//===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// Insert wait instructions for memory reads and writes. /// /// Memory reads and writes are issued asynchronously, so we need to insert /// S_WAITCNT instructions when we want to access any of their results or /// overwrite any register that's used asynchronously. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUSubtarget.h" #include "SIDefines.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "SIRegisterInfo.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/DebugLoc.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/DebugCounter.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cassert> #include <cstdint> #include <cstring> #include <memory> #include <utility> #include <vector> using namespace llvm; #define DEBUG_TYPE "si-insert-waitcnts" DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", "Force emit s_waitcnt expcnt(0) instrs"); DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", "Force emit s_waitcnt lgkmcnt(0) instrs"); DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", "Force emit s_waitcnt vmcnt(0) instrs"); static cl::opt<unsigned> ForceEmitZeroFlag( "amdgpu-waitcnt-forcezero", cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), cl::init(0), cl::Hidden); namespace { // Class of object that encapsulates latest instruction counter score // associated with the operand. Used for determining whether // s_waitcnt instruction needs to be emited. #define CNT_MASK(t) (1u << (t)) enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS }; using RegInterval = std::pair<signed, signed>; struct { int32_t VmcntMax; int32_t ExpcntMax; int32_t LgkmcntMax; int32_t NumVGPRsMax; int32_t NumSGPRsMax; } HardwareLimits; struct { unsigned VGPR0; unsigned VGPRL; unsigned SGPR0; unsigned SGPRL; } RegisterEncoding; enum WaitEventType { VMEM_ACCESS, // vector-memory read & write LDS_ACCESS, // lds read & write GDS_ACCESS, // gds read & write SQ_MESSAGE, // send message SMEM_ACCESS, // scalar-memory read & write EXP_GPR_LOCK, // export holding on its data src GDS_GPR_LOCK, // GDS holding on its data and addr src EXP_POS_ACCESS, // write to export position EXP_PARAM_ACCESS, // write to export parameter VMW_GPR_LOCK, // vector-memory write holding on its data src NUM_WAIT_EVENTS, }; // The mapping is: // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs // We reserve a fixed number of VGPR slots in the scoring tables for // special tokens like SCMEM_LDS (needed for buffer load to LDS). enum RegisterMapping { SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. }; #define ForAllWaitEventType(w) \ for (enum WaitEventType w = (enum WaitEventType)0; \ (w) < (enum WaitEventType)NUM_WAIT_EVENTS; \ (w) = (enum WaitEventType)((w) + 1)) // This is a per-basic-block object that maintains current score brackets // of each wait counter, and a per-register scoreboard for each wait counter. // We also maintain the latest score for every event type that can change the // waitcnt in order to know if there are multiple types of events within // the brackets. When multiple types of event happen in the bracket, // wait count may get decreased out of order, therefore we need to put in // "s_waitcnt 0" before use. class BlockWaitcntBrackets { public: BlockWaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) { for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; T = (enum InstCounterType)(T + 1)) { memset(VgprScores[T], 0, sizeof(VgprScores[T])); } } ~BlockWaitcntBrackets() = default; static int32_t getWaitCountMax(InstCounterType T) { switch (T) { case VM_CNT: return HardwareLimits.VmcntMax; case LGKM_CNT: return HardwareLimits.LgkmcntMax; case EXP_CNT: return HardwareLimits.ExpcntMax; default: break; } return 0; } void setScoreLB(InstCounterType T, int32_t Val) { assert(T < NUM_INST_CNTS); if (T >= NUM_INST_CNTS) return; ScoreLBs[T] = Val; } void setScoreUB(InstCounterType T, int32_t Val) { assert(T < NUM_INST_CNTS); if (T >= NUM_INST_CNTS) return; ScoreUBs[T] = Val; if (T == EXP_CNT) { int32_t UB = (int)(ScoreUBs[T] - getWaitCountMax(EXP_CNT)); if (ScoreLBs[T] < UB) ScoreLBs[T] = UB; } } int32_t getScoreLB(InstCounterType T) { assert(T < NUM_INST_CNTS); if (T >= NUM_INST_CNTS) return 0; return ScoreLBs[T]; } int32_t getScoreUB(InstCounterType T) { assert(T < NUM_INST_CNTS); if (T >= NUM_INST_CNTS) return 0; return ScoreUBs[T]; } // Mapping from event to counter. InstCounterType eventCounter(WaitEventType E) { switch (E) { case VMEM_ACCESS: return VM_CNT; case LDS_ACCESS: case GDS_ACCESS: case SQ_MESSAGE: case SMEM_ACCESS: return LGKM_CNT; case EXP_GPR_LOCK: case GDS_GPR_LOCK: case VMW_GPR_LOCK: case EXP_POS_ACCESS: case EXP_PARAM_ACCESS: return EXP_CNT; default: llvm_unreachable("unhandled event type"); } return NUM_INST_CNTS; } void setRegScore(int GprNo, InstCounterType T, int32_t Val) { if (GprNo < NUM_ALL_VGPRS) { if (GprNo > VgprUB) { VgprUB = GprNo; } VgprScores[T][GprNo] = Val; } else { assert(T == LGKM_CNT); if (GprNo - NUM_ALL_VGPRS > SgprUB) { SgprUB = GprNo - NUM_ALL_VGPRS; } SgprScores[GprNo - NUM_ALL_VGPRS] = Val; } } int32_t getRegScore(int GprNo, InstCounterType T) { if (GprNo < NUM_ALL_VGPRS) { return VgprScores[T][GprNo]; } return SgprScores[GprNo - NUM_ALL_VGPRS]; } void clear() { memset(ScoreLBs, 0, sizeof(ScoreLBs)); memset(ScoreUBs, 0, sizeof(ScoreUBs)); memset(EventUBs, 0, sizeof(EventUBs)); for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; T = (enum InstCounterType)(T + 1)) { memset(VgprScores[T], 0, sizeof(VgprScores[T])); } memset(SgprScores, 0, sizeof(SgprScores)); } RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, const MachineRegisterInfo *MRI, const SIRegisterInfo *TRI, unsigned OpNo, bool Def) const; void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, unsigned OpNo, int32_t Val); void setWaitAtBeginning() { WaitAtBeginning = true; } void clearWaitAtBeginning() { WaitAtBeginning = false; } bool getWaitAtBeginning() const { return WaitAtBeginning; } void setEventUB(enum WaitEventType W, int32_t Val) { EventUBs[W] = Val; } int32_t getMaxVGPR() const { return VgprUB; } int32_t getMaxSGPR() const { return SgprUB; } int32_t getEventUB(enum WaitEventType W) const { assert(W < NUM_WAIT_EVENTS); return EventUBs[W]; } bool counterOutOfOrder(InstCounterType T); unsigned int updateByWait(InstCounterType T, int ScoreToWait); void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, WaitEventType E, MachineInstr &MI); bool hasPendingSMEM() const { return (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]); } bool hasPendingFlat() const { return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); } void setPendingFlat() { LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; } int pendingFlat(InstCounterType Ct) const { return LastFlat[Ct]; } void setLastFlat(InstCounterType Ct, int Val) { LastFlat[Ct] = Val; } bool getRevisitLoop() const { return RevisitLoop; } void setRevisitLoop(bool RevisitLoopIn) { RevisitLoop = RevisitLoopIn; } void setPostOrder(int32_t PostOrderIn) { PostOrder = PostOrderIn; } int32_t getPostOrder() const { return PostOrder; } void setWaitcnt(MachineInstr *WaitcntIn) { Waitcnt = WaitcntIn; } void clearWaitcnt() { Waitcnt = nullptr; } MachineInstr *getWaitcnt() const { return Waitcnt; } bool mixedExpTypes() const { return MixedExpTypes; } void setMixedExpTypes(bool MixedExpTypesIn) { MixedExpTypes = MixedExpTypesIn; } void print(raw_ostream &); void dump() { print(dbgs()); } private: const GCNSubtarget *ST = nullptr; bool WaitAtBeginning = false; bool RevisitLoop = false; bool MixedExpTypes = false; int32_t PostOrder = 0; MachineInstr *Waitcnt = nullptr; int32_t ScoreLBs[NUM_INST_CNTS] = {0}; int32_t ScoreUBs[NUM_INST_CNTS] = {0}; int32_t EventUBs[NUM_WAIT_EVENTS] = {0}; // Remember the last flat memory operation. int32_t LastFlat[NUM_INST_CNTS] = {0}; // wait_cnt scores for every vgpr. // Keep track of the VgprUB and SgprUB to make merge at join efficient. int32_t VgprUB = 0; int32_t SgprUB = 0; int32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; // Wait cnt scores for every sgpr, only lgkmcnt is relevant. int32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; }; // This is a per-loop-region object that records waitcnt status at the end of // loop footer from the previous iteration. We also maintain an iteration // count to track the number of times the loop has been visited. When it // doesn't converge naturally, we force convergence by inserting s_waitcnt 0 // at the end of the loop footer. class LoopWaitcntData { public: LoopWaitcntData() = default; ~LoopWaitcntData() = default; void incIterCnt() { IterCnt++; } void resetIterCnt() { IterCnt = 0; } unsigned getIterCnt() { return IterCnt; } void setWaitcnt(MachineInstr *WaitcntIn) { LfWaitcnt = WaitcntIn; } MachineInstr *getWaitcnt() const { return LfWaitcnt; } void print() { LLVM_DEBUG(dbgs() << " iteration " << IterCnt << '\n';); } private: // s_waitcnt added at the end of loop footer to stablize wait scores // at the end of the loop footer. MachineInstr *LfWaitcnt = nullptr; // Number of iterations the loop has been visited, not including the initial // walk over. int32_t IterCnt = 0; }; class SIInsertWaitcnts : public MachineFunctionPass { private: const GCNSubtarget *ST = nullptr; const SIInstrInfo *TII = nullptr; const SIRegisterInfo *TRI = nullptr; const MachineRegisterInfo *MRI = nullptr; const MachineLoopInfo *MLI = nullptr; AMDGPU::IsaInfo::IsaVersion IV; AMDGPUAS AMDGPUASI; DenseSet<MachineBasicBlock *> BlockVisitedSet; DenseSet<MachineInstr *> TrackedWaitcntSet; DenseSet<MachineInstr *> VCCZBugHandledSet; DenseMap<MachineBasicBlock *, std::unique_ptr<BlockWaitcntBrackets>> BlockWaitcntBracketsMap; std::vector<MachineBasicBlock *> BlockWaitcntProcessedSet; DenseMap<MachineLoop *, std::unique_ptr<LoopWaitcntData>> LoopWaitcntDataMap; std::vector<std::unique_ptr<BlockWaitcntBrackets>> KillWaitBrackets; // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 // because of amdgpu-waitcnt-forcezero flag bool ForceEmitZeroWaitcnts; bool ForceEmitWaitcnt[NUM_INST_CNTS]; public: static char ID; SIInsertWaitcnts() : MachineFunctionPass(ID) { (void)ForceExpCounter; (void)ForceLgkmCounter; (void)ForceVMCounter; } bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "SI insert wait instructions"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired<MachineLoopInfo>(); MachineFunctionPass::getAnalysisUsage(AU); } void addKillWaitBracket(BlockWaitcntBrackets *Bracket) { // The waitcnt information is copied because it changes as the block is // traversed. KillWaitBrackets.push_back( llvm::make_unique<BlockWaitcntBrackets>(*Bracket)); } bool isForceEmitWaitcnt() const { for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; T = (enum InstCounterType)(T + 1)) if (ForceEmitWaitcnt[T]) return true; return false; } void setForceEmitWaitcnt() { // For non-debug builds, ForceEmitWaitcnt has been initialized to false; // For debug builds, get the debug counter info and adjust if need be #ifndef NDEBUG if (DebugCounter::isCounterSet(ForceExpCounter) && DebugCounter::shouldExecute(ForceExpCounter)) { ForceEmitWaitcnt[EXP_CNT] = true; } else { ForceEmitWaitcnt[EXP_CNT] = false; } if (DebugCounter::isCounterSet(ForceLgkmCounter) && DebugCounter::shouldExecute(ForceLgkmCounter)) { ForceEmitWaitcnt[LGKM_CNT] = true; } else { ForceEmitWaitcnt[LGKM_CNT] = false; } if (DebugCounter::isCounterSet(ForceVMCounter) && DebugCounter::shouldExecute(ForceVMCounter)) { ForceEmitWaitcnt[VM_CNT] = true; } else { ForceEmitWaitcnt[VM_CNT] = false; } #endif // NDEBUG } bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; void generateWaitcntInstBefore(MachineInstr &MI, BlockWaitcntBrackets *ScoreBrackets); void updateEventWaitcntAfter(MachineInstr &Inst, BlockWaitcntBrackets *ScoreBrackets); void mergeInputScoreBrackets(MachineBasicBlock &Block); bool isLoopBottom(const MachineLoop *Loop, const MachineBasicBlock *Block); unsigned countNumBottomBlocks(const MachineLoop *Loop); void insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block); void insertWaitcntBeforeCF(MachineBasicBlock &Block, MachineInstr *Inst); bool isWaitcntStronger(unsigned LHS, unsigned RHS); unsigned combineWaitcnt(unsigned LHS, unsigned RHS); }; } // end anonymous namespace RegInterval BlockWaitcntBrackets::getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, const MachineRegisterInfo *MRI, const SIRegisterInfo *TRI, unsigned OpNo, bool Def) const { const MachineOperand &Op = MI->getOperand(OpNo); if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || (Def && !Op.isDef())) return {-1, -1}; // A use via a PW operand does not need a waitcnt. // A partial write is not a WAW. assert(!Op.getSubReg() || !Op.isUndef()); RegInterval Result; const MachineRegisterInfo &MRIA = *MRI; unsigned Reg = TRI->getEncodingValue(Op.getReg()); if (TRI->isVGPR(MRIA, Op.getReg())) { assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); Result.first = Reg - RegisterEncoding.VGPR0; assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; assert(Result.first >= NUM_ALL_VGPRS && Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); } // TODO: Handle TTMP // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... else return {-1, -1}; const MachineInstr &MIA = *MI; const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); unsigned Size = TRI->getRegSizeInBits(*RC); Result.second = Result.first + (Size / 32); return Result; } void BlockWaitcntBrackets::setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, unsigned OpNo, int32_t Val) { RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); LLVM_DEBUG({ const MachineOperand &Opnd = MI->getOperand(OpNo); assert(TRI->isVGPR(*MRI, Opnd.getReg())); }); for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { setRegScore(RegNo, EXP_CNT, Val); } } void BlockWaitcntBrackets::updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, WaitEventType E, MachineInstr &Inst) { const MachineRegisterInfo &MRIA = *MRI; InstCounterType T = eventCounter(E); int32_t CurrScore = getScoreUB(T) + 1; // EventUB and ScoreUB need to be update regardless if this event changes // the score of a register or not. // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. EventUBs[E] = CurrScore; setScoreUB(T, CurrScore); if (T == EXP_CNT) { // Check for mixed export types. If they are mixed, then a waitcnt exp(0) // is required. if (!MixedExpTypes) { MixedExpTypes = counterOutOfOrder(EXP_CNT); } // Put score on the source vgprs. If this is a store, just use those // specific register(s). if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { // All GDS operations must protect their address register (same as // export.) if (Inst.getOpcode() != AMDGPU::DS_APPEND && Inst.getOpcode() != AMDGPU::DS_CONSUME) { setExpScore( &Inst, TII, TRI, MRI, AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr), CurrScore); } if (Inst.mayStore()) { setExpScore( &Inst, TII, TRI, MRI, AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), CurrScore); if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data1) != -1) { setExpScore(&Inst, TII, TRI, MRI, AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data1), CurrScore); } } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && Inst.getOpcode() != AMDGPU::DS_GWS_INIT && Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && Inst.getOpcode() != AMDGPU::DS_APPEND && Inst.getOpcode() != AMDGPU::DS_CONSUME && Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { const MachineOperand &Op = Inst.getOperand(I); if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); } } } } else if (TII->isFLAT(Inst)) { if (Inst.mayStore()) { setExpScore( &Inst, TII, TRI, MRI, AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), CurrScore); } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { setExpScore( &Inst, TII, TRI, MRI, AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), CurrScore); } } else if (TII->isMIMG(Inst)) { if (Inst.mayStore()) { setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { setExpScore( &Inst, TII, TRI, MRI, AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), CurrScore); } } else if (TII->isMTBUF(Inst)) { if (Inst.mayStore()) { setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); } } else if (TII->isMUBUF(Inst)) { if (Inst.mayStore()) { setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { setExpScore( &Inst, TII, TRI, MRI, AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), CurrScore); } } else { if (TII->isEXP(Inst)) { // For export the destination registers are really temps that // can be used as the actual source after export patching, so // we need to treat them like sources and set the EXP_CNT // score. for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { MachineOperand &DefMO = Inst.getOperand(I); if (DefMO.isReg() && DefMO.isDef() && TRI->isVGPR(MRIA, DefMO.getReg())) { setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, CurrScore); } } } for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { MachineOperand &MO = Inst.getOperand(I); if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); } } } #if 0 // TODO: check if this is handled by MUBUF code above. } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); unsigned OpNo;//TODO: find the OpNo for this operand; RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); } #endif } else { // Match the score to the destination registers. for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) continue; for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { setRegScore(RegNo, T, CurrScore); } } if (TII->isDS(Inst) && Inst.mayStore()) { setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); } } } void BlockWaitcntBrackets::print(raw_ostream &OS) { OS << '\n'; for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; T = (enum InstCounterType)(T + 1)) { int LB = getScoreLB(T); int UB = getScoreUB(T); switch (T) { case VM_CNT: OS << " VM_CNT(" << UB - LB << "): "; break; case LGKM_CNT: OS << " LGKM_CNT(" << UB - LB << "): "; break; case EXP_CNT: OS << " EXP_CNT(" << UB - LB << "): "; break; default: OS << " UNKNOWN(" << UB - LB << "): "; break; } if (LB < UB) { // Print vgpr scores. for (int J = 0; J <= getMaxVGPR(); J++) { int RegScore = getRegScore(J, T); if (RegScore <= LB) continue; int RelScore = RegScore - LB - 1; if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { OS << RelScore << ":v" << J << " "; } else { OS << RelScore << ":ds "; } } // Also need to print sgpr scores for lgkm_cnt. if (T == LGKM_CNT) { for (int J = 0; J <= getMaxSGPR(); J++) { int RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); if (RegScore <= LB) continue; int RelScore = RegScore - LB - 1; OS << RelScore << ":s" << J << " "; } } } OS << '\n'; } OS << '\n'; } unsigned int BlockWaitcntBrackets::updateByWait(InstCounterType T, int ScoreToWait) { unsigned int NeedWait = 0; if (ScoreToWait == -1) { // The score to wait is unknown. This implies that it was not encountered // during the path of the CFG walk done during the current traversal but // may be seen on a different path. Emit an s_wait counter with a // conservative value of 0 for the counter. NeedWait = CNT_MASK(T); setScoreLB(T, getScoreUB(T)); return NeedWait; } // If the score of src_operand falls within the bracket, we need an // s_waitcnt instruction. const int32_t LB = getScoreLB(T); const int32_t UB = getScoreUB(T); if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { if ((T == VM_CNT || T == LGKM_CNT) && hasPendingFlat() && !ST->hasFlatLgkmVMemCountInOrder()) { // If there is a pending FLAT operation, and this is a VMem or LGKM // waitcnt and the target can report early completion, then we need // to force a waitcnt 0. NeedWait = CNT_MASK(T); setScoreLB(T, getScoreUB(T)); } else if (counterOutOfOrder(T)) { // Counter can get decremented out-of-order when there // are multiple types event in the bracket. Also emit an s_wait counter // with a conservative value of 0 for the counter. NeedWait = CNT_MASK(T); setScoreLB(T, getScoreUB(T)); } else { NeedWait = CNT_MASK(T); setScoreLB(T, ScoreToWait); } } return NeedWait; } // Where there are multiple types of event in the bracket of a counter, // the decrement may go out of order. bool BlockWaitcntBrackets::counterOutOfOrder(InstCounterType T) { switch (T) { case VM_CNT: return false; case LGKM_CNT: { if (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]) { // Scalar memory read always can go out of order. return true; } int NumEventTypes = 0; if (EventUBs[LDS_ACCESS] > ScoreLBs[LGKM_CNT] && EventUBs[LDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { NumEventTypes++; } if (EventUBs[GDS_ACCESS] > ScoreLBs[LGKM_CNT] && EventUBs[GDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { NumEventTypes++; } if (EventUBs[SQ_MESSAGE] > ScoreLBs[LGKM_CNT] && EventUBs[SQ_MESSAGE] <= ScoreUBs[LGKM_CNT]) { NumEventTypes++; } if (NumEventTypes <= 1) { return false; } break; } case EXP_CNT: { // If there has been a mixture of export types, then a waitcnt exp(0) is // required. if (MixedExpTypes) return true; int NumEventTypes = 0; if (EventUBs[EXP_GPR_LOCK] > ScoreLBs[EXP_CNT] && EventUBs[EXP_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { NumEventTypes++; } if (EventUBs[GDS_GPR_LOCK] > ScoreLBs[EXP_CNT] && EventUBs[GDS_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { NumEventTypes++; } if (EventUBs[VMW_GPR_LOCK] > ScoreLBs[EXP_CNT] && EventUBs[VMW_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { NumEventTypes++; } if (EventUBs[EXP_PARAM_ACCESS] > ScoreLBs[EXP_CNT] && EventUBs[EXP_PARAM_ACCESS] <= ScoreUBs[EXP_CNT]) { NumEventTypes++; } if (EventUBs[EXP_POS_ACCESS] > ScoreLBs[EXP_CNT] && EventUBs[EXP_POS_ACCESS] <= ScoreUBs[EXP_CNT]) { NumEventTypes++; } if (NumEventTypes <= 1) { return false; } break; } default: break; } return true; } INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, false) INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, false) char SIInsertWaitcnts::ID = 0; char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; FunctionPass *llvm::createSIInsertWaitcntsPass() { return new SIInsertWaitcnts(); } static bool readsVCCZ(const MachineInstr &MI) { unsigned Opc = MI.getOpcode(); return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && !MI.getOperand(1).isUndef(); } /// Given wait count encodings checks if LHS is stronger than RHS. bool SIInsertWaitcnts::isWaitcntStronger(unsigned LHS, unsigned RHS) { if (AMDGPU::decodeVmcnt(IV, LHS) > AMDGPU::decodeVmcnt(IV, RHS)) return false; if (AMDGPU::decodeLgkmcnt(IV, LHS) > AMDGPU::decodeLgkmcnt(IV, RHS)) return false; if (AMDGPU::decodeExpcnt(IV, LHS) > AMDGPU::decodeExpcnt(IV, RHS)) return false; return true; } /// Given wait count encodings create a new encoding which is stronger /// or equal to both. unsigned SIInsertWaitcnts::combineWaitcnt(unsigned LHS, unsigned RHS) { unsigned VmCnt = std::min(AMDGPU::decodeVmcnt(IV, LHS), AMDGPU::decodeVmcnt(IV, RHS)); unsigned LgkmCnt = std::min(AMDGPU::decodeLgkmcnt(IV, LHS), AMDGPU::decodeLgkmcnt(IV, RHS)); unsigned ExpCnt = std::min(AMDGPU::decodeExpcnt(IV, LHS), AMDGPU::decodeExpcnt(IV, RHS)); return AMDGPU::encodeWaitcnt(IV, VmCnt, ExpCnt, LgkmCnt); } /// Generate s_waitcnt instruction to be placed before cur_Inst. /// Instructions of a given type are returned in order, /// but instructions of different types can complete out of order. /// We rely on this in-order completion /// and simply assign a score to the memory access instructions. /// We keep track of the active "score bracket" to determine /// if an access of a memory read requires an s_waitcnt /// and if so what the value of each counter is. /// The "score bracket" is bound by the lower bound and upper bound /// scores (*_score_LB and *_score_ub respectively). void SIInsertWaitcnts::generateWaitcntInstBefore( MachineInstr &MI, BlockWaitcntBrackets *ScoreBrackets) { // To emit, or not to emit - that's the question! // Start with an assumption that there is no need to emit. unsigned int EmitWaitcnt = 0; // No need to wait before phi. If a phi-move exists, then the wait should // has been inserted before the move. If a phi-move does not exist, then // wait should be inserted before the real use. The same is true for // sc-merge. It is not a coincident that all these cases correspond to the // instructions that are skipped in the assembling loop. bool NeedLineMapping = false; // TODO: Check on this. // ForceEmitZeroWaitcnt: force a single s_waitcnt 0 due to hw bug bool ForceEmitZeroWaitcnt = false; setForceEmitWaitcnt(); bool IsForceEmitWaitcnt = isForceEmitWaitcnt(); if (MI.isDebugInstr() && // TODO: any other opcode? !NeedLineMapping) { return; } // See if an s_waitcnt is forced at block entry, or is needed at // program end. if (ScoreBrackets->getWaitAtBeginning()) { // Note that we have already cleared the state, so we don't need to update // it. ScoreBrackets->clearWaitAtBeginning(); for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; T = (enum InstCounterType)(T + 1)) { EmitWaitcnt |= CNT_MASK(T); ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); } } // See if this instruction has a forced S_WAITCNT VM. // TODO: Handle other cases of NeedsWaitcntVmBefore() else if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) { EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); } // All waits must be resolved at call return. // NOTE: this could be improved with knowledge of all call sites or // with knowledge of the called routines. if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || MI.getOpcode() == AMDGPU::S_SETPC_B64_return) { for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; T = (enum InstCounterType)(T + 1)) { if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); EmitWaitcnt |= CNT_MASK(T); } } } // Resolve vm waits before gs-done. else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == AMDGPU::SendMsg::ID_GS_DONE)) { if (ScoreBrackets->getScoreUB(VM_CNT) > ScoreBrackets->getScoreLB(VM_CNT)) { ScoreBrackets->setScoreLB(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); EmitWaitcnt |= CNT_MASK(VM_CNT); } } #if 0 // TODO: the following blocks of logic when we have fence. else if (MI.getOpcode() == SC_FENCE) { const unsigned int group_size = context->shader_info->GetMaxThreadGroupSize(); // group_size == 0 means thread group size is unknown at compile time const bool group_is_multi_wave = (group_size == 0 || group_size > target_info->GetWaveFrontSize()); const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { SCRegType src_type = Inst->GetSrcType(i); switch (src_type) { case SCMEM_LDS: if (group_is_multi_wave || context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT)); // LDS may have to wait for VM_CNT after buffer load to LDS if (target_info->HasBufferLoadToLDS()) { EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); } } break; case SCMEM_GDS: if (group_is_multi_wave || fence_is_global) { EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT)); } break; case SCMEM_UAV: case SCMEM_TFBUF: case SCMEM_RING: case SCMEM_SCATTER: if (group_is_multi_wave || fence_is_global) { EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); } break; case SCMEM_SCRATCH: default: break; } } } #endif // Export & GDS instructions do not read the EXEC mask until after the export // is granted (which can occur well after the instruction is issued). // The shader program must flush all EXP operations on the export-count // before overwriting the EXEC mask. else { if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { // Export and GDS are tracked individually, either may trigger a waitcnt // for EXEC. EmitWaitcnt |= ScoreBrackets->updateByWait( EXP_CNT, ScoreBrackets->getEventUB(EXP_GPR_LOCK)); EmitWaitcnt |= ScoreBrackets->updateByWait( EXP_CNT, ScoreBrackets->getEventUB(EXP_PARAM_ACCESS)); EmitWaitcnt |= ScoreBrackets->updateByWait( EXP_CNT, ScoreBrackets->getEventUB(EXP_POS_ACCESS)); EmitWaitcnt |= ScoreBrackets->updateByWait( EXP_CNT, ScoreBrackets->getEventUB(GDS_GPR_LOCK)); } #if 0 // TODO: the following code to handle CALL. // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT. // However, there is a problem with EXP_CNT, because the call cannot // easily tell if a register is used in the function, and if it did, then // the referring instruction would have to have an S_WAITCNT, which is // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs // before the call. if (MI.getOpcode() == SC_CALL) { if (ScoreBrackets->getScoreUB(EXP_CNT) > ScoreBrackets->getScoreLB(EXP_CNT)) { ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); EmitWaitcnt |= CNT_MASK(EXP_CNT); } } #endif // FIXME: Should not be relying on memoperands. // Look at the source operands of every instruction to see if // any of them results from a previous memory operation that affects // its current usage. If so, an s_waitcnt instruction needs to be // emitted. // If the source operand was defined by a load, add the s_waitcnt // instruction. for (const MachineMemOperand *Memop : MI.memoperands()) { unsigned AS = Memop->getAddrSpace(); if (AS != AMDGPUASI.LOCAL_ADDRESS) continue; unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; // VM_CNT is only relevant to vgpr or LDS. EmitWaitcnt |= ScoreBrackets->updateByWait( VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); } for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { const MachineOperand &Op = MI.getOperand(I); const MachineRegisterInfo &MRIA = *MRI; RegInterval Interval = ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, false); for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { if (TRI->isVGPR(MRIA, Op.getReg())) { // VM_CNT is only relevant to vgpr or LDS. EmitWaitcnt |= ScoreBrackets->updateByWait( VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); } EmitWaitcnt |= ScoreBrackets->updateByWait( LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); } } // End of for loop that looks at all source operands to decide vm_wait_cnt // and lgk_wait_cnt. // Two cases are handled for destination operands: // 1) If the destination operand was defined by a load, add the s_waitcnt // instruction to guarantee the right WAW order. // 2) If a destination operand that was used by a recent export/store ins, // add s_waitcnt on exp_cnt to guarantee the WAR order. if (MI.mayStore()) { // FIXME: Should not be relying on memoperands. for (const MachineMemOperand *Memop : MI.memoperands()) { unsigned AS = Memop->getAddrSpace(); if (AS != AMDGPUASI.LOCAL_ADDRESS) continue; unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; EmitWaitcnt |= ScoreBrackets->updateByWait( VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); EmitWaitcnt |= ScoreBrackets->updateByWait( EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); } } for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { MachineOperand &Def = MI.getOperand(I); const MachineRegisterInfo &MRIA = *MRI; RegInterval Interval = ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, true); for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { if (TRI->isVGPR(MRIA, Def.getReg())) { EmitWaitcnt |= ScoreBrackets->updateByWait( VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); EmitWaitcnt |= ScoreBrackets->updateByWait( EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); } EmitWaitcnt |= ScoreBrackets->updateByWait( LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); } } // End of for loop that looks at all dest operands. } // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 // occurs before the instruction. Doing it here prevents any additional // S_WAITCNTs from being emitted if the instruction was marked as // requiring a WAITCNT beforehand. if (MI.getOpcode() == AMDGPU::S_BARRIER && !ST->hasAutoWaitcntBeforeBarrier()) { EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); EmitWaitcnt |= ScoreBrackets->updateByWait( EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); EmitWaitcnt |= ScoreBrackets->updateByWait( LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT)); } // TODO: Remove this work-around, enable the assert for Bug 457939 // after fixing the scheduler. Also, the Shader Compiler code is // independent of target. if (readsVCCZ(MI) && ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) { if (ScoreBrackets->getScoreLB(LGKM_CNT) < ScoreBrackets->getScoreUB(LGKM_CNT) && ScoreBrackets->hasPendingSMEM()) { // Wait on everything, not just LGKM. vccz reads usually come from // terminators, and we always wait on everything at the end of the // block, so if we only wait on LGKM here, we might end up with // another s_waitcnt inserted right after this if there are non-LGKM // instructions still outstanding. // FIXME: this is too conservative / the comment is wrong. // We don't wait on everything at the end of the block and we combine // waitcnts so we should never have back-to-back waitcnts. ForceEmitZeroWaitcnt = true; EmitWaitcnt = true; } } // Does this operand processing indicate s_wait counter update? if (EmitWaitcnt || IsForceEmitWaitcnt) { int CntVal[NUM_INST_CNTS]; bool UseDefaultWaitcntStrategy = true; if (ForceEmitZeroWaitcnt || ForceEmitZeroWaitcnts) { // Force all waitcnts to 0. for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; T = (enum InstCounterType)(T + 1)) { ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); } CntVal[VM_CNT] = 0; CntVal[EXP_CNT] = 0; CntVal[LGKM_CNT] = 0; UseDefaultWaitcntStrategy = false; } if (UseDefaultWaitcntStrategy) { for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; T = (enum InstCounterType)(T + 1)) { if (EmitWaitcnt & CNT_MASK(T)) { int Delta = ScoreBrackets->getScoreUB(T) - ScoreBrackets->getScoreLB(T); int MaxDelta = ScoreBrackets->getWaitCountMax(T); if (Delta >= MaxDelta) { Delta = -1; if (T != EXP_CNT) { ScoreBrackets->setScoreLB( T, ScoreBrackets->getScoreUB(T) - MaxDelta); } EmitWaitcnt &= ~CNT_MASK(T); } CntVal[T] = Delta; } else { // If we are not waiting for a particular counter then encode // it as -1 which means "don't care." CntVal[T] = -1; } } } // If we are not waiting on any counter we can skip the wait altogether. if (EmitWaitcnt != 0 || IsForceEmitWaitcnt) { MachineInstr *OldWaitcnt = ScoreBrackets->getWaitcnt(); int Imm = (!OldWaitcnt) ? 0 : OldWaitcnt->getOperand(0).getImm(); if (!OldWaitcnt || (AMDGPU::decodeVmcnt(IV, Imm) != (CntVal[VM_CNT] & AMDGPU::getVmcntBitMask(IV))) || (AMDGPU::decodeExpcnt(IV, Imm) != (CntVal[EXP_CNT] & AMDGPU::getExpcntBitMask(IV))) || (AMDGPU::decodeLgkmcnt(IV, Imm) != (CntVal[LGKM_CNT] & AMDGPU::getLgkmcntBitMask(IV)))) { MachineLoop *ContainingLoop = MLI->getLoopFor(MI.getParent()); if (ContainingLoop) { MachineBasicBlock *TBB = ContainingLoop->getHeader(); BlockWaitcntBrackets *ScoreBracket = BlockWaitcntBracketsMap[TBB].get(); if (!ScoreBracket) { assert(!BlockVisitedSet.count(TBB)); BlockWaitcntBracketsMap[TBB] = llvm::make_unique<BlockWaitcntBrackets>(ST); ScoreBracket = BlockWaitcntBracketsMap[TBB].get(); } ScoreBracket->setRevisitLoop(true); LLVM_DEBUG(dbgs() << "set-revisit2: Block" << ContainingLoop->getHeader()->getNumber() << '\n';); } } // Update an existing waitcount, or make a new one. unsigned Enc = AMDGPU::encodeWaitcnt(IV, ForceEmitWaitcnt[VM_CNT] ? 0 : CntVal[VM_CNT], ForceEmitWaitcnt[EXP_CNT] ? 0 : CntVal[EXP_CNT], ForceEmitWaitcnt[LGKM_CNT] ? 0 : CntVal[LGKM_CNT]); // We don't remove waitcnts that existed prior to the waitcnt // pass. Check if the waitcnt to-be-inserted can be avoided // or if the prev waitcnt can be updated. bool insertSWaitInst = true; for (MachineBasicBlock::iterator I = MI.getIterator(), B = MI.getParent()->begin(); insertSWaitInst && I != B; --I) { if (I == MI.getIterator()) continue; switch (I->getOpcode()) { case AMDGPU::S_WAITCNT: if (isWaitcntStronger(I->getOperand(0).getImm(), Enc)) insertSWaitInst = false; else if (!OldWaitcnt) { OldWaitcnt = &*I; Enc = combineWaitcnt(I->getOperand(0).getImm(), Enc); } break; // TODO: skip over instructions which never require wait. } break; } if (insertSWaitInst) { if (OldWaitcnt && OldWaitcnt->getOpcode() == AMDGPU::S_WAITCNT) { if (ForceEmitZeroWaitcnts) LLVM_DEBUG( dbgs() << "Force emit s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)\n"); if (IsForceEmitWaitcnt) LLVM_DEBUG(dbgs() << "Force emit a s_waitcnt due to debug counter\n"); OldWaitcnt->getOperand(0).setImm(Enc); if (!OldWaitcnt->getParent()) MI.getParent()->insert(MI, OldWaitcnt); LLVM_DEBUG(dbgs() << "updateWaitcntInBlock\n" << "Old Instr: " << MI << '\n' << "New Instr: " << *OldWaitcnt << '\n'); } else { auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) .addImm(Enc); TrackedWaitcntSet.insert(SWaitInst); LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n" << "Old Instr: " << MI << '\n' << "New Instr: " << *SWaitInst << '\n'); } } if (CntVal[EXP_CNT] == 0) { ScoreBrackets->setMixedExpTypes(false); } } } } void SIInsertWaitcnts::insertWaitcntBeforeCF(MachineBasicBlock &MBB, MachineInstr *Waitcnt) { if (MBB.empty()) { MBB.push_back(Waitcnt); return; } MachineBasicBlock::iterator It = MBB.end(); MachineInstr *MI = &*(--It); if (MI->isBranch()) { MBB.insert(It, Waitcnt); } else { MBB.push_back(Waitcnt); } } // This is a flat memory operation. Check to see if it has memory // tokens for both LDS and Memory, and if so mark it as a flat. bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { if (MI.memoperands_empty()) return true; for (const MachineMemOperand *Memop : MI.memoperands()) { unsigned AS = Memop->getAddrSpace(); if (AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) return true; } return false; } void SIInsertWaitcnts::updateEventWaitcntAfter( MachineInstr &Inst, BlockWaitcntBrackets *ScoreBrackets) { // Now look at the instruction opcode. If it is a memory access // instruction, update the upper-bound of the appropriate counter's // bracket and the destination operand scores. // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { if (TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); } else { ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); } } else if (TII->isFLAT(Inst)) { assert(Inst.mayLoad() || Inst.mayStore()); if (TII->usesVM_CNT(Inst)) ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); if (TII->usesLGKM_CNT(Inst)) { ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); // This is a flat memory operation, so note it - it will require // that both the VM and LGKM be flushed to zero if it is pending when // a VM or LGKM dependency occurs. if (mayAccessLDSThroughFlat(Inst)) ScoreBrackets->setPendingFlat(); } } else if (SIInstrInfo::isVMEM(Inst) && // TODO: get a better carve out. Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) { ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); if (ST->vmemWriteNeedsExpWaitcnt() && (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); } } else if (TII->isSMRD(Inst)) { ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); } else { switch (Inst.getOpcode()) { case AMDGPU::S_SENDMSG: case AMDGPU::S_SENDMSGHALT: ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); break; case AMDGPU::EXP: case AMDGPU::EXP_DONE: { int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); if (Imm >= 32 && Imm <= 63) ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); else if (Imm >= 12 && Imm <= 15) ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); else ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); break; } case AMDGPU::S_MEMTIME: case AMDGPU::S_MEMREALTIME: ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); break; default: break; } } } // Merge the score brackets of the Block's predecessors; // this merged score bracket is used when adding waitcnts to the Block void SIInsertWaitcnts::mergeInputScoreBrackets(MachineBasicBlock &Block) { BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); int32_t MaxPending[NUM_INST_CNTS] = {0}; int32_t MaxFlat[NUM_INST_CNTS] = {0}; bool MixedExpTypes = false; // For single basic block loops, we need to retain the Block's // score bracket to have accurate Pred info. So, make a copy of Block's // score bracket, clear() it (which retains several important bits of info), // populate, and then replace en masse. For non-single basic block loops, // just clear Block's current score bracket and repopulate in-place. bool IsSelfPred; std::unique_ptr<BlockWaitcntBrackets> S; IsSelfPred = (std::find(Block.pred_begin(), Block.pred_end(), &Block)) != Block.pred_end(); if (IsSelfPred) { S = llvm::make_unique<BlockWaitcntBrackets>(*ScoreBrackets); ScoreBrackets = S.get(); } ScoreBrackets->clear(); // See if there are any uninitialized predecessors. If so, emit an // s_waitcnt 0 at the beginning of the block. for (MachineBasicBlock *Pred : Block.predecessors()) { BlockWaitcntBrackets *PredScoreBrackets = BlockWaitcntBracketsMap[Pred].get(); bool Visited = BlockVisitedSet.count(Pred); if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { continue; } for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; T = (enum InstCounterType)(T + 1)) { int span = PredScoreBrackets->getScoreUB(T) - PredScoreBrackets->getScoreLB(T); MaxPending[T] = std::max(MaxPending[T], span); span = PredScoreBrackets->pendingFlat(T) - PredScoreBrackets->getScoreLB(T); MaxFlat[T] = std::max(MaxFlat[T], span); } MixedExpTypes |= PredScoreBrackets->mixedExpTypes(); } // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? // Also handle kills for exit block. if (Block.succ_empty() && !KillWaitBrackets.empty()) { for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; T = (enum InstCounterType)(T + 1)) { int Span = KillWaitBrackets[I]->getScoreUB(T) - KillWaitBrackets[I]->getScoreLB(T); MaxPending[T] = std::max(MaxPending[T], Span); Span = KillWaitBrackets[I]->pendingFlat(T) - KillWaitBrackets[I]->getScoreLB(T); MaxFlat[T] = std::max(MaxFlat[T], Span); } MixedExpTypes |= KillWaitBrackets[I]->mixedExpTypes(); } } // Special handling for GDS_GPR_LOCK and EXP_GPR_LOCK. for (MachineBasicBlock *Pred : Block.predecessors()) { BlockWaitcntBrackets *PredScoreBrackets = BlockWaitcntBracketsMap[Pred].get(); bool Visited = BlockVisitedSet.count(Pred); if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { continue; } int GDSSpan = PredScoreBrackets->getEventUB(GDS_GPR_LOCK) - PredScoreBrackets->getScoreLB(EXP_CNT); MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); int EXPSpan = PredScoreBrackets->getEventUB(EXP_GPR_LOCK) - PredScoreBrackets->getScoreLB(EXP_CNT); MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); } // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? if (Block.succ_empty() && !KillWaitBrackets.empty()) { for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { int GDSSpan = KillWaitBrackets[I]->getEventUB(GDS_GPR_LOCK) - KillWaitBrackets[I]->getScoreLB(EXP_CNT); MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); int EXPSpan = KillWaitBrackets[I]->getEventUB(EXP_GPR_LOCK) - KillWaitBrackets[I]->getScoreLB(EXP_CNT); MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); } } #if 0 // LC does not (unlike) add a waitcnt at beginning. Leaving it as marker. // TODO: how does LC distinguish between function entry and main entry? // If this is the entry to a function, force a wait. MachineBasicBlock &Entry = Block.getParent()->front(); if (Entry.getNumber() == Block.getNumber()) { ScoreBrackets->setWaitAtBeginning(); return; } #endif // Now set the current Block's brackets to the largest ending bracket. for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; T = (enum InstCounterType)(T + 1)) { ScoreBrackets->setScoreUB(T, MaxPending[T]); ScoreBrackets->setScoreLB(T, 0); ScoreBrackets->setLastFlat(T, MaxFlat[T]); } ScoreBrackets->setMixedExpTypes(MixedExpTypes); // Set the register scoreboard. for (MachineBasicBlock *Pred : Block.predecessors()) { if (!BlockVisitedSet.count(Pred)) { continue; } BlockWaitcntBrackets *PredScoreBrackets = BlockWaitcntBracketsMap[Pred].get(); // Now merge the gpr_reg_score information for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; T = (enum InstCounterType)(T + 1)) { int PredLB = PredScoreBrackets->getScoreLB(T); int PredUB = PredScoreBrackets->getScoreUB(T); if (PredLB < PredUB) { int PredScale = MaxPending[T] - PredUB; // Merge vgpr scores. for (int J = 0; J <= PredScoreBrackets->getMaxVGPR(); J++) { int PredRegScore = PredScoreBrackets->getRegScore(J, T); if (PredRegScore <= PredLB) continue; int NewRegScore = PredScale + PredRegScore; ScoreBrackets->setRegScore( J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); } // Also need to merge sgpr scores for lgkm_cnt. if (T == LGKM_CNT) { for (int J = 0; J <= PredScoreBrackets->getMaxSGPR(); J++) { int PredRegScore = PredScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); if (PredRegScore <= PredLB) continue; int NewRegScore = PredScale + PredRegScore; ScoreBrackets->setRegScore( J + NUM_ALL_VGPRS, LGKM_CNT, std::max( ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), NewRegScore)); } } } } // Also merge the WaitEvent information. ForAllWaitEventType(W) { enum InstCounterType T = PredScoreBrackets->eventCounter(W); int PredEventUB = PredScoreBrackets->getEventUB(W); if (PredEventUB > PredScoreBrackets->getScoreLB(T)) { int NewEventUB = MaxPending[T] + PredEventUB - PredScoreBrackets->getScoreUB(T); if (NewEventUB > 0) { ScoreBrackets->setEventUB( W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); } } } } // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? // Set the register scoreboard. if (Block.succ_empty() && !KillWaitBrackets.empty()) { for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { // Now merge the gpr_reg_score information. for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; T = (enum InstCounterType)(T + 1)) { int PredLB = KillWaitBrackets[I]->getScoreLB(T); int PredUB = KillWaitBrackets[I]->getScoreUB(T); if (PredLB < PredUB) { int PredScale = MaxPending[T] - PredUB; // Merge vgpr scores. for (int J = 0; J <= KillWaitBrackets[I]->getMaxVGPR(); J++) { int PredRegScore = KillWaitBrackets[I]->getRegScore(J, T); if (PredRegScore <= PredLB) continue; int NewRegScore = PredScale + PredRegScore; ScoreBrackets->setRegScore( J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); } // Also need to merge sgpr scores for lgkm_cnt. if (T == LGKM_CNT) { for (int J = 0; J <= KillWaitBrackets[I]->getMaxSGPR(); J++) { int PredRegScore = KillWaitBrackets[I]->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); if (PredRegScore <= PredLB) continue; int NewRegScore = PredScale + PredRegScore; ScoreBrackets->setRegScore( J + NUM_ALL_VGPRS, LGKM_CNT, std::max( ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), NewRegScore)); } } } } // Also merge the WaitEvent information. ForAllWaitEventType(W) { enum InstCounterType T = KillWaitBrackets[I]->eventCounter(W); int PredEventUB = KillWaitBrackets[I]->getEventUB(W); if (PredEventUB > KillWaitBrackets[I]->getScoreLB(T)) { int NewEventUB = MaxPending[T] + PredEventUB - KillWaitBrackets[I]->getScoreUB(T); if (NewEventUB > 0) { ScoreBrackets->setEventUB( W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); } } } } } // Special case handling of GDS_GPR_LOCK and EXP_GPR_LOCK. Merge this for the // sequencing predecessors, because changes to EXEC require waitcnts due to // the delayed nature of these operations. for (MachineBasicBlock *Pred : Block.predecessors()) { if (!BlockVisitedSet.count(Pred)) { continue; } BlockWaitcntBrackets *PredScoreBrackets = BlockWaitcntBracketsMap[Pred].get(); int pred_gds_ub = PredScoreBrackets->getEventUB(GDS_GPR_LOCK); if (pred_gds_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { int new_gds_ub = MaxPending[EXP_CNT] + pred_gds_ub - PredScoreBrackets->getScoreUB(EXP_CNT); if (new_gds_ub > 0) { ScoreBrackets->setEventUB( GDS_GPR_LOCK, std::max(ScoreBrackets->getEventUB(GDS_GPR_LOCK), new_gds_ub)); } } int pred_exp_ub = PredScoreBrackets->getEventUB(EXP_GPR_LOCK); if (pred_exp_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { int new_exp_ub = MaxPending[EXP_CNT] + pred_exp_ub - PredScoreBrackets->getScoreUB(EXP_CNT); if (new_exp_ub > 0) { ScoreBrackets->setEventUB( EXP_GPR_LOCK, std::max(ScoreBrackets->getEventUB(EXP_GPR_LOCK), new_exp_ub)); } } } // if a single block loop, update the score brackets. Not needed for other // blocks, as we did this in-place if (IsSelfPred) { BlockWaitcntBracketsMap[&Block] = llvm::make_unique<BlockWaitcntBrackets>(*ScoreBrackets); } } /// Return true if the given basic block is a "bottom" block of a loop. /// This works even if the loop is discontiguous. This also handles /// multiple back-edges for the same "header" block of a loop. bool SIInsertWaitcnts::isLoopBottom(const MachineLoop *Loop, const MachineBasicBlock *Block) { for (MachineBasicBlock *MBB : Loop->blocks()) { if (MBB == Block && MBB->isSuccessor(Loop->getHeader())) { return true; } } return false; } /// Count the number of "bottom" basic blocks of a loop. unsigned SIInsertWaitcnts::countNumBottomBlocks(const MachineLoop *Loop) { unsigned Count = 0; for (MachineBasicBlock *MBB : Loop->blocks()) { if (MBB->isSuccessor(Loop->getHeader())) { Count++; } } return Count; } // Generate s_waitcnt instructions where needed. void SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block) { // Initialize the state information. mergeInputScoreBrackets(Block); BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); LLVM_DEBUG({ dbgs() << "*** Block" << Block.getNumber() << " ***"; ScoreBrackets->dump(); }); // Walk over the instructions. for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end(); Iter != E;) { MachineInstr &Inst = *Iter; // Remove any previously existing waitcnts. if (Inst.getOpcode() == AMDGPU::S_WAITCNT) { // Leave pre-existing waitcnts, but note their existence via setWaitcnt. // Remove the waitcnt-pass-generated waitcnts; the pass will add them back // as needed. if (!TrackedWaitcntSet.count(&Inst)) ++Iter; else { ++Iter; Inst.removeFromParent(); } ScoreBrackets->setWaitcnt(&Inst); continue; } // Kill instructions generate a conditional branch to the endmain block. // Merge the current waitcnt state into the endmain block information. // TODO: Are there other flavors of KILL instruction? if (Inst.getOpcode() == AMDGPU::KILL) { addKillWaitBracket(ScoreBrackets); } bool VCCZBugWorkAround = false; if (readsVCCZ(Inst) && (!VCCZBugHandledSet.count(&Inst))) { if (ScoreBrackets->getScoreLB(LGKM_CNT) < ScoreBrackets->getScoreUB(LGKM_CNT) && ScoreBrackets->hasPendingSMEM()) { if (ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) VCCZBugWorkAround = true; } } // Generate an s_waitcnt instruction to be placed before // cur_Inst, if needed. generateWaitcntInstBefore(Inst, ScoreBrackets); updateEventWaitcntAfter(Inst, ScoreBrackets); #if 0 // TODO: implement resource type check controlled by options with ub = LB. // If this instruction generates a S_SETVSKIP because it is an // indexed resource, and we are on Tahiti, then it will also force // an S_WAITCNT vmcnt(0) if (RequireCheckResourceType(Inst, context)) { // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. ScoreBrackets->setScoreLB(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); } #endif ScoreBrackets->clearWaitcnt(); LLVM_DEBUG({ Inst.print(dbgs()); ScoreBrackets->dump(); }); // Check to see if this is a GWS instruction. If so, and if this is CI or // VI, then the generated code sequence will include an S_WAITCNT 0. // TODO: Are these the only GWS instructions? if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT || Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V || Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P || Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) { // TODO: && context->target_info->GwsRequiresMemViolTest() ) { ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); ScoreBrackets->updateByWait(LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT)); } // TODO: Remove this work-around after fixing the scheduler and enable the // assert above. if (VCCZBugWorkAround) { // Restore the vccz bit. Any time a value is written to vcc, the vcc // bit is updated, so we can restore the bit by reading the value of // vcc and then writing it back to the register. BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), AMDGPU::VCC) .addReg(AMDGPU::VCC); VCCZBugHandledSet.insert(&Inst); } ++Iter; } // Check if we need to force convergence at loop footer. MachineLoop *ContainingLoop = MLI->getLoopFor(&Block); if (ContainingLoop && isLoopBottom(ContainingLoop, &Block)) { LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); WaitcntData->print(); LLVM_DEBUG(dbgs() << '\n';); // The iterative waitcnt insertion algorithm aims for optimal waitcnt // placement, but doesn't guarantee convergence for a loop. Each // loop should take at most (n+1) iterations for it to converge naturally, // where n is the number of bottom blocks. If this threshold is reached and // the result hasn't converged, then we force convergence by inserting // a s_waitcnt at the end of loop footer. if (WaitcntData->getIterCnt() > (countNumBottomBlocks(ContainingLoop) + 1)) { // To ensure convergence, need to make wait events at loop footer be no // more than those from the previous iteration. // As a simplification, instead of tracking individual scores and // generating the precise wait count, just wait on 0. bool HasPending = false; MachineInstr *SWaitInst = WaitcntData->getWaitcnt(); for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; T = (enum InstCounterType)(T + 1)) { if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); HasPending = true; break; } } if (HasPending) { if (!SWaitInst) { SWaitInst = BuildMI(Block, Block.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) .addImm(0); TrackedWaitcntSet.insert(SWaitInst); #if 0 // TODO: Format the debug output OutputTransformBanner("insertWaitcntInBlock",0,"Create:",context); OutputTransformAdd(SWaitInst, context); #endif } #if 0 // TODO: ?? _DEV( REPORTED_STATS->force_waitcnt_converge = 1; ) #endif } if (SWaitInst) { LLVM_DEBUG({ SWaitInst->print(dbgs()); dbgs() << "\nAdjusted score board:"; ScoreBrackets->dump(); }); // Add this waitcnt to the block. It is either newly created or // created in previous iterations and added back since block traversal // always removes waitcnts. insertWaitcntBeforeCF(Block, SWaitInst); WaitcntData->setWaitcnt(SWaitInst); } } } } bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { ST = &MF.getSubtarget<GCNSubtarget>(); TII = ST->getInstrInfo(); TRI = &TII->getRegisterInfo(); MRI = &MF.getRegInfo(); MLI = &getAnalysis<MachineLoopInfo>(); IV = AMDGPU::IsaInfo::getIsaVersion(ST->getFeatureBits()); const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); AMDGPUASI = ST->getAMDGPUAS(); ForceEmitZeroWaitcnts = ForceEmitZeroFlag; for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; T = (enum InstCounterType)(T + 1)) ForceEmitWaitcnt[T] = false; HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); RegisterEncoding.VGPRL = RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); RegisterEncoding.SGPRL = RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; TrackedWaitcntSet.clear(); BlockVisitedSet.clear(); VCCZBugHandledSet.clear(); LoopWaitcntDataMap.clear(); BlockWaitcntProcessedSet.clear(); // Walk over the blocks in reverse post-dominator order, inserting // s_waitcnt where needed. ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); bool Modified = false; for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator I = RPOT.begin(), E = RPOT.end(), J = RPOT.begin(); I != E;) { MachineBasicBlock &MBB = **I; BlockVisitedSet.insert(&MBB); BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); if (!ScoreBrackets) { BlockWaitcntBracketsMap[&MBB] = llvm::make_unique<BlockWaitcntBrackets>(ST); ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); } ScoreBrackets->setPostOrder(MBB.getNumber()); MachineLoop *ContainingLoop = MLI->getLoopFor(&MBB); if (ContainingLoop && LoopWaitcntDataMap[ContainingLoop] == nullptr) LoopWaitcntDataMap[ContainingLoop] = llvm::make_unique<LoopWaitcntData>(); // If we are walking into the block from before the loop, then guarantee // at least 1 re-walk over the loop to propagate the information, even if // no S_WAITCNT instructions were generated. if (ContainingLoop && ContainingLoop->getHeader() == &MBB) { unsigned Count = countNumBottomBlocks(ContainingLoop); // If the loop has multiple back-edges, and so more than one "bottom" // basic block, we have to guarantee a re-walk over every blocks. if ((std::count(BlockWaitcntProcessedSet.begin(), BlockWaitcntProcessedSet.end(), &MBB) < (int)Count)) { BlockWaitcntBracketsMap[&MBB]->setRevisitLoop(true); LLVM_DEBUG(dbgs() << "set-revisit1: Block" << ContainingLoop->getHeader()->getNumber() << '\n';); } } // Walk over the instructions. insertWaitcntInBlock(MF, MBB); // Record that waitcnts have been processed at least once for this block. BlockWaitcntProcessedSet.push_back(&MBB); // See if we want to revisit the loop. If a loop has multiple back-edges, // we shouldn't revisit the same "bottom" basic block. if (ContainingLoop && isLoopBottom(ContainingLoop, &MBB) && std::count(BlockWaitcntProcessedSet.begin(), BlockWaitcntProcessedSet.end(), &MBB) == 1) { MachineBasicBlock *EntryBB = ContainingLoop->getHeader(); BlockWaitcntBrackets *EntrySB = BlockWaitcntBracketsMap[EntryBB].get(); if (EntrySB && EntrySB->getRevisitLoop()) { EntrySB->setRevisitLoop(false); J = I; int32_t PostOrder = EntrySB->getPostOrder(); // TODO: Avoid this loop. Find another way to set I. for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator X = RPOT.begin(), Y = RPOT.end(); X != Y; ++X) { MachineBasicBlock &MBBX = **X; if (MBBX.getNumber() == PostOrder) { I = X; break; } } LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); WaitcntData->incIterCnt(); LLVM_DEBUG(dbgs() << "revisit: Block" << EntryBB->getNumber() << '\n';); continue; } else { LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); // Loop converged, reset iteration count. If this loop gets revisited, // it must be from an outer loop, the counter will restart, this will // ensure we don't force convergence on such revisits. WaitcntData->resetIterCnt(); } } J = I; ++I; } SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; bool HaveScalarStores = false; for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; ++BI) { MachineBasicBlock &MBB = *BI; for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) { if (!HaveScalarStores && TII->isScalarStore(*I)) HaveScalarStores = true; if (I->getOpcode() == AMDGPU::S_ENDPGM || I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) EndPgmBlocks.push_back(&MBB); } } if (HaveScalarStores) { // If scalar writes are used, the cache must be flushed or else the next // wave to reuse the same scratch memory can be clobbered. // // Insert s_dcache_wb at wave termination points if there were any scalar // stores, and only if the cache hasn't already been flushed. This could be // improved by looking across blocks for flushes in postdominating blocks // from the stores but an explicitly requested flush is probably very rare. for (MachineBasicBlock *MBB : EndPgmBlocks) { bool SeenDCacheWB = false; for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { if (I->getOpcode() == AMDGPU::S_DCACHE_WB) SeenDCacheWB = true; else if (TII->isScalarStore(*I)) SeenDCacheWB = false; // FIXME: It would be better to insert this before a waitcnt if any. if ((I->getOpcode() == AMDGPU::S_ENDPGM || I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && !SeenDCacheWB) { Modified = true; BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); } } } } if (!MFI->isEntryFunction()) { // Wait for any outstanding memory operations that the input registers may // depend on. We can't track them and it's better to the wait after the // costly call sequence. // TODO: Could insert earlier and schedule more liberally with operations // that only use caller preserved registers. MachineBasicBlock &EntryBB = MF.front(); BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) .addImm(0); Modified = true; } return Modified; }