return TType == 11 || TType == 12 || TType == 17; }] >; //===----------------------------------------------------------------------===// // Load/Store Pattern Fragments //===----------------------------------------------------------------------===// class Aligned8Bytes <dag ops, dag frag> : PatFrag <ops, frag, [{ return cast<MemSDNode>(N)->getAlignment() % 8 == 0; }]>; class Aligned16Bytes <dag ops, dag frag> : PatFrag <ops, frag, [{ return cast<MemSDNode>(N)->getAlignment() >= 16; }]>; class LoadFrag <SDPatternOperator op> : PatFrag<(ops node:$ptr), (op node:$ptr)>; class StoreFrag<SDPatternOperator op> : PatFrag < (ops node:$value, node:$ptr), (op node:$value, node:$ptr) >; class StoreHi16<SDPatternOperator op> : PatFrag < (ops node:$value, node:$ptr), (op (srl node:$value, (i32 16)), node:$ptr) >; class PrivateAddress : CodePatPred<[{ return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUASI.PRIVATE_ADDRESS; }]>; class ConstantAddress : CodePatPred<[{ return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUASI.CONSTANT_ADDRESS; }]>; class LocalAddress : CodePatPred<[{ return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS; }]>; class GlobalAddress : CodePatPred<[{ return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS; }]>; class GlobalLoadAddress : CodePatPred<[{ auto AS = cast<MemSDNode>(N)->getAddressSpace(); return AS == AMDGPUASI.GLOBAL_ADDRESS || AS == AMDGPUASI.CONSTANT_ADDRESS; }]>; class FlatLoadAddress : CodePatPred<[{ const auto AS = cast<MemSDNode>(N)->getAddressSpace(); return AS == AMDGPUASI.FLAT_ADDRESS || AS == AMDGPUASI.GLOBAL_ADDRESS || AS == AMDGPUASI.CONSTANT_ADDRESS; }]>; class FlatStoreAddress : CodePatPred<[{ const auto AS = cast<MemSDNode>(N)->getAddressSpace(); return AS == AMDGPUASI.FLAT_ADDRESS || AS == AMDGPUASI.GLOBAL_ADDRESS; }]>; class AZExtLoadBase <SDPatternOperator ld_node>: PatFrag<(ops node:$ptr), (ld_node node:$ptr), [{ LoadSDNode *L = cast<LoadSDNode>(N); return L->getExtensionType() == ISD::ZEXTLOAD || L->getExtensionType() == ISD::EXTLOAD; }]>; def az_extload : AZExtLoadBase <unindexedload>; def az_extloadi8 : PatFrag<(ops node:$ptr), (az_extload node:$ptr), [{ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i8; }]>; def az_extloadi16 : PatFrag<(ops node:$ptr), (az_extload node:$ptr), [{ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i16; }]>; def az_extloadi32 : PatFrag<(ops node:$ptr), (az_extload node:$ptr), [{ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i32; }]>; class PrivateLoad <SDPatternOperator op> : LoadFrag <op>, PrivateAddress; class PrivateStore <SDPatternOperator op> : StoreFrag <op>, PrivateAddress; class LocalLoad <SDPatternOperator op> : LoadFrag <op>, LocalAddress; class LocalStore <SDPatternOperator op> : StoreFrag <op>, LocalAddress; class GlobalLoad <SDPatternOperator op> : LoadFrag<op>, GlobalLoadAddress; class GlobalStore <SDPatternOperator op> : StoreFrag<op>, GlobalAddress; class FlatLoad <SDPatternOperator op> : LoadFrag <op>, FlatLoadAddress; class FlatStore <SDPatternOperator op> : StoreFrag <op>, FlatStoreAddress; class ConstantLoad <SDPatternOperator op> : LoadFrag <op>, ConstantAddress; def load_private : PrivateLoad <load>; def az_extloadi8_private : PrivateLoad <az_extloadi8>; def sextloadi8_private : PrivateLoad <sextloadi8>; def az_extloadi16_private : PrivateLoad <az_extloadi16>; def sextloadi16_private : PrivateLoad <sextloadi16>; def store_private : PrivateStore <store>; def truncstorei8_private : PrivateStore<truncstorei8>; def truncstorei16_private : PrivateStore <truncstorei16>; def store_hi16_private : StoreHi16 <truncstorei16>, PrivateAddress; def truncstorei8_hi16_private : StoreHi16<truncstorei8>, PrivateAddress; def load_global : GlobalLoad <load>; def sextloadi8_global : GlobalLoad <sextloadi8>; def az_extloadi8_global : GlobalLoad <az_extloadi8>; def sextloadi16_global : GlobalLoad <sextloadi16>; def az_extloadi16_global : GlobalLoad <az_extloadi16>; def atomic_load_global : GlobalLoad<atomic_load>; def store_global : GlobalStore <store>; def truncstorei8_global : GlobalStore <truncstorei8>; def truncstorei16_global : GlobalStore <truncstorei16>; def store_atomic_global : GlobalStore<atomic_store>; def truncstorei8_hi16_global : StoreHi16 <truncstorei8>, GlobalAddress; def truncstorei16_hi16_global : StoreHi16 <truncstorei16>, GlobalAddress; def load_local : LocalLoad <load>; def az_extloadi8_local : LocalLoad <az_extloadi8>; def sextloadi8_local : LocalLoad <sextloadi8>; def az_extloadi16_local : LocalLoad <az_extloadi16>; def sextloadi16_local : LocalLoad <sextloadi16>; def atomic_load_32_local : LocalLoad<atomic_load_32>; def atomic_load_64_local : LocalLoad<atomic_load_64>; def store_local : LocalStore <store>; def truncstorei8_local : LocalStore <truncstorei8>; def truncstorei16_local : LocalStore <truncstorei16>; def store_local_hi16 : StoreHi16 <truncstorei16>, LocalAddress; def truncstorei8_local_hi16 : StoreHi16<truncstorei8>, LocalAddress; def atomic_store_local : LocalStore <atomic_store>; def load_align8_local : Aligned8Bytes < (ops node:$ptr), (load_local node:$ptr) >; def load_align16_local : Aligned16Bytes < (ops node:$ptr), (load_local node:$ptr) >; def store_align8_local : Aligned8Bytes < (ops node:$val, node:$ptr), (store_local node:$val, node:$ptr) >; def store_align16_local : Aligned16Bytes < (ops node:$val, node:$ptr), (store_local node:$val, node:$ptr) >; def load_flat : FlatLoad <load>; def az_extloadi8_flat : FlatLoad <az_extloadi8>; def sextloadi8_flat : FlatLoad <sextloadi8>; def az_extloadi16_flat : FlatLoad <az_extloadi16>; def sextloadi16_flat : FlatLoad <sextloadi16>; def atomic_load_flat : FlatLoad<atomic_load>; def store_flat : FlatStore <store>; def truncstorei8_flat : FlatStore <truncstorei8>; def truncstorei16_flat : FlatStore <truncstorei16>; def atomic_store_flat : FlatStore <atomic_store>; def truncstorei8_hi16_flat : StoreHi16<truncstorei8>, FlatStoreAddress; def truncstorei16_hi16_flat : StoreHi16<truncstorei16>, FlatStoreAddress; def constant_load : ConstantLoad<load>; def sextloadi8_constant : ConstantLoad <sextloadi8>; def az_extloadi8_constant : ConstantLoad <az_extloadi8>; def sextloadi16_constant : ConstantLoad <sextloadi16>; def az_extloadi16_constant : ConstantLoad <az_extloadi16>; class local_binary_atomic_op<SDNode atomic_op> : PatFrag<(ops node:$ptr, node:$value), (atomic_op node:$ptr, node:$value), [{ return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS; }]>; def atomic_swap_local : local_binary_atomic_op<atomic_swap>; def atomic_load_add_local : local_binary_atomic_op<atomic_load_add>; def atomic_load_sub_local : local_binary_atomic_op<atomic_load_sub>; def atomic_load_and_local : local_binary_atomic_op<atomic_load_and>; def atomic_load_or_local : local_binary_atomic_op<atomic_load_or>; def atomic_load_xor_local : local_binary_atomic_op<atomic_load_xor>; def atomic_load_nand_local : local_binary_atomic_op<atomic_load_nand>; def atomic_load_min_local : local_binary_atomic_op<atomic_load_min>; def atomic_load_max_local : local_binary_atomic_op<atomic_load_max>; def atomic_load_umin_local : local_binary_atomic_op<atomic_load_umin>; def atomic_load_umax_local : local_binary_atomic_op<atomic_load_umax>; def mskor_global : PatFrag<(ops node:$val, node:$ptr), (AMDGPUstore_mskor node:$val, node:$ptr), [{ return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS; }]>; class AtomicCmpSwapLocal <SDNode cmp_swap_node> : PatFrag< (ops node:$ptr, node:$cmp, node:$swap), (cmp_swap_node node:$ptr, node:$cmp, node:$swap), [{ AtomicSDNode *AN = cast<AtomicSDNode>(N); return AN->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS; }]>; def atomic_cmp_swap_local : AtomicCmpSwapLocal <atomic_cmp_swap>; multiclass global_binary_atomic_op<SDNode atomic_op> { def "" : PatFrag< (ops node:$ptr, node:$value), (atomic_op node:$ptr, node:$value), [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS;}]>; def _noret : PatFrag< (ops node:$ptr, node:$value), (atomic_op node:$ptr, node:$value), [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS && (SDValue(N, 0).use_empty());}]>; def _ret : PatFrag< (ops node:$ptr, node:$value), (atomic_op node:$ptr, node:$value), [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS && (!SDValue(N, 0).use_empty());}]>; } defm atomic_swap_global : global_binary_atomic_op<atomic_swap>; defm atomic_add_global : global_binary_atomic_op<atomic_load_add>; defm atomic_and_global : global_binary_atomic_op<atomic_load_and>; defm atomic_max_global : global_binary_atomic_op<atomic_load_max>; defm atomic_min_global : global_binary_atomic_op<atomic_load_min>; defm atomic_or_global : global_binary_atomic_op<atomic_load_or>; defm atomic_sub_global : global_binary_atomic_op<atomic_load_sub>; defm atomic_umax_global : global_binary_atomic_op<atomic_load_umax>; defm atomic_umin_global : global_binary_atomic_op<atomic_load_umin>; defm atomic_xor_global : global_binary_atomic_op<atomic_load_xor>; // Legacy. def AMDGPUatomic_cmp_swap_global : PatFrag< (ops node:$ptr, node:$value), (AMDGPUatomic_cmp_swap node:$ptr, node:$value)>, GlobalAddress; def atomic_cmp_swap_global : PatFrag< (ops node:$ptr, node:$cmp, node:$value), (atomic_cmp_swap node:$ptr, node:$cmp, node:$value)>, GlobalAddress; def atomic_cmp_swap_global_noret : PatFrag< (ops node:$ptr, node:$cmp, node:$value), (atomic_cmp_swap node:$ptr, node:$cmp, node:$value), [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS && (SDValue(N, 0).use_empty());}]>; def atomic_cmp_swap_global_ret : PatFrag< (ops node:$ptr, node:$cmp, node:$value), (atomic_cmp_swap node:$ptr, node:$cmp, node:$value), [{return cast<MemSDNode>(N)->getAddressSpace() == AMDGPUASI.GLOBAL_ADDRESS && (!SDValue(N, 0).use_empty());}]>; //===----------------------------------------------------------------------===// // Misc Pattern Fragments //===----------------------------------------------------------------------===// class Constants { int TWO_PI = 0x40c90fdb; int PI = 0x40490fdb; int TWO_PI_INV = 0x3e22f983; int FP_UINT_MAX_PLUS_1 = 0x4f800000; // 1 << 32 in floating point encoding int FP16_ONE = 0x3C00; int FP16_NEG_ONE = 0xBC00; int V2FP16_ONE = 0x3C003C00; int FP32_ONE = 0x3f800000; int FP32_NEG_ONE = 0xbf800000; int FP64_ONE = 0x3ff0000000000000; int FP64_NEG_ONE = 0xbff0000000000000; } def CONST : Constants; def FP_ZERO : PatLeaf < (fpimm), [{return N->getValueAPF().isZero();}] >; def FP_ONE : PatLeaf < (fpimm), [{return N->isExactlyValue(1.0);}] >; def FP_HALF : PatLeaf < (fpimm), [{return N->isExactlyValue(0.5);}] >; /* Generic helper patterns for intrinsics */ /* -------------------------------------- */ class POW_Common <AMDGPUInst log_ieee, AMDGPUInst exp_ieee, AMDGPUInst mul> : AMDGPUPat < (fpow f32:$src0, f32:$src1), (exp_ieee (mul f32:$src1, (log_ieee f32:$src0))) >; /* Other helper patterns */ /* --------------------- */ /* Extract element pattern */ class Extract_Element <ValueType sub_type, ValueType vec_type, int sub_idx, SubRegIndex sub_reg> : AMDGPUPat< (sub_type (extractelt vec_type:$src, sub_idx)), (EXTRACT_SUBREG $src, sub_reg) > { let SubtargetPredicate = TruePredicate; } /* Insert element pattern */ class Insert_Element <ValueType elem_type, ValueType vec_type, int sub_idx, SubRegIndex sub_reg> : AMDGPUPat < (insertelt vec_type:$vec, elem_type:$elem, sub_idx), (INSERT_SUBREG $vec, $elem, sub_reg) > { let SubtargetPredicate = TruePredicate; } // XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer // can handle COPY instructions. // bitconvert pattern class BitConvert <ValueType dt, ValueType st, RegisterClass rc> : AMDGPUPat < (dt (bitconvert (st rc:$src0))), (dt rc:$src0) >; // XXX: Convert to new syntax and use COPY_TO_REG, once the DFAPacketizer // can handle COPY instructions. class DwordAddrPat<ValueType vt, RegisterClass rc> : AMDGPUPat < (vt (AMDGPUdwordaddr (vt rc:$addr))), (vt rc:$addr) >; // BFI_INT patterns multiclass BFIPatterns <Instruction BFI_INT, Instruction LoadImm32, RegisterClass RC64> { // Definition from ISA doc: // (y & x) | (z & ~x) def : AMDGPUPat < (or (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))), (BFI_INT $x, $y, $z) >; // 64-bit version def : AMDGPUPat < (or (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))), (REG_SEQUENCE RC64, (BFI_INT (i32 (EXTRACT_SUBREG $x, sub0)), (i32 (EXTRACT_SUBREG $y, sub0)), (i32 (EXTRACT_SUBREG $z, sub0))), sub0, (BFI_INT (i32 (EXTRACT_SUBREG $x, sub1)), (i32 (EXTRACT_SUBREG $y, sub1)), (i32 (EXTRACT_SUBREG $z, sub1))), sub1) >; // SHA-256 Ch function // z ^ (x & (y ^ z)) def : AMDGPUPat < (xor i32:$z, (and i32:$x, (xor i32:$y, i32:$z))), (BFI_INT $x, $y, $z) >; // 64-bit version def : AMDGPUPat < (xor i64:$z, (and i64:$x, (xor i64:$y, i64:$z))), (REG_SEQUENCE RC64, (BFI_INT (i32 (EXTRACT_SUBREG $x, sub0)), (i32 (EXTRACT_SUBREG $y, sub0)), (i32 (EXTRACT_SUBREG $z, sub0))), sub0, (BFI_INT (i32 (EXTRACT_SUBREG $x, sub1)), (i32 (EXTRACT_SUBREG $y, sub1)), (i32 (EXTRACT_SUBREG $z, sub1))), sub1) >; def : AMDGPUPat < (fcopysign f32:$src0, f32:$src1), (BFI_INT (LoadImm32 (i32 0x7fffffff)), $src0, $src1) >; def : AMDGPUPat < (f32 (fcopysign f32:$src0, f64:$src1)), (BFI_INT (LoadImm32 (i32 0x7fffffff)), $src0, (i32 (EXTRACT_SUBREG $src1, sub1))) >; def : AMDGPUPat < (f64 (fcopysign f64:$src0, f64:$src1)), (REG_SEQUENCE RC64, (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, (BFI_INT (LoadImm32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)), (i32 (EXTRACT_SUBREG $src1, sub1))), sub1) >; def : AMDGPUPat < (f64 (fcopysign f64:$src0, f32:$src1)), (REG_SEQUENCE RC64, (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, (BFI_INT (LoadImm32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)), $src1), sub1) >; } // SHA-256 Ma patterns // ((x & z) | (y & (x | z))) -> BFI_INT (XOR x, y), z, y multiclass SHA256MaPattern <Instruction BFI_INT, Instruction XOR, RegisterClass RC64> { def : AMDGPUPat < (or (and i32:$x, i32:$z), (and i32:$y, (or i32:$x, i32:$z))), (BFI_INT (XOR i32:$x, i32:$y), i32:$z, i32:$y) >; def : AMDGPUPat < (or (and i64:$x, i64:$z), (and i64:$y, (or i64:$x, i64:$z))), (REG_SEQUENCE RC64, (BFI_INT (XOR (i32 (EXTRACT_SUBREG $x, sub0)), (i32 (EXTRACT_SUBREG $y, sub0))), (i32 (EXTRACT_SUBREG $z, sub0)), (i32 (EXTRACT_SUBREG $y, sub0))), sub0, (BFI_INT (XOR (i32 (EXTRACT_SUBREG $x, sub1)), (i32 (EXTRACT_SUBREG $y, sub1))), (i32 (EXTRACT_SUBREG $z, sub1)), (i32 (EXTRACT_SUBREG $y, sub1))), sub1) >; } // Bitfield extract patterns def IMMZeroBasedBitfieldMask : PatLeaf <(imm), [{ return isMask_32(N->getZExtValue()); }]>; def IMMPopCount : SDNodeXForm<imm, [{ return CurDAG->getTargetConstant(countPopulation(N->getZExtValue()), SDLoc(N), MVT::i32); }]>; multiclass BFEPattern <Instruction UBFE, Instruction SBFE, Instruction MOV> { def : AMDGPUPat < (i32 (and (i32 (srl i32:$src, i32:$rshift)), IMMZeroBasedBitfieldMask:$mask)), (UBFE $src, $rshift, (MOV (i32 (IMMPopCount $mask)))) >; // x & ((1 << y) - 1) def : AMDGPUPat < (and i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)), (UBFE $src, (MOV (i32 0)), $width) >; // x & ~(-1 << y) def : AMDGPUPat < (and i32:$src, (xor_oneuse (shl_oneuse -1, i32:$width), -1)), (UBFE $src, (MOV (i32 0)), $width) >; // x & (-1 >> (bitwidth - y)) def : AMDGPUPat < (and i32:$src, (srl_oneuse -1, (sub 32, i32:$width))), (UBFE $src, (MOV (i32 0)), $width) >; // x << (bitwidth - y) >> (bitwidth - y) def : AMDGPUPat < (srl (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)), (UBFE $src, (MOV (i32 0)), $width) >; def : AMDGPUPat < (sra (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)), (SBFE $src, (MOV (i32 0)), $width) >; } // rotr pattern class ROTRPattern <Instruction BIT_ALIGN> : AMDGPUPat < (rotr i32:$src0, i32:$src1), (BIT_ALIGN $src0, $src0, $src1) >; // This matches 16 permutations of // max(min(x, y), min(max(x, y), z)) class IntMed3Pat<Instruction med3Inst, SDPatternOperator max, SDPatternOperator max_oneuse, SDPatternOperator min_oneuse, ValueType vt = i32> : AMDGPUPat< (max (min_oneuse vt:$src0, vt:$src1), (min_oneuse (max_oneuse vt:$src0, vt:$src1), vt:$src2)), (med3Inst $src0, $src1, $src2) >; // Special conversion patterns def cvt_rpi_i32_f32 : PatFrag < (ops node:$src), (fp_to_sint (ffloor (fadd $src, FP_HALF))), [{ (void) N; return TM.Options.NoNaNsFPMath; }] >; def cvt_flr_i32_f32 : PatFrag < (ops node:$src), (fp_to_sint (ffloor $src)), [{ (void)N; return TM.Options.NoNaNsFPMath; }] >; class IMad24Pat<Instruction Inst, bit HasClamp = 0> : AMDGPUPat < (add (AMDGPUmul_i24 i32:$src0, i32:$src1), i32:$src2), !if(HasClamp, (Inst $src0, $src1, $src2, (i1 0)), (Inst $src0, $src1, $src2)) >; class UMad24Pat<Instruction Inst, bit HasClamp = 0> : AMDGPUPat < (add (AMDGPUmul_u24 i32:$src0, i32:$src1), i32:$src2), !if(HasClamp, (Inst $src0, $src1, $src2, (i1 0)), (Inst $src0, $src1, $src2)) >; class RcpPat<Instruction RcpInst, ValueType vt> : AMDGPUPat < (fdiv FP_ONE, vt:$src), (RcpInst $src) >; class RsqPat<Instruction RsqInst, ValueType vt> : AMDGPUPat < (AMDGPUrcp (fsqrt vt:$src)), (RsqInst $src) >;