//===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// Armv6 introduced instructions to perform 32-bit SIMD operations. The /// purpose of this pass is do some IR pattern matching to create ACLE /// DSP intrinsics, which map on these 32-bit SIMD operations. /// This pass runs only when unaligned accesses is supported/enabled. // //===----------------------------------------------------------------------===// #include "llvm/ADT/Statistic.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/NoFolder.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Pass.h" #include "llvm/PassRegistry.h" #include "llvm/PassSupport.h" #include "llvm/Support/Debug.h" #include "llvm/IR/PatternMatch.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "ARM.h" #include "ARMSubtarget.h" using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "arm-parallel-dsp" STATISTIC(NumSMLAD , "Number of smlad instructions generated"); namespace { struct OpChain; struct BinOpChain; struct Reduction; using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>; using ReductionList = SmallVector<Reduction, 8>; using ValueList = SmallVector<Value*, 8>; using MemInstList = SmallVector<Instruction*, 8>; using PMACPair = std::pair<BinOpChain*,BinOpChain*>; using PMACPairList = SmallVector<PMACPair, 8>; using Instructions = SmallVector<Instruction*,16>; using MemLocList = SmallVector<MemoryLocation, 4>; struct OpChain { Instruction *Root; ValueList AllValues; MemInstList VecLd; // List of all load instructions. MemLocList MemLocs; // All memory locations read by this tree. bool ReadOnly = true; OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { } virtual ~OpChain() = default; void SetMemoryLocations() { const auto Size = MemoryLocation::UnknownSize; for (auto *V : AllValues) { if (auto *I = dyn_cast<Instruction>(V)) { if (I->mayWriteToMemory()) ReadOnly = false; if (auto *Ld = dyn_cast<LoadInst>(V)) MemLocs.push_back(MemoryLocation(Ld->getPointerOperand(), Size)); } } } unsigned size() const { return AllValues.size(); } }; // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures. // 'Reduction' contains the phi-node and accumulator statement from where we // start pattern matching, and 'BinOpChain' the multiplication // instructions that are candidates for parallel execution. struct BinOpChain : public OpChain { ValueList LHS; // List of all (narrow) left hand operands. ValueList RHS; // List of all (narrow) right hand operands. BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) : OpChain(I, lhs), LHS(lhs), RHS(rhs) { for (auto *V : RHS) AllValues.push_back(V); } }; struct Reduction { PHINode *Phi; // The Phi-node from where we start // pattern matching. Instruction *AccIntAdd; // The accumulating integer add statement, // i.e, the reduction statement. OpChainList MACCandidates; // The MAC candidates associated with // this reduction statement. Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { }; }; class ARMParallelDSP : public LoopPass { ScalarEvolution *SE; AliasAnalysis *AA; TargetLibraryInfo *TLI; DominatorTree *DT; LoopInfo *LI; Loop *L; const DataLayout *DL; Module *M; bool InsertParallelMACs(Reduction &Reduction, PMACPairList &PMACPairs); bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); PMACPairList CreateParallelMACPairs(OpChainList &Candidates); Instruction *CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1, Instruction *Acc, Instruction *InsertAfter); /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate /// Dual performs two signed 16x16-bit multiplications. It adds the /// products to a 32-bit accumulate operand. Optionally, the instruction can /// exchange the halfwords of the second operand before performing the /// arithmetic. bool MatchSMLAD(Function &F); public: static char ID; ARMParallelDSP() : LoopPass(ID) { } void getAnalysisUsage(AnalysisUsage &AU) const override { LoopPass::getAnalysisUsage(AU); AU.addRequired<AssumptionCacheTracker>(); AU.addRequired<ScalarEvolutionWrapperPass>(); AU.addRequired<AAResultsWrapperPass>(); AU.addRequired<TargetLibraryInfoWrapperPass>(); AU.addRequired<LoopInfoWrapperPass>(); AU.addRequired<DominatorTreeWrapperPass>(); AU.addRequired<TargetPassConfig>(); AU.addPreserved<LoopInfoWrapperPass>(); AU.setPreservesCFG(); } bool runOnLoop(Loop *TheLoop, LPPassManager &) override { L = TheLoop; SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); auto &TPC = getAnalysis<TargetPassConfig>(); BasicBlock *Header = TheLoop->getHeader(); if (!Header) return false; // TODO: We assume the loop header and latch to be the same block. // This is not a fundamental restriction, but lifting this would just // require more work to do the transformation and then patch up the CFG. if (Header != TheLoop->getLoopLatch()) { LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not " "running pass ARMParallelDSP\n"); return false; } Function &F = *Header->getParent(); M = F.getParent(); DL = &M->getDataLayout(); auto &TM = TPC.getTM<TargetMachine>(); auto *ST = &TM.getSubtarget<ARMSubtarget>(F); if (!ST->allowsUnalignedMem()) { LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " "running pass ARMParallelDSP\n"); return false; } if (!ST->hasDSP()) { LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " "ARMParallelDSP\n"); return false; } LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI); bool Changes = false; LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n\n"); Changes = MatchSMLAD(F); return Changes; } }; } // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP // instructions, which is set to 16. So here we should collect all i8 and i16 // narrow operations. // TODO: we currently only collect i16, and will support i8 later, so that's // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. template<unsigned MaxBitWidth> static bool IsNarrowSequence(Value *V, ValueList &VL) { LLVM_DEBUG(dbgs() << "Is narrow sequence? "; V->dump()); ConstantInt *CInt; if (match(V, m_ConstantInt(CInt))) { // TODO: if a constant is used, it needs to fit within the bit width. return false; } auto *I = dyn_cast<Instruction>(V); if (!I) return false; Value *Val, *LHS, *RHS; if (match(V, m_Trunc(m_Value(Val)))) { if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth) return IsNarrowSequence<MaxBitWidth>(Val, VL); } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) { // TODO: we need to implement sadd16/sadd8 for this, which enables to // also do the rewrite for smlad8.ll, but it is unsupported for now. LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump()); return false; } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) { if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) { LLVM_DEBUG(dbgs() << "No, wrong SrcTy size: " << cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() << "\n"); return false; } if (match(Val, m_Load(m_Value()))) { LLVM_DEBUG(dbgs() << "Yes, found narrow Load:\t"; Val->dump()); VL.push_back(Val); VL.push_back(I); return true; } } LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump()); return false; } // Element-by-element comparison of Value lists returning true if they are // instructions with the same opcode or constants with the same value. static bool AreSymmetrical(const ValueList &VL0, const ValueList &VL1) { if (VL0.size() != VL1.size()) { LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: " << VL0.size() << " != " << VL1.size() << "\n"); return false; } const unsigned Pairs = VL0.size(); LLVM_DEBUG(dbgs() << "Number of operand pairs: " << Pairs << "\n"); for (unsigned i = 0; i < Pairs; ++i) { const Value *V0 = VL0[i]; const Value *V1 = VL1[i]; const auto *Inst0 = dyn_cast<Instruction>(V0); const auto *Inst1 = dyn_cast<Instruction>(V1); LLVM_DEBUG(dbgs() << "Pair " << i << ":\n"; dbgs() << "mul1: "; V0->dump(); dbgs() << "mul2: "; V1->dump()); if (!Inst0 || !Inst1) return false; if (Inst0->isSameOperationAs(Inst1)) { LLVM_DEBUG(dbgs() << "OK: same operation found!\n"); continue; } const APInt *C0, *C1; if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1)) return false; } LLVM_DEBUG(dbgs() << "OK: found symmetrical operand lists.\n"); return true; } template<typename MemInst> static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, MemInstList &VecMem, const DataLayout &DL, ScalarEvolution &SE) { if (!MemOp0->isSimple() || !MemOp1->isSimple()) { LLVM_DEBUG(dbgs() << "No, not touching volatile access\n"); return false; } if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) { VecMem.push_back(MemOp0); VecMem.push_back(MemOp1); LLVM_DEBUG(dbgs() << "OK: accesses are consecutive.\n"); return true; } LLVM_DEBUG(dbgs() << "No, accesses aren't consecutive.\n"); return false; } bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem) { if (!Ld0 || !Ld1) return false; LLVM_DEBUG(dbgs() << "Are consecutive loads:\n"; dbgs() << "Ld0:"; Ld0->dump(); dbgs() << "Ld1:"; Ld1->dump(); ); if (!Ld0->hasOneUse() || !Ld1->hasOneUse()) { LLVM_DEBUG(dbgs() << "No, load has more than one use.\n"); return false; } return AreSequentialAccesses<LoadInst>(Ld0, Ld1, VecMem, *DL, *SE); } PMACPairList ARMParallelDSP::CreateParallelMACPairs(OpChainList &Candidates) { const unsigned Elems = Candidates.size(); PMACPairList PMACPairs; if (Elems < 2) return PMACPairs; // TODO: for now we simply try to match consecutive pairs i and i+1. // We can compare all elements, but then we need to compare and evaluate // different solutions. for(unsigned i=0; i<Elems-1; i+=2) { BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get()); BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[i+1].get()); const Instruction *Mul0 = PMul0->Root; const Instruction *Mul1 = PMul1->Root; if (Mul0 == Mul1) continue; LLVM_DEBUG(dbgs() << "\nCheck parallel muls:\n"; dbgs() << "- "; Mul0->dump(); dbgs() << "- "; Mul1->dump()); const ValueList &Mul0_LHS = PMul0->LHS; const ValueList &Mul0_RHS = PMul0->RHS; const ValueList &Mul1_LHS = PMul1->LHS; const ValueList &Mul1_RHS = PMul1->RHS; if (!AreSymmetrical(Mul0_LHS, Mul1_LHS) || !AreSymmetrical(Mul0_RHS, Mul1_RHS)) continue; LLVM_DEBUG(dbgs() << "OK: mul operands list match:\n"); // The first elements of each vector should be loads with sexts. If we find // that its two pairs of consecutive loads, then these can be transformed // into two wider loads and the users can be replaced with DSP // intrinsics. for (unsigned x = 0; x < Mul0_LHS.size(); x += 2) { auto *Ld0 = dyn_cast<LoadInst>(Mul0_LHS[x]); auto *Ld1 = dyn_cast<LoadInst>(Mul1_LHS[x]); auto *Ld2 = dyn_cast<LoadInst>(Mul0_RHS[x]); auto *Ld3 = dyn_cast<LoadInst>(Mul1_RHS[x]); LLVM_DEBUG(dbgs() << "Looking at operands " << x << ":\n"; dbgs() << "\t mul1: "; Mul0_LHS[x]->dump(); dbgs() << "\t mul2: "; Mul1_LHS[x]->dump(); dbgs() << "and operands " << x + 2 << ":\n"; dbgs() << "\t mul1: "; Mul0_RHS[x]->dump(); dbgs() << "\t mul2: "; Mul1_RHS[x]->dump()); if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd) && AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); PMACPairs.push_back(std::make_pair(PMul0, PMul1)); } } } return PMACPairs; } bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction, PMACPairList &PMACPairs) { Instruction *Acc = Reduction.Phi; Instruction *InsertAfter = Reduction.AccIntAdd; for (auto &Pair : PMACPairs) { LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n"; dbgs() << "- "; Pair.first->Root->dump(); dbgs() << "- "; Pair.second->Root->dump()); auto *VecLd0 = cast<LoadInst>(Pair.first->VecLd[0]); auto *VecLd1 = cast<LoadInst>(Pair.second->VecLd[0]); Acc = CreateSMLADCall(VecLd0, VecLd1, Acc, InsertAfter); InsertAfter = Acc; } if (Acc != Reduction.Phi) { LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump()); Reduction.AccIntAdd->replaceAllUsesWith(Acc); return true; } return false; } static void MatchReductions(Function &F, Loop *TheLoop, BasicBlock *Header, ReductionList &Reductions) { RecurrenceDescriptor RecDesc; const bool HasFnNoNaNAttr = F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; const BasicBlock *Latch = TheLoop->getLoopLatch(); // We need a preheader as getIncomingValueForBlock assumes there is one. if (!TheLoop->getLoopPreheader()) { LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n"); return; } for (PHINode &Phi : Header->phis()) { const auto *Ty = Phi.getType(); if (!Ty->isIntegerTy(32)) continue; const bool IsReduction = RecurrenceDescriptor::AddReductionVar(&Phi, RecurrenceDescriptor::RK_IntegerAdd, TheLoop, HasFnNoNaNAttr, RecDesc); if (!IsReduction) continue; Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch)); if (!Acc) continue; Reductions.push_back(Reduction(&Phi, Acc)); } LLVM_DEBUG( dbgs() << "\nAccumulating integer additions (reductions) found:\n"; for (auto &R : Reductions) { dbgs() << "- "; R.Phi->dump(); dbgs() << "-> "; R.AccIntAdd->dump(); } ); } static void AddMACCandidate(OpChainList &Candidates, const Instruction *Acc, Value *MulOp0, Value *MulOp1, int MulOpNum) { Instruction *Mul = dyn_cast<Instruction>(Acc->getOperand(MulOpNum)); LLVM_DEBUG(dbgs() << "OK, found acc mul:\t"; Mul->dump()); ValueList LHS; ValueList RHS; if (IsNarrowSequence<16>(MulOp0, LHS) && IsNarrowSequence<16>(MulOp1, RHS)) { LLVM_DEBUG(dbgs() << "OK, found narrow mul: "; Mul->dump()); Candidates.push_back(make_unique<BinOpChain>(Mul, LHS, RHS)); } } static void MatchParallelMACSequences(Reduction &R, OpChainList &Candidates) { const Instruction *Acc = R.AccIntAdd; Value *A, *MulOp0, *MulOp1; LLVM_DEBUG(dbgs() << "\n- Analysing:\t"; Acc->dump()); // Pattern 1: the accumulator is the RHS of the mul. while(match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)), m_Value(A)))){ AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 0); Acc = dyn_cast<Instruction>(A); } // Pattern 2: the accumulator is the LHS of the mul. while(match(Acc, m_Add(m_Value(A), m_Mul(m_Value(MulOp0), m_Value(MulOp1))))) { AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 1); Acc = dyn_cast<Instruction>(A); } // The last mul in the chain has a slightly different pattern: // the mul is the first operand if (match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)), m_Value(A)))) AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 0); // Because we start at the bottom of the chain, and we work our way up, // the muls are added in reverse program order to the list. std::reverse(Candidates.begin(), Candidates.end()); } // Collects all instructions that are not part of the MAC chains, which is the // set of instructions that can potentially alias with the MAC operands. static void AliasCandidates(BasicBlock *Header, Instructions &Reads, Instructions &Writes) { for (auto &I : *Header) { if (I.mayReadFromMemory()) Reads.push_back(&I); if (I.mayWriteToMemory()) Writes.push_back(&I); } } // Check whether statements in the basic block that write to memory alias with // the memory locations accessed by the MAC-chains. // TODO: we need the read statements when we accept more complicated chains. static bool AreAliased(AliasAnalysis *AA, Instructions &Reads, Instructions &Writes, OpChainList &MACCandidates) { LLVM_DEBUG(dbgs() << "Alias checks:\n"); for (auto &MAC : MACCandidates) { LLVM_DEBUG(dbgs() << "mul: "; MAC->Root->dump()); // At the moment, we allow only simple chains that only consist of reads, // accumulate their result with an integer add, and thus that don't write // memory, and simply bail if they do. if (!MAC->ReadOnly) return true; // Now for all writes in the basic block, check that they don't alias with // the memory locations accessed by our MAC-chain: for (auto *I : Writes) { LLVM_DEBUG(dbgs() << "- "; I->dump()); assert(MAC->MemLocs.size() >= 2 && "expecting at least 2 memlocs"); for (auto &MemLoc : MAC->MemLocs) { if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc), ModRefInfo::ModRef))) { LLVM_DEBUG(dbgs() << "Yes, aliases found\n"); return true; } } } } LLVM_DEBUG(dbgs() << "OK: no aliases found!\n"); return false; } static bool CheckMACMemory(OpChainList &Candidates) { for (auto &C : Candidates) { // A mul has 2 operands, and a narrow op consist of sext and a load; thus // we expect at least 4 items in this operand value list. if (C->size() < 4) { LLVM_DEBUG(dbgs() << "Operand list too short.\n"); return false; } C->SetMemoryLocations(); ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS; ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS; // Use +=2 to skip over the expected extend instructions. for (unsigned i = 0, e = LHS.size(); i < e; i += 2) { if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i])) return false; } } return true; } // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector // multiplications. // To use SMLAD: // 1) we first need to find integer add reduction PHIs, // 2) then from the PHI, look for this pattern: // // acc0 = phi i32 [0, %entry], [%acc1, %loop.body] // ld0 = load i16 // sext0 = sext i16 %ld0 to i32 // ld1 = load i16 // sext1 = sext i16 %ld1 to i32 // mul0 = mul %sext0, %sext1 // ld2 = load i16 // sext2 = sext i16 %ld2 to i32 // ld3 = load i16 // sext3 = sext i16 %ld3 to i32 // mul1 = mul i32 %sext2, %sext3 // add0 = add i32 %mul0, %acc0 // acc1 = add i32 %add0, %mul1 // // Which can be selected to: // // ldr.h r0 // ldr.h r1 // smlad r2, r0, r1, r2 // // If constants are used instead of loads, these will need to be hoisted // out and into a register. // // If loop invariants are used instead of loads, these need to be packed // before the loop begins. // bool ARMParallelDSP::MatchSMLAD(Function &F) { BasicBlock *Header = L->getHeader(); LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n"; dbgs() << "Header block:\n"; Header->dump(); dbgs() << "Loop info:\n\n"; L->dump()); bool Changed = false; ReductionList Reductions; MatchReductions(F, L, Header, Reductions); for (auto &R : Reductions) { OpChainList MACCandidates; MatchParallelMACSequences(R, MACCandidates); if (!CheckMACMemory(MACCandidates)) continue; R.MACCandidates = std::move(MACCandidates); LLVM_DEBUG(dbgs() << "MAC candidates:\n"; for (auto &M : R.MACCandidates) M->Root->dump(); dbgs() << "\n";); } // Collect all instructions that may read or write memory. Our alias // analysis checks bail out if any of these instructions aliases with an // instruction from the MAC-chain. Instructions Reads, Writes; AliasCandidates(Header, Reads, Writes); for (auto &R : Reductions) { if (AreAliased(AA, Reads, Writes, R.MACCandidates)) return false; PMACPairList PMACPairs = CreateParallelMACPairs(R.MACCandidates); Changed |= InsertParallelMACs(R, PMACPairs); } LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump();); return Changed; } static void CreateLoadIns(IRBuilder<NoFolder> &IRB, Instruction *Acc, LoadInst **VecLd) { const Type *AccTy = Acc->getType(); const unsigned AddrSpace = (*VecLd)->getPointerAddressSpace(); Value *VecPtr = IRB.CreateBitCast((*VecLd)->getPointerOperand(), AccTy->getPointerTo(AddrSpace)); *VecLd = IRB.CreateAlignedLoad(VecPtr, (*VecLd)->getAlignment()); } Instruction *ARMParallelDSP::CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1, Instruction *Acc, Instruction *InsertAfter) { LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n"; dbgs() << "- "; VecLd0->dump(); dbgs() << "- "; VecLd1->dump(); dbgs() << "- "; Acc->dump()); IRBuilder<NoFolder> Builder(InsertAfter->getParent(), ++BasicBlock::iterator(InsertAfter)); // Replace the reduction chain with an intrinsic call CreateLoadIns(Builder, Acc, &VecLd0); CreateLoadIns(Builder, Acc, &VecLd1); Value* Args[] = { VecLd0, VecLd1, Acc }; Function *SMLAD = Intrinsic::getDeclaration(M, Intrinsic::arm_smlad); CallInst *Call = Builder.CreateCall(SMLAD, Args); NumSMLAD++; return Call; } Pass *llvm::createARMParallelDSPPass() { return new ARMParallelDSP(); } char ARMParallelDSP::ID = 0; INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", "Transform loops to use DSP intrinsics", false, false) INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", "Transform loops to use DSP intrinsics", false, false)