//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// This pass lowers the pseudo control flow instructions to real /// machine instructions. /// /// All control flow is handled using predicated instructions and /// a predicate stack. Each Scalar ALU controls the operations of 64 Vector /// ALUs. The Scalar ALU can update the predicate for any of the Vector ALUs /// by writting to the 64-bit EXEC register (each bit corresponds to a /// single vector ALU). Typically, for predicates, a vector ALU will write /// to its bit of the VCC register (like EXEC VCC is 64-bits, one for each /// Vector ALU) and then the ScalarALU will AND the VCC register with the /// EXEC to update the predicates. /// /// For example: /// %vcc = V_CMP_GT_F32 %vgpr1, %vgpr2 /// %sgpr0 = SI_IF %vcc /// %vgpr0 = V_ADD_F32 %vgpr0, %vgpr0 /// %sgpr0 = SI_ELSE %sgpr0 /// %vgpr0 = V_SUB_F32 %vgpr0, %vgpr0 /// SI_END_CF %sgpr0 /// /// becomes: /// /// %sgpr0 = S_AND_SAVEEXEC_B64 %vcc // Save and update the exec mask /// %sgpr0 = S_XOR_B64 %sgpr0, %exec // Clear live bits from saved exec mask /// S_CBRANCH_EXECZ label0 // This instruction is an optional /// // optimization which allows us to /// // branch if all the bits of /// // EXEC are zero. /// %vgpr0 = V_ADD_F32 %vgpr0, %vgpr0 // Do the IF block of the branch /// /// label0: /// %sgpr0 = S_OR_SAVEEXEC_B64 %exec // Restore the exec mask for the Then block /// %exec = S_XOR_B64 %sgpr0, %exec // Clear live bits from saved exec mask /// S_BRANCH_EXECZ label1 // Use our branch optimization /// // instruction again. /// %vgpr0 = V_SUB_F32 %vgpr0, %vgpr // Do the THEN block /// label1: /// %exec = S_OR_B64 %exec, %sgpr0 // Re-enable saved exec mask bits //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUSubtarget.h" #include "SIInstrInfo.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include <cassert> #include <iterator> using namespace llvm; #define DEBUG_TYPE "si-lower-control-flow" namespace { class SILowerControlFlow : public MachineFunctionPass { private: const SIRegisterInfo *TRI = nullptr; const SIInstrInfo *TII = nullptr; LiveIntervals *LIS = nullptr; MachineRegisterInfo *MRI = nullptr; void emitIf(MachineInstr &MI); void emitElse(MachineInstr &MI); void emitBreak(MachineInstr &MI); void emitIfBreak(MachineInstr &MI); void emitElseBreak(MachineInstr &MI); void emitLoop(MachineInstr &MI); void emitEndCf(MachineInstr &MI); void findMaskOperands(MachineInstr &MI, unsigned OpNo, SmallVectorImpl<MachineOperand> &Src) const; void combineMasks(MachineInstr &MI); public: static char ID; SILowerControlFlow() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override; StringRef getPassName() const override { return "SI Lower control flow pseudo instructions"; } void getAnalysisUsage(AnalysisUsage &AU) const override { // Should preserve the same set that TwoAddressInstructions does. AU.addPreserved<SlotIndexes>(); AU.addPreserved<LiveIntervals>(); AU.addPreservedID(LiveVariablesID); AU.addPreservedID(MachineLoopInfoID); AU.addPreservedID(MachineDominatorsID); AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } }; } // end anonymous namespace char SILowerControlFlow::ID = 0; INITIALIZE_PASS(SILowerControlFlow, DEBUG_TYPE, "SI lower control flow", false, false) static void setImpSCCDefDead(MachineInstr &MI, bool IsDead) { MachineOperand &ImpDefSCC = MI.getOperand(3); assert(ImpDefSCC.getReg() == AMDGPU::SCC && ImpDefSCC.isDef()); ImpDefSCC.setIsDead(IsDead); } char &llvm::SILowerControlFlowID = SILowerControlFlow::ID; static bool isSimpleIf(const MachineInstr &MI, const MachineRegisterInfo *MRI, const SIInstrInfo *TII) { unsigned SaveExecReg = MI.getOperand(0).getReg(); auto U = MRI->use_instr_nodbg_begin(SaveExecReg); if (U == MRI->use_instr_nodbg_end() || std::next(U) != MRI->use_instr_nodbg_end() || U->getOpcode() != AMDGPU::SI_END_CF) return false; // Check for SI_KILL_*_TERMINATOR on path from if to endif. // if there is any such terminator simplififcations are not safe. auto SMBB = MI.getParent(); auto EMBB = U->getParent(); DenseSet<const MachineBasicBlock*> Visited; SmallVector<MachineBasicBlock*, 4> Worklist(SMBB->succ_begin(), SMBB->succ_end()); while (!Worklist.empty()) { MachineBasicBlock *MBB = Worklist.pop_back_val(); if (MBB == EMBB || !Visited.insert(MBB).second) continue; for(auto &Term : MBB->terminators()) if (TII->isKillTerminator(Term.getOpcode())) return false; Worklist.append(MBB->succ_begin(), MBB->succ_end()); } return true; } void SILowerControlFlow::emitIf(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock::iterator I(&MI); MachineOperand &SaveExec = MI.getOperand(0); MachineOperand &Cond = MI.getOperand(1); assert(SaveExec.getSubReg() == AMDGPU::NoSubRegister && Cond.getSubReg() == AMDGPU::NoSubRegister); unsigned SaveExecReg = SaveExec.getReg(); MachineOperand &ImpDefSCC = MI.getOperand(4); assert(ImpDefSCC.getReg() == AMDGPU::SCC && ImpDefSCC.isDef()); // If there is only one use of save exec register and that use is SI_END_CF, // we can optimize SI_IF by returning the full saved exec mask instead of // just cleared bits. bool SimpleIf = isSimpleIf(MI, MRI, TII); // Add an implicit def of exec to discourage scheduling VALU after this which // will interfere with trying to form s_and_saveexec_b64 later. unsigned CopyReg = SimpleIf ? SaveExecReg : MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass); MachineInstr *CopyExec = BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), CopyReg) .addReg(AMDGPU::EXEC) .addReg(AMDGPU::EXEC, RegState::ImplicitDefine); unsigned Tmp = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass); MachineInstr *And = BuildMI(MBB, I, DL, TII->get(AMDGPU::S_AND_B64), Tmp) .addReg(CopyReg) //.addReg(AMDGPU::EXEC) .addReg(Cond.getReg()); setImpSCCDefDead(*And, true); MachineInstr *Xor = nullptr; if (!SimpleIf) { Xor = BuildMI(MBB, I, DL, TII->get(AMDGPU::S_XOR_B64), SaveExecReg) .addReg(Tmp) .addReg(CopyReg); setImpSCCDefDead(*Xor, ImpDefSCC.isDead()); } // Use a copy that is a terminator to get correct spill code placement it with // fast regalloc. MachineInstr *SetExec = BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64_term), AMDGPU::EXEC) .addReg(Tmp, RegState::Kill); // Insert a pseudo terminator to help keep the verifier happy. This will also // be used later when inserting skips. MachineInstr *NewBr = BuildMI(MBB, I, DL, TII->get(AMDGPU::SI_MASK_BRANCH)) .add(MI.getOperand(2)); if (!LIS) { MI.eraseFromParent(); return; } LIS->InsertMachineInstrInMaps(*CopyExec); // Replace with and so we don't need to fix the live interval for condition // register. LIS->ReplaceMachineInstrInMaps(MI, *And); if (!SimpleIf) LIS->InsertMachineInstrInMaps(*Xor); LIS->InsertMachineInstrInMaps(*SetExec); LIS->InsertMachineInstrInMaps(*NewBr); LIS->removeRegUnit(*MCRegUnitIterator(AMDGPU::EXEC, TRI)); MI.eraseFromParent(); // FIXME: Is there a better way of adjusting the liveness? It shouldn't be // hard to add another def here but I'm not sure how to correctly update the // valno. LIS->removeInterval(SaveExecReg); LIS->createAndComputeVirtRegInterval(SaveExecReg); LIS->createAndComputeVirtRegInterval(Tmp); if (!SimpleIf) LIS->createAndComputeVirtRegInterval(CopyReg); } void SILowerControlFlow::emitElse(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); unsigned DstReg = MI.getOperand(0).getReg(); assert(MI.getOperand(0).getSubReg() == AMDGPU::NoSubRegister); bool ExecModified = MI.getOperand(3).getImm() != 0; MachineBasicBlock::iterator Start = MBB.begin(); // We are running before TwoAddressInstructions, and si_else's operands are // tied. In order to correctly tie the registers, split this into a copy of // the src like it does. unsigned CopyReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass); MachineInstr *CopyExec = BuildMI(MBB, Start, DL, TII->get(AMDGPU::COPY), CopyReg) .add(MI.getOperand(1)); // Saved EXEC // This must be inserted before phis and any spill code inserted before the // else. unsigned SaveReg = ExecModified ? MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass) : DstReg; MachineInstr *OrSaveExec = BuildMI(MBB, Start, DL, TII->get(AMDGPU::S_OR_SAVEEXEC_B64), SaveReg) .addReg(CopyReg); MachineBasicBlock *DestBB = MI.getOperand(2).getMBB(); MachineBasicBlock::iterator ElsePt(MI); if (ExecModified) { MachineInstr *And = BuildMI(MBB, ElsePt, DL, TII->get(AMDGPU::S_AND_B64), DstReg) .addReg(AMDGPU::EXEC) .addReg(SaveReg); if (LIS) LIS->InsertMachineInstrInMaps(*And); } MachineInstr *Xor = BuildMI(MBB, ElsePt, DL, TII->get(AMDGPU::S_XOR_B64_term), AMDGPU::EXEC) .addReg(AMDGPU::EXEC) .addReg(DstReg); MachineInstr *Branch = BuildMI(MBB, ElsePt, DL, TII->get(AMDGPU::SI_MASK_BRANCH)) .addMBB(DestBB); if (!LIS) { MI.eraseFromParent(); return; } LIS->RemoveMachineInstrFromMaps(MI); MI.eraseFromParent(); LIS->InsertMachineInstrInMaps(*CopyExec); LIS->InsertMachineInstrInMaps(*OrSaveExec); LIS->InsertMachineInstrInMaps(*Xor); LIS->InsertMachineInstrInMaps(*Branch); // src reg is tied to dst reg. LIS->removeInterval(DstReg); LIS->createAndComputeVirtRegInterval(DstReg); LIS->createAndComputeVirtRegInterval(CopyReg); if (ExecModified) LIS->createAndComputeVirtRegInterval(SaveReg); // Let this be recomputed. LIS->removeRegUnit(*MCRegUnitIterator(AMDGPU::EXEC, TRI)); } void SILowerControlFlow::emitBreak(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); unsigned Dst = MI.getOperand(0).getReg(); MachineInstr *Or = BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst) .addReg(AMDGPU::EXEC) .add(MI.getOperand(1)); if (LIS) LIS->ReplaceMachineInstrInMaps(MI, *Or); MI.eraseFromParent(); } void SILowerControlFlow::emitIfBreak(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); auto Dst = MI.getOperand(0).getReg(); // Skip ANDing with exec if the break condition is already masked by exec // because it is a V_CMP in the same basic block. (We know the break // condition operand was an i1 in IR, so if it is a VALU instruction it must // be one with a carry-out.) bool SkipAnding = false; if (MI.getOperand(1).isReg()) { if (MachineInstr *Def = MRI->getUniqueVRegDef(MI.getOperand(1).getReg())) { SkipAnding = Def->getParent() == MI.getParent() && SIInstrInfo::isVALU(*Def); } } // AND the break condition operand with exec, then OR that into the "loop // exit" mask. MachineInstr *And = nullptr, *Or = nullptr; if (!SkipAnding) { And = BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_B64), Dst) .addReg(AMDGPU::EXEC) .add(MI.getOperand(1)); Or = BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst) .addReg(Dst) .add(MI.getOperand(2)); } else Or = BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst) .add(MI.getOperand(1)) .add(MI.getOperand(2)); if (LIS) { if (And) LIS->InsertMachineInstrInMaps(*And); LIS->ReplaceMachineInstrInMaps(MI, *Or); } MI.eraseFromParent(); } void SILowerControlFlow::emitElseBreak(MachineInstr &MI) { // Lowered in the same way as emitIfBreak above. emitIfBreak(MI); } void SILowerControlFlow::emitLoop(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); MachineInstr *AndN2 = BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_ANDN2_B64_term), AMDGPU::EXEC) .addReg(AMDGPU::EXEC) .add(MI.getOperand(0)); MachineInstr *Branch = BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) .add(MI.getOperand(1)); if (LIS) { LIS->ReplaceMachineInstrInMaps(MI, *AndN2); LIS->InsertMachineInstrInMaps(*Branch); } MI.eraseFromParent(); } void SILowerControlFlow::emitEndCf(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); const DebugLoc &DL = MI.getDebugLoc(); MachineBasicBlock::iterator InsPt = MBB.begin(); MachineInstr *NewMI = BuildMI(MBB, InsPt, DL, TII->get(AMDGPU::S_OR_B64), AMDGPU::EXEC) .addReg(AMDGPU::EXEC) .add(MI.getOperand(0)); if (LIS) LIS->ReplaceMachineInstrInMaps(MI, *NewMI); MI.eraseFromParent(); if (LIS) LIS->handleMove(*NewMI); } // Returns replace operands for a logical operation, either single result // for exec or two operands if source was another equivalent operation. void SILowerControlFlow::findMaskOperands(MachineInstr &MI, unsigned OpNo, SmallVectorImpl<MachineOperand> &Src) const { MachineOperand &Op = MI.getOperand(OpNo); if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg())) { Src.push_back(Op); return; } MachineInstr *Def = MRI->getUniqueVRegDef(Op.getReg()); if (!Def || Def->getParent() != MI.getParent() || !(Def->isFullCopy() || (Def->getOpcode() == MI.getOpcode()))) return; // Make sure we do not modify exec between def and use. // A copy with implcitly defined exec inserted earlier is an exclusion, it // does not really modify exec. for (auto I = Def->getIterator(); I != MI.getIterator(); ++I) if (I->modifiesRegister(AMDGPU::EXEC, TRI) && !(I->isCopy() && I->getOperand(0).getReg() != AMDGPU::EXEC)) return; for (const auto &SrcOp : Def->explicit_operands()) if (SrcOp.isReg() && SrcOp.isUse() && (TargetRegisterInfo::isVirtualRegister(SrcOp.getReg()) || SrcOp.getReg() == AMDGPU::EXEC)) Src.push_back(SrcOp); } // Search and combine pairs of equivalent instructions, like // S_AND_B64 x, (S_AND_B64 x, y) => S_AND_B64 x, y // S_OR_B64 x, (S_OR_B64 x, y) => S_OR_B64 x, y // One of the operands is exec mask. void SILowerControlFlow::combineMasks(MachineInstr &MI) { assert(MI.getNumExplicitOperands() == 3); SmallVector<MachineOperand, 4> Ops; unsigned OpToReplace = 1; findMaskOperands(MI, 1, Ops); if (Ops.size() == 1) OpToReplace = 2; // First operand can be exec or its copy findMaskOperands(MI, 2, Ops); if (Ops.size() != 3) return; unsigned UniqueOpndIdx; if (Ops[0].isIdenticalTo(Ops[1])) UniqueOpndIdx = 2; else if (Ops[0].isIdenticalTo(Ops[2])) UniqueOpndIdx = 1; else if (Ops[1].isIdenticalTo(Ops[2])) UniqueOpndIdx = 1; else return; unsigned Reg = MI.getOperand(OpToReplace).getReg(); MI.RemoveOperand(OpToReplace); MI.addOperand(Ops[UniqueOpndIdx]); if (MRI->use_empty(Reg)) MRI->getUniqueVRegDef(Reg)->eraseFromParent(); } bool SILowerControlFlow::runOnMachineFunction(MachineFunction &MF) { const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); TII = ST.getInstrInfo(); TRI = &TII->getRegisterInfo(); // This doesn't actually need LiveIntervals, but we can preserve them. LIS = getAnalysisIfAvailable<LiveIntervals>(); MRI = &MF.getRegInfo(); MachineFunction::iterator NextBB; for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; BI = NextBB) { NextBB = std::next(BI); MachineBasicBlock &MBB = *BI; MachineBasicBlock::iterator I, Next, Last; for (I = MBB.begin(), Last = MBB.end(); I != MBB.end(); I = Next) { Next = std::next(I); MachineInstr &MI = *I; switch (MI.getOpcode()) { case AMDGPU::SI_IF: emitIf(MI); break; case AMDGPU::SI_ELSE: emitElse(MI); break; case AMDGPU::SI_BREAK: emitBreak(MI); break; case AMDGPU::SI_IF_BREAK: emitIfBreak(MI); break; case AMDGPU::SI_ELSE_BREAK: emitElseBreak(MI); break; case AMDGPU::SI_LOOP: emitLoop(MI); break; case AMDGPU::SI_END_CF: emitEndCf(MI); break; case AMDGPU::S_AND_B64: case AMDGPU::S_OR_B64: // Cleanup bit manipulations on exec mask combineMasks(MI); Last = I; continue; default: Last = I; continue; } // Replay newly inserted code to combine masks Next = (Last == MBB.end()) ? MBB.begin() : Last; } } return true; }