//===-- VOP1Instructions.td - Vector Instruction Defintions ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // VOP1 Classes //===----------------------------------------------------------------------===// class VOP1e <bits<8> op, VOPProfile P> : Enc32 { bits<8> vdst; bits<9> src0; let Inst{8-0} = !if(P.HasSrc0, src0{8-0}, 0); let Inst{16-9} = op; let Inst{24-17} = !if(P.EmitDst, vdst{7-0}, 0); let Inst{31-25} = 0x3f; //encoding } class VOP1_SDWAe <bits<8> op, VOPProfile P> : VOP_SDWAe <P> { bits<8> vdst; let Inst{8-0} = 0xf9; // sdwa let Inst{16-9} = op; let Inst{24-17} = !if(P.EmitDst, vdst{7-0}, 0); let Inst{31-25} = 0x3f; // encoding } class VOP1_SDWA9Ae <bits<8> op, VOPProfile P> : VOP_SDWA9Ae <P> { bits<8> vdst; let Inst{8-0} = 0xf9; // sdwa let Inst{16-9} = op; let Inst{24-17} = !if(P.EmitDst, vdst{7-0}, 0); let Inst{31-25} = 0x3f; // encoding } class VOP1_Pseudo <string opName, VOPProfile P, list<dag> pattern=[], bit VOP1Only = 0> : VOP_Pseudo <opName, !if(VOP1Only, "", "_e32"), P, P.Outs32, P.Ins32, "", pattern> { let AsmOperands = P.Asm32; let Size = 4; let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let SubtargetPredicate = isGCN; let VOP1 = 1; let VALU = 1; let Uses = [EXEC]; let AsmVariantName = AMDGPUAsmVariants.Default; } class VOP1_Real <VOP1_Pseudo ps, int EncodingFamily> : InstSI <ps.OutOperandList, ps.InOperandList, ps.Mnemonic # ps.AsmOperands, []>, SIMCInstr <ps.PseudoInstr, EncodingFamily> { let isPseudo = 0; let isCodeGenOnly = 0; let Constraints = ps.Constraints; let DisableEncoding = ps.DisableEncoding; // copy relevant pseudo op flags let SubtargetPredicate = ps.SubtargetPredicate; let AsmMatchConverter = ps.AsmMatchConverter; let AsmVariantName = ps.AsmVariantName; let Constraints = ps.Constraints; let DisableEncoding = ps.DisableEncoding; let TSFlags = ps.TSFlags; let UseNamedOperandTable = ps.UseNamedOperandTable; let Uses = ps.Uses; let Defs = ps.Defs; } class VOP1_SDWA_Pseudo <string OpName, VOPProfile P, list<dag> pattern=[]> : VOP_SDWA_Pseudo <OpName, P, pattern> { let AsmMatchConverter = "cvtSdwaVOP1"; } class getVOP1Pat64 <SDPatternOperator node, VOPProfile P> : LetDummies { list<dag> ret = !if(P.HasModifiers, [(set P.DstVT:$vdst, (node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers, i1:$clamp, i32:$omod))))], !if(P.HasOMod, [(set P.DstVT:$vdst, (node (P.Src0VT (VOP3OMods P.Src0VT:$src0, i1:$clamp, i32:$omod))))], [(set P.DstVT:$vdst, (node P.Src0VT:$src0))] ) ); } multiclass VOP1Inst <string opName, VOPProfile P, SDPatternOperator node = null_frag> { def _e32 : VOP1_Pseudo <opName, P>; def _e64 : VOP3_Pseudo <opName, P, getVOP1Pat64<node, P>.ret>; def _sdwa : VOP1_SDWA_Pseudo <opName, P>; } // Special profile for instructions which have clamp // and output modifiers (but have no input modifiers) class VOPProfileI2F<ValueType dstVt, ValueType srcVt> : VOPProfile<[dstVt, srcVt, untyped, untyped]> { let Ins64 = (ins Src0RC64:$src0, clampmod:$clamp, omod:$omod); let Asm64 = "$vdst, $src0$clamp$omod"; let HasModifiers = 0; let HasClamp = 1; let HasOMod = 1; } def VOP1_F64_I32 : VOPProfileI2F <f64, i32>; def VOP1_F32_I32 : VOPProfileI2F <f32, i32>; def VOP1_F16_I16 : VOPProfileI2F <f16, i16>; //===----------------------------------------------------------------------===// // VOP1 Instructions //===----------------------------------------------------------------------===// let VOPAsmPrefer32Bit = 1 in { defm V_NOP : VOP1Inst <"v_nop", VOP_NONE>; } let isMoveImm = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in { defm V_MOV_B32 : VOP1Inst <"v_mov_b32", VOP_I32_I32>; } // End isMoveImm = 1 // FIXME: Specify SchedRW for READFIRSTLANE_B32 // TODO: Make profile for this, there is VOP3 encoding also def V_READFIRSTLANE_B32 : InstSI <(outs SReg_32:$vdst), (ins VGPR_32:$src0), "v_readfirstlane_b32 $vdst, $src0", [(set i32:$vdst, (int_amdgcn_readfirstlane i32:$src0))]>, Enc32 { let isCodeGenOnly = 0; let UseNamedOperandTable = 1; let Size = 4; let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let SubtargetPredicate = isGCN; let VOP1 = 1; let VALU = 1; let Uses = [EXEC]; let isConvergent = 1; bits<8> vdst; bits<9> src0; let Inst{8-0} = src0; let Inst{16-9} = 0x2; let Inst{24-17} = vdst; let Inst{31-25} = 0x3f; //encoding } let SchedRW = [WriteQuarterRate32] in { defm V_CVT_I32_F64 : VOP1Inst <"v_cvt_i32_f64", VOP_I32_F64, fp_to_sint>; defm V_CVT_F64_I32 : VOP1Inst <"v_cvt_f64_i32", VOP1_F64_I32, sint_to_fp>; defm V_CVT_F32_I32 : VOP1Inst <"v_cvt_f32_i32", VOP1_F32_I32, sint_to_fp>; defm V_CVT_F32_U32 : VOP1Inst <"v_cvt_f32_u32", VOP1_F32_I32, uint_to_fp>; defm V_CVT_U32_F32 : VOP1Inst <"v_cvt_u32_f32", VOP_I32_F32, fp_to_uint>; defm V_CVT_I32_F32 : VOP1Inst <"v_cvt_i32_f32", VOP_I32_F32, fp_to_sint>; defm V_CVT_F16_F32 : VOP1Inst <"v_cvt_f16_f32", VOP_F16_F32, fpround>; defm V_CVT_F32_F16 : VOP1Inst <"v_cvt_f32_f16", VOP_F32_F16, fpextend>; defm V_CVT_RPI_I32_F32 : VOP1Inst <"v_cvt_rpi_i32_f32", VOP_I32_F32, cvt_rpi_i32_f32>; defm V_CVT_FLR_I32_F32 : VOP1Inst <"v_cvt_flr_i32_f32", VOP_I32_F32, cvt_flr_i32_f32>; defm V_CVT_OFF_F32_I4 : VOP1Inst <"v_cvt_off_f32_i4", VOP1_F32_I32>; defm V_CVT_F32_F64 : VOP1Inst <"v_cvt_f32_f64", VOP_F32_F64, fpround>; defm V_CVT_F64_F32 : VOP1Inst <"v_cvt_f64_f32", VOP_F64_F32, fpextend>; defm V_CVT_F32_UBYTE0 : VOP1Inst <"v_cvt_f32_ubyte0", VOP1_F32_I32, AMDGPUcvt_f32_ubyte0>; defm V_CVT_F32_UBYTE1 : VOP1Inst <"v_cvt_f32_ubyte1", VOP1_F32_I32, AMDGPUcvt_f32_ubyte1>; defm V_CVT_F32_UBYTE2 : VOP1Inst <"v_cvt_f32_ubyte2", VOP1_F32_I32, AMDGPUcvt_f32_ubyte2>; defm V_CVT_F32_UBYTE3 : VOP1Inst <"v_cvt_f32_ubyte3", VOP1_F32_I32, AMDGPUcvt_f32_ubyte3>; defm V_CVT_U32_F64 : VOP1Inst <"v_cvt_u32_f64", VOP_I32_F64, fp_to_uint>; defm V_CVT_F64_U32 : VOP1Inst <"v_cvt_f64_u32", VOP1_F64_I32, uint_to_fp>; } // End SchedRW = [WriteQuarterRate32] defm V_FRACT_F32 : VOP1Inst <"v_fract_f32", VOP_F32_F32, AMDGPUfract>; defm V_TRUNC_F32 : VOP1Inst <"v_trunc_f32", VOP_F32_F32, ftrunc>; defm V_CEIL_F32 : VOP1Inst <"v_ceil_f32", VOP_F32_F32, fceil>; defm V_RNDNE_F32 : VOP1Inst <"v_rndne_f32", VOP_F32_F32, frint>; defm V_FLOOR_F32 : VOP1Inst <"v_floor_f32", VOP_F32_F32, ffloor>; let SchedRW = [WriteQuarterRate32] in { defm V_EXP_F32 : VOP1Inst <"v_exp_f32", VOP_F32_F32, fexp2>; defm V_LOG_F32 : VOP1Inst <"v_log_f32", VOP_F32_F32, flog2>; defm V_RCP_F32 : VOP1Inst <"v_rcp_f32", VOP_F32_F32, AMDGPUrcp>; defm V_RCP_IFLAG_F32 : VOP1Inst <"v_rcp_iflag_f32", VOP_F32_F32, AMDGPUrcp_iflag>; defm V_RSQ_F32 : VOP1Inst <"v_rsq_f32", VOP_F32_F32, AMDGPUrsq>; defm V_SQRT_F32 : VOP1Inst <"v_sqrt_f32", VOP_F32_F32, fsqrt>; } // End SchedRW = [WriteQuarterRate32] let SchedRW = [WriteDouble] in { defm V_RCP_F64 : VOP1Inst <"v_rcp_f64", VOP_F64_F64, AMDGPUrcp>; defm V_RSQ_F64 : VOP1Inst <"v_rsq_f64", VOP_F64_F64, AMDGPUrsq>; } // End SchedRW = [WriteDouble]; let SchedRW = [WriteDouble] in { defm V_SQRT_F64 : VOP1Inst <"v_sqrt_f64", VOP_F64_F64, fsqrt>; } // End SchedRW = [WriteDouble] let SchedRW = [WriteQuarterRate32] in { defm V_SIN_F32 : VOP1Inst <"v_sin_f32", VOP_F32_F32, AMDGPUsin>; defm V_COS_F32 : VOP1Inst <"v_cos_f32", VOP_F32_F32, AMDGPUcos>; } // End SchedRW = [WriteQuarterRate32] defm V_NOT_B32 : VOP1Inst <"v_not_b32", VOP_I32_I32>; defm V_BFREV_B32 : VOP1Inst <"v_bfrev_b32", VOP_I32_I32>; defm V_FFBH_U32 : VOP1Inst <"v_ffbh_u32", VOP_I32_I32>; defm V_FFBL_B32 : VOP1Inst <"v_ffbl_b32", VOP_I32_I32>; defm V_FFBH_I32 : VOP1Inst <"v_ffbh_i32", VOP_I32_I32>; let SchedRW = [WriteDoubleAdd] in { defm V_FREXP_EXP_I32_F64 : VOP1Inst <"v_frexp_exp_i32_f64", VOP_I32_F64, int_amdgcn_frexp_exp>; defm V_FREXP_MANT_F64 : VOP1Inst <"v_frexp_mant_f64", VOP_F64_F64, int_amdgcn_frexp_mant>; defm V_FRACT_F64 : VOP1Inst <"v_fract_f64", VOP_F64_F64, AMDGPUfract>; } // End SchedRW = [WriteDoubleAdd] defm V_FREXP_EXP_I32_F32 : VOP1Inst <"v_frexp_exp_i32_f32", VOP_I32_F32, int_amdgcn_frexp_exp>; defm V_FREXP_MANT_F32 : VOP1Inst <"v_frexp_mant_f32", VOP_F32_F32, int_amdgcn_frexp_mant>; let VOPAsmPrefer32Bit = 1 in { defm V_CLREXCP : VOP1Inst <"v_clrexcp", VOP_NO_EXT<VOP_NONE>>; } // Restrict src0 to be VGPR def VOP_I32_VI32_NO_EXT : VOPProfile<[i32, i32, untyped, untyped]> { let Src0RC32 = VRegSrc_32; let Src0RC64 = VRegSrc_32; let HasExt = 0; let HasSDWA9 = 0; } // Special case because there are no true output operands. Hack vdst // to be a src operand. The custom inserter must add a tied implicit // def and use of the super register since there seems to be no way to // add an implicit def of a virtual register in tablegen. def VOP_MOVRELD : VOPProfile<[untyped, i32, untyped, untyped]> { let Src0RC32 = VOPDstOperand<VGPR_32>; let Src0RC64 = VOPDstOperand<VGPR_32>; let Outs = (outs); let Ins32 = (ins Src0RC32:$vdst, VSrc_b32:$src0); let Ins64 = (ins Src0RC64:$vdst, VSrc_b32:$src0); let InsDPP = (ins DstRC:$vdst, DstRC:$old, Src0RC32:$src0, dpp_ctrl:$dpp_ctrl, row_mask:$row_mask, bank_mask:$bank_mask, bound_ctrl:$bound_ctrl); let InsSDWA = (ins Src0RC32:$vdst, Src0ModSDWA:$src0_modifiers, Src0SDWA:$src0, clampmod:$clamp, omod:$omod, dst_sel:$dst_sel, dst_unused:$dst_unused, src0_sel:$src0_sel); let Asm32 = getAsm32<1, 1>.ret; let Asm64 = getAsm64<1, 1, 0, 0, 1>.ret; let AsmDPP = getAsmDPP<1, 1, 0>.ret; let AsmSDWA = getAsmSDWA<1, 1>.ret; let AsmSDWA9 = getAsmSDWA9<1, 0, 1>.ret; let HasExt = 0; let HasSDWA9 = 0; let HasDst = 0; let EmitDst = 1; // force vdst emission } let SubtargetPredicate = HasMovrel, Uses = [M0, EXEC] in { // v_movreld_b32 is a special case because the destination output // register is really a source. It isn't actually read (but may be // written), and is only to provide the base register to start // indexing from. Tablegen seems to not let you define an implicit // virtual register output for the super register being written into, // so this must have an implicit def of the register added to it. defm V_MOVRELD_B32 : VOP1Inst <"v_movreld_b32", VOP_MOVRELD>; defm V_MOVRELS_B32 : VOP1Inst <"v_movrels_b32", VOP_I32_VI32_NO_EXT>; defm V_MOVRELSD_B32 : VOP1Inst <"v_movrelsd_b32", VOP_NO_EXT<VOP_I32_I32>>; } // End Uses = [M0, EXEC] defm V_MOV_FED_B32 : VOP1Inst <"v_mov_fed_b32", VOP_I32_I32>; // These instruction only exist on SI and CI let SubtargetPredicate = isSICI in { let SchedRW = [WriteQuarterRate32] in { defm V_LOG_CLAMP_F32 : VOP1Inst <"v_log_clamp_f32", VOP_F32_F32, int_amdgcn_log_clamp>; defm V_RCP_CLAMP_F32 : VOP1Inst <"v_rcp_clamp_f32", VOP_F32_F32>; defm V_RCP_LEGACY_F32 : VOP1Inst <"v_rcp_legacy_f32", VOP_F32_F32, AMDGPUrcp_legacy>; defm V_RSQ_CLAMP_F32 : VOP1Inst <"v_rsq_clamp_f32", VOP_F32_F32, AMDGPUrsq_clamp>; defm V_RSQ_LEGACY_F32 : VOP1Inst <"v_rsq_legacy_f32", VOP_F32_F32, AMDGPUrsq_legacy>; } // End SchedRW = [WriteQuarterRate32] let SchedRW = [WriteDouble] in { defm V_RCP_CLAMP_F64 : VOP1Inst <"v_rcp_clamp_f64", VOP_F64_F64>; defm V_RSQ_CLAMP_F64 : VOP1Inst <"v_rsq_clamp_f64", VOP_F64_F64, AMDGPUrsq_clamp>; } // End SchedRW = [WriteDouble] } // End SubtargetPredicate = isSICI let SubtargetPredicate = isCIVI in { let SchedRW = [WriteDoubleAdd] in { defm V_TRUNC_F64 : VOP1Inst <"v_trunc_f64", VOP_F64_F64, ftrunc>; defm V_CEIL_F64 : VOP1Inst <"v_ceil_f64", VOP_F64_F64, fceil>; defm V_FLOOR_F64 : VOP1Inst <"v_floor_f64", VOP_F64_F64, ffloor>; defm V_RNDNE_F64 : VOP1Inst <"v_rndne_f64", VOP_F64_F64, frint>; } // End SchedRW = [WriteDoubleAdd] let SchedRW = [WriteQuarterRate32] in { defm V_LOG_LEGACY_F32 : VOP1Inst <"v_log_legacy_f32", VOP_F32_F32>; defm V_EXP_LEGACY_F32 : VOP1Inst <"v_exp_legacy_f32", VOP_F32_F32>; } // End SchedRW = [WriteQuarterRate32] } // End SubtargetPredicate = isCIVI let SubtargetPredicate = Has16BitInsts in { defm V_CVT_F16_U16 : VOP1Inst <"v_cvt_f16_u16", VOP1_F16_I16, uint_to_fp>; defm V_CVT_F16_I16 : VOP1Inst <"v_cvt_f16_i16", VOP1_F16_I16, sint_to_fp>; defm V_CVT_U16_F16 : VOP1Inst <"v_cvt_u16_f16", VOP_I16_F16, fp_to_uint>; defm V_CVT_I16_F16 : VOP1Inst <"v_cvt_i16_f16", VOP_I16_F16, fp_to_sint>; let SchedRW = [WriteQuarterRate32] in { defm V_RCP_F16 : VOP1Inst <"v_rcp_f16", VOP_F16_F16, AMDGPUrcp>; defm V_SQRT_F16 : VOP1Inst <"v_sqrt_f16", VOP_F16_F16, fsqrt>; defm V_RSQ_F16 : VOP1Inst <"v_rsq_f16", VOP_F16_F16, AMDGPUrsq>; defm V_LOG_F16 : VOP1Inst <"v_log_f16", VOP_F16_F16, flog2>; defm V_EXP_F16 : VOP1Inst <"v_exp_f16", VOP_F16_F16, fexp2>; defm V_SIN_F16 : VOP1Inst <"v_sin_f16", VOP_F16_F16, AMDGPUsin>; defm V_COS_F16 : VOP1Inst <"v_cos_f16", VOP_F16_F16, AMDGPUcos>; } // End SchedRW = [WriteQuarterRate32] defm V_FREXP_MANT_F16 : VOP1Inst <"v_frexp_mant_f16", VOP_F16_F16, int_amdgcn_frexp_mant>; defm V_FREXP_EXP_I16_F16 : VOP1Inst <"v_frexp_exp_i16_f16", VOP_I16_F16, int_amdgcn_frexp_exp>; defm V_FLOOR_F16 : VOP1Inst <"v_floor_f16", VOP_F16_F16, ffloor>; defm V_CEIL_F16 : VOP1Inst <"v_ceil_f16", VOP_F16_F16, fceil>; defm V_TRUNC_F16 : VOP1Inst <"v_trunc_f16", VOP_F16_F16, ftrunc>; defm V_RNDNE_F16 : VOP1Inst <"v_rndne_f16", VOP_F16_F16, frint>; defm V_FRACT_F16 : VOP1Inst <"v_fract_f16", VOP_F16_F16, AMDGPUfract>; } let OtherPredicates = [Has16BitInsts] in { def : GCNPat< (f32 (f16_to_fp i16:$src)), (V_CVT_F32_F16_e32 $src) >; def : GCNPat< (i16 (AMDGPUfp_to_f16 f32:$src)), (V_CVT_F16_F32_e32 $src) >; } def VOP_SWAP_I32 : VOPProfile<[i32, i32, i32, untyped]> { let Outs32 = (outs VGPR_32:$vdst, VGPR_32:$vdst1); let Ins32 = (ins VGPR_32:$src0, VGPR_32:$src1); let Outs64 = Outs32; let Asm32 = " $vdst, $src0"; let Asm64 = ""; let Ins64 = (ins); } let SubtargetPredicate = isGFX9 in { let Constraints = "$vdst = $src1, $vdst1 = $src0", DisableEncoding="$vdst1,$src1", SchedRW = [Write64Bit, Write64Bit] in { // Never VOP3. Takes as long as 2 v_mov_b32s def V_SWAP_B32 : VOP1_Pseudo <"v_swap_b32", VOP_SWAP_I32, [], 1>; } defm V_SCREEN_PARTITION_4SE_B32 : VOP1Inst <"v_screen_partition_4se_b32", VOP_I32_I32>; defm V_SAT_PK_U8_I16 : VOP1Inst<"v_sat_pk_u8_i16", VOP_I32_I32>; defm V_CVT_NORM_I16_F16 : VOP1Inst<"v_cvt_norm_i16_f16", VOP_I16_F16>; defm V_CVT_NORM_U16_F16 : VOP1Inst<"v_cvt_norm_u16_f16", VOP_I16_F16>; } // End SubtargetPredicate = isGFX9 //===----------------------------------------------------------------------===// // Target //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // SI //===----------------------------------------------------------------------===// multiclass VOP1_Real_si <bits<9> op> { let AssemblerPredicates = [isSICI], DecoderNamespace = "SICI" in { def _e32_si : VOP1_Real<!cast<VOP1_Pseudo>(NAME#"_e32"), SIEncodingFamily.SI>, VOP1e<op{7-0}, !cast<VOP1_Pseudo>(NAME#"_e32").Pfl>; def _e64_si : VOP3_Real<!cast<VOP3_Pseudo>(NAME#"_e64"), SIEncodingFamily.SI>, VOP3e_si <{1, 1, op{6-0}}, !cast<VOP3_Pseudo>(NAME#"_e64").Pfl>; } } defm V_NOP : VOP1_Real_si <0x0>; defm V_MOV_B32 : VOP1_Real_si <0x1>; defm V_CVT_I32_F64 : VOP1_Real_si <0x3>; defm V_CVT_F64_I32 : VOP1_Real_si <0x4>; defm V_CVT_F32_I32 : VOP1_Real_si <0x5>; defm V_CVT_F32_U32 : VOP1_Real_si <0x6>; defm V_CVT_U32_F32 : VOP1_Real_si <0x7>; defm V_CVT_I32_F32 : VOP1_Real_si <0x8>; defm V_MOV_FED_B32 : VOP1_Real_si <0x9>; defm V_CVT_F16_F32 : VOP1_Real_si <0xa>; defm V_CVT_F32_F16 : VOP1_Real_si <0xb>; defm V_CVT_RPI_I32_F32 : VOP1_Real_si <0xc>; defm V_CVT_FLR_I32_F32 : VOP1_Real_si <0xd>; defm V_CVT_OFF_F32_I4 : VOP1_Real_si <0xe>; defm V_CVT_F32_F64 : VOP1_Real_si <0xf>; defm V_CVT_F64_F32 : VOP1_Real_si <0x10>; defm V_CVT_F32_UBYTE0 : VOP1_Real_si <0x11>; defm V_CVT_F32_UBYTE1 : VOP1_Real_si <0x12>; defm V_CVT_F32_UBYTE2 : VOP1_Real_si <0x13>; defm V_CVT_F32_UBYTE3 : VOP1_Real_si <0x14>; defm V_CVT_U32_F64 : VOP1_Real_si <0x15>; defm V_CVT_F64_U32 : VOP1_Real_si <0x16>; defm V_FRACT_F32 : VOP1_Real_si <0x20>; defm V_TRUNC_F32 : VOP1_Real_si <0x21>; defm V_CEIL_F32 : VOP1_Real_si <0x22>; defm V_RNDNE_F32 : VOP1_Real_si <0x23>; defm V_FLOOR_F32 : VOP1_Real_si <0x24>; defm V_EXP_F32 : VOP1_Real_si <0x25>; defm V_LOG_CLAMP_F32 : VOP1_Real_si <0x26>; defm V_LOG_F32 : VOP1_Real_si <0x27>; defm V_RCP_CLAMP_F32 : VOP1_Real_si <0x28>; defm V_RCP_LEGACY_F32 : VOP1_Real_si <0x29>; defm V_RCP_F32 : VOP1_Real_si <0x2a>; defm V_RCP_IFLAG_F32 : VOP1_Real_si <0x2b>; defm V_RSQ_CLAMP_F32 : VOP1_Real_si <0x2c>; defm V_RSQ_LEGACY_F32 : VOP1_Real_si <0x2d>; defm V_RSQ_F32 : VOP1_Real_si <0x2e>; defm V_RCP_F64 : VOP1_Real_si <0x2f>; defm V_RCP_CLAMP_F64 : VOP1_Real_si <0x30>; defm V_RSQ_F64 : VOP1_Real_si <0x31>; defm V_RSQ_CLAMP_F64 : VOP1_Real_si <0x32>; defm V_SQRT_F32 : VOP1_Real_si <0x33>; defm V_SQRT_F64 : VOP1_Real_si <0x34>; defm V_SIN_F32 : VOP1_Real_si <0x35>; defm V_COS_F32 : VOP1_Real_si <0x36>; defm V_NOT_B32 : VOP1_Real_si <0x37>; defm V_BFREV_B32 : VOP1_Real_si <0x38>; defm V_FFBH_U32 : VOP1_Real_si <0x39>; defm V_FFBL_B32 : VOP1_Real_si <0x3a>; defm V_FFBH_I32 : VOP1_Real_si <0x3b>; defm V_FREXP_EXP_I32_F64 : VOP1_Real_si <0x3c>; defm V_FREXP_MANT_F64 : VOP1_Real_si <0x3d>; defm V_FRACT_F64 : VOP1_Real_si <0x3e>; defm V_FREXP_EXP_I32_F32 : VOP1_Real_si <0x3f>; defm V_FREXP_MANT_F32 : VOP1_Real_si <0x40>; defm V_CLREXCP : VOP1_Real_si <0x41>; defm V_MOVRELD_B32 : VOP1_Real_si <0x42>; defm V_MOVRELS_B32 : VOP1_Real_si <0x43>; defm V_MOVRELSD_B32 : VOP1_Real_si <0x44>; //===----------------------------------------------------------------------===// // CI //===----------------------------------------------------------------------===// multiclass VOP1_Real_ci <bits<9> op> { let AssemblerPredicates = [isCIOnly], DecoderNamespace = "CI" in { def _e32_ci : VOP1_Real<!cast<VOP1_Pseudo>(NAME#"_e32"), SIEncodingFamily.SI>, VOP1e<op{7-0}, !cast<VOP1_Pseudo>(NAME#"_e32").Pfl>; def _e64_ci : VOP3_Real<!cast<VOP3_Pseudo>(NAME#"_e64"), SIEncodingFamily.SI>, VOP3e_si <{1, 1, op{6-0}}, !cast<VOP3_Pseudo>(NAME#"_e64").Pfl>; } } defm V_TRUNC_F64 : VOP1_Real_ci <0x17>; defm V_CEIL_F64 : VOP1_Real_ci <0x18>; defm V_FLOOR_F64 : VOP1_Real_ci <0x1A>; defm V_RNDNE_F64 : VOP1_Real_ci <0x19>; defm V_LOG_LEGACY_F32 : VOP1_Real_ci <0x45>; defm V_EXP_LEGACY_F32 : VOP1_Real_ci <0x46>; //===----------------------------------------------------------------------===// // VI //===----------------------------------------------------------------------===// class VOP1_DPP <bits<8> op, VOP1_Pseudo ps, VOPProfile P = ps.Pfl> : VOP_DPP <ps.OpName, P> { let Defs = ps.Defs; let Uses = ps.Uses; let SchedRW = ps.SchedRW; let hasSideEffects = ps.hasSideEffects; bits<8> vdst; let Inst{8-0} = 0xfa; // dpp let Inst{16-9} = op; let Inst{24-17} = !if(P.EmitDst, vdst{7-0}, 0); let Inst{31-25} = 0x3f; //encoding } multiclass VOP1Only_Real_vi <bits<10> op> { let AssemblerPredicates = [isVI], DecoderNamespace = "VI" in { def _vi : VOP1_Real<!cast<VOP1_Pseudo>(NAME), SIEncodingFamily.VI>, VOP1e<op{7-0}, !cast<VOP1_Pseudo>(NAME).Pfl>; } } multiclass VOP1_Real_e32e64_vi <bits<10> op> { let AssemblerPredicates = [isVI], DecoderNamespace = "VI" in { def _e32_vi : VOP1_Real<!cast<VOP1_Pseudo>(NAME#"_e32"), SIEncodingFamily.VI>, VOP1e<op{7-0}, !cast<VOP1_Pseudo>(NAME#"_e32").Pfl>; def _e64_vi : VOP3_Real<!cast<VOP3_Pseudo>(NAME#"_e64"), SIEncodingFamily.VI>, VOP3e_vi <!add(0x140, op), !cast<VOP3_Pseudo>(NAME#"_e64").Pfl>; } } multiclass VOP1_Real_vi <bits<10> op> { defm NAME : VOP1_Real_e32e64_vi <op>; def _sdwa_vi : VOP_SDWA_Real <!cast<VOP1_SDWA_Pseudo>(NAME#"_sdwa")>, VOP1_SDWAe <op{7-0}, !cast<VOP1_SDWA_Pseudo>(NAME#"_sdwa").Pfl>; def _sdwa_gfx9 : VOP_SDWA9_Real <!cast<VOP1_SDWA_Pseudo>(NAME#"_sdwa")>, VOP1_SDWA9Ae <op{7-0}, !cast<VOP1_SDWA_Pseudo>(NAME#"_sdwa").Pfl>; // For now left dpp only for asm/dasm // TODO: add corresponding pseudo def _dpp : VOP1_DPP<op{7-0}, !cast<VOP1_Pseudo>(NAME#"_e32")>; } defm V_NOP : VOP1_Real_vi <0x0>; defm V_MOV_B32 : VOP1_Real_vi <0x1>; defm V_CVT_I32_F64 : VOP1_Real_vi <0x3>; defm V_CVT_F64_I32 : VOP1_Real_vi <0x4>; defm V_CVT_F32_I32 : VOP1_Real_vi <0x5>; defm V_CVT_F32_U32 : VOP1_Real_vi <0x6>; defm V_CVT_U32_F32 : VOP1_Real_vi <0x7>; defm V_CVT_I32_F32 : VOP1_Real_vi <0x8>; defm V_MOV_FED_B32 : VOP1_Real_vi <0x9>; defm V_CVT_F16_F32 : VOP1_Real_vi <0xa>; defm V_CVT_F32_F16 : VOP1_Real_vi <0xb>; defm V_CVT_RPI_I32_F32 : VOP1_Real_vi <0xc>; defm V_CVT_FLR_I32_F32 : VOP1_Real_vi <0xd>; defm V_CVT_OFF_F32_I4 : VOP1_Real_vi <0xe>; defm V_CVT_F32_F64 : VOP1_Real_vi <0xf>; defm V_CVT_F64_F32 : VOP1_Real_vi <0x10>; defm V_CVT_F32_UBYTE0 : VOP1_Real_vi <0x11>; defm V_CVT_F32_UBYTE1 : VOP1_Real_vi <0x12>; defm V_CVT_F32_UBYTE2 : VOP1_Real_vi <0x13>; defm V_CVT_F32_UBYTE3 : VOP1_Real_vi <0x14>; defm V_CVT_U32_F64 : VOP1_Real_vi <0x15>; defm V_CVT_F64_U32 : VOP1_Real_vi <0x16>; defm V_FRACT_F32 : VOP1_Real_vi <0x1b>; defm V_TRUNC_F32 : VOP1_Real_vi <0x1c>; defm V_CEIL_F32 : VOP1_Real_vi <0x1d>; defm V_RNDNE_F32 : VOP1_Real_vi <0x1e>; defm V_FLOOR_F32 : VOP1_Real_vi <0x1f>; defm V_EXP_F32 : VOP1_Real_vi <0x20>; defm V_LOG_F32 : VOP1_Real_vi <0x21>; defm V_RCP_F32 : VOP1_Real_vi <0x22>; defm V_RCP_IFLAG_F32 : VOP1_Real_vi <0x23>; defm V_RSQ_F32 : VOP1_Real_vi <0x24>; defm V_RCP_F64 : VOP1_Real_vi <0x25>; defm V_RSQ_F64 : VOP1_Real_vi <0x26>; defm V_SQRT_F32 : VOP1_Real_vi <0x27>; defm V_SQRT_F64 : VOP1_Real_vi <0x28>; defm V_SIN_F32 : VOP1_Real_vi <0x29>; defm V_COS_F32 : VOP1_Real_vi <0x2a>; defm V_NOT_B32 : VOP1_Real_vi <0x2b>; defm V_BFREV_B32 : VOP1_Real_vi <0x2c>; defm V_FFBH_U32 : VOP1_Real_vi <0x2d>; defm V_FFBL_B32 : VOP1_Real_vi <0x2e>; defm V_FFBH_I32 : VOP1_Real_vi <0x2f>; defm V_FREXP_EXP_I32_F64 : VOP1_Real_vi <0x30>; defm V_FREXP_MANT_F64 : VOP1_Real_vi <0x31>; defm V_FRACT_F64 : VOP1_Real_vi <0x32>; defm V_FREXP_EXP_I32_F32 : VOP1_Real_vi <0x33>; defm V_FREXP_MANT_F32 : VOP1_Real_vi <0x34>; defm V_CLREXCP : VOP1_Real_vi <0x35>; defm V_MOVRELD_B32 : VOP1_Real_e32e64_vi <0x36>; defm V_MOVRELS_B32 : VOP1_Real_e32e64_vi <0x37>; defm V_MOVRELSD_B32 : VOP1_Real_e32e64_vi <0x38>; defm V_TRUNC_F64 : VOP1_Real_vi <0x17>; defm V_CEIL_F64 : VOP1_Real_vi <0x18>; defm V_FLOOR_F64 : VOP1_Real_vi <0x1A>; defm V_RNDNE_F64 : VOP1_Real_vi <0x19>; defm V_LOG_LEGACY_F32 : VOP1_Real_vi <0x4c>; defm V_EXP_LEGACY_F32 : VOP1_Real_vi <0x4b>; defm V_CVT_F16_U16 : VOP1_Real_vi <0x39>; defm V_CVT_F16_I16 : VOP1_Real_vi <0x3a>; defm V_CVT_U16_F16 : VOP1_Real_vi <0x3b>; defm V_CVT_I16_F16 : VOP1_Real_vi <0x3c>; defm V_RCP_F16 : VOP1_Real_vi <0x3d>; defm V_SQRT_F16 : VOP1_Real_vi <0x3e>; defm V_RSQ_F16 : VOP1_Real_vi <0x3f>; defm V_LOG_F16 : VOP1_Real_vi <0x40>; defm V_EXP_F16 : VOP1_Real_vi <0x41>; defm V_FREXP_MANT_F16 : VOP1_Real_vi <0x42>; defm V_FREXP_EXP_I16_F16 : VOP1_Real_vi <0x43>; defm V_FLOOR_F16 : VOP1_Real_vi <0x44>; defm V_CEIL_F16 : VOP1_Real_vi <0x45>; defm V_TRUNC_F16 : VOP1_Real_vi <0x46>; defm V_RNDNE_F16 : VOP1_Real_vi <0x47>; defm V_FRACT_F16 : VOP1_Real_vi <0x48>; defm V_SIN_F16 : VOP1_Real_vi <0x49>; defm V_COS_F16 : VOP1_Real_vi <0x4a>; defm V_SWAP_B32 : VOP1Only_Real_vi <0x51>; defm V_SAT_PK_U8_I16 : VOP1_Real_vi<0x4f>; defm V_CVT_NORM_I16_F16 : VOP1_Real_vi<0x4d>; defm V_CVT_NORM_U16_F16 : VOP1_Real_vi<0x4e>; // Copy of v_mov_b32 with $vdst as a use operand for use with VGPR // indexing mode. vdst can't be treated as a def for codegen purposes, // and an implicit use and def of the super register should be added. def V_MOV_B32_indirect : VPseudoInstSI<(outs), (ins getVALUDstForVT<i32>.ret:$vdst, getVOPSrc0ForVT<i32>.ret:$src0)>, PseudoInstExpansion<(V_MOV_B32_e32_vi getVALUDstForVT<i32>.ret:$vdst, getVOPSrc0ForVT<i32>.ret:$src0)> { let VOP1 = 1; let SubtargetPredicate = isVI; } // This is a pseudo variant of the v_movreld_b32 instruction in which the // vector operand appears only twice, once as def and once as use. Using this // pseudo avoids problems with the Two Address instructions pass. class V_MOVRELD_B32_pseudo<RegisterClass rc> : VPseudoInstSI < (outs rc:$vdst), (ins rc:$vsrc, VSrc_b32:$val, i32imm:$offset)> { let VOP1 = 1; let Constraints = "$vsrc = $vdst"; let Uses = [M0, EXEC]; let SubtargetPredicate = HasMovrel; } def V_MOVRELD_B32_V1 : V_MOVRELD_B32_pseudo<VGPR_32>; def V_MOVRELD_B32_V2 : V_MOVRELD_B32_pseudo<VReg_64>; def V_MOVRELD_B32_V4 : V_MOVRELD_B32_pseudo<VReg_128>; def V_MOVRELD_B32_V8 : V_MOVRELD_B32_pseudo<VReg_256>; def V_MOVRELD_B32_V16 : V_MOVRELD_B32_pseudo<VReg_512>; let OtherPredicates = [isVI] in { def : GCNPat < (i32 (int_amdgcn_mov_dpp i32:$src, imm:$dpp_ctrl, imm:$row_mask, imm:$bank_mask, imm:$bound_ctrl)), (V_MOV_B32_dpp $src, $src, (as_i32imm $dpp_ctrl), (as_i32imm $row_mask), (as_i32imm $bank_mask), (as_i1imm $bound_ctrl)) >; def : GCNPat < (i32 (int_amdgcn_update_dpp i32:$old, i32:$src, imm:$dpp_ctrl, imm:$row_mask, imm:$bank_mask, imm:$bound_ctrl)), (V_MOV_B32_dpp $old, $src, (as_i32imm $dpp_ctrl), (as_i32imm $row_mask), (as_i32imm $bank_mask), (as_i1imm $bound_ctrl)) >; def : GCNPat< (i32 (anyext i16:$src)), (COPY $src) >; def : GCNPat< (i64 (anyext i16:$src)), (REG_SEQUENCE VReg_64, (i32 (COPY $src)), sub0, (V_MOV_B32_e32 (i32 0)), sub1) >; def : GCNPat< (i16 (trunc i32:$src)), (COPY $src) >; def : GCNPat < (i16 (trunc i64:$src)), (EXTRACT_SUBREG $src, sub0) >; } // End OtherPredicates = [isVI] //===----------------------------------------------------------------------===// // GFX9 //===----------------------------------------------------------------------===// multiclass VOP1_Real_gfx9 <bits<10> op> { let AssemblerPredicates = [isGFX9], DecoderNamespace = "GFX9" in { defm NAME : VOP1_Real_e32e64_vi <op>; } def _sdwa_gfx9 : VOP_SDWA9_Real <!cast<VOP1_SDWA_Pseudo>(NAME#"_sdwa")>, VOP1_SDWA9Ae <op{7-0}, !cast<VOP1_SDWA_Pseudo>(NAME#"_sdwa").Pfl>; // For now left dpp only for asm/dasm // TODO: add corresponding pseudo def _dpp : VOP1_DPP<op{7-0}, !cast<VOP1_Pseudo>(NAME#"_e32")>; } defm V_SCREEN_PARTITION_4SE_B32 : VOP1_Real_gfx9 <0x37>;