//===- HexagonBlockRanges.cpp ---------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "HexagonBlockRanges.h" #include "HexagonInstrInfo.h" #include "HexagonSubtarget.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cassert> #include <cstdint> #include <iterator> #include <map> #include <utility> using namespace llvm; #define DEBUG_TYPE "hbr" bool HexagonBlockRanges::IndexRange::overlaps(const IndexRange &A) const { // If A contains start(), or "this" contains A.start(), then overlap. IndexType S = start(), E = end(), AS = A.start(), AE = A.end(); if (AS == S) return true; bool SbAE = (S < AE) || (S == AE && A.TiedEnd); // S-before-AE. bool ASbE = (AS < E) || (AS == E && TiedEnd); // AS-before-E. if ((AS < S && SbAE) || (S < AS && ASbE)) return true; // Otherwise no overlap. return false; } bool HexagonBlockRanges::IndexRange::contains(const IndexRange &A) const { if (start() <= A.start()) { // Treat "None" in the range end as equal to the range start. IndexType E = (end() != IndexType::None) ? end() : start(); IndexType AE = (A.end() != IndexType::None) ? A.end() : A.start(); if (AE <= E) return true; } return false; } void HexagonBlockRanges::IndexRange::merge(const IndexRange &A) { // Allow merging adjacent ranges. assert(end() == A.start() || overlaps(A)); IndexType AS = A.start(), AE = A.end(); if (AS < start() || start() == IndexType::None) setStart(AS); if (end() < AE || end() == IndexType::None) { setEnd(AE); TiedEnd = A.TiedEnd; } else { if (end() == AE) TiedEnd |= A.TiedEnd; } if (A.Fixed) Fixed = true; } void HexagonBlockRanges::RangeList::include(const RangeList &RL) { for (auto &R : RL) if (!is_contained(*this, R)) push_back(R); } // Merge all overlapping ranges in the list, so that all that remains // is a list of disjoint ranges. void HexagonBlockRanges::RangeList::unionize(bool MergeAdjacent) { if (empty()) return; llvm::sort(begin(), end()); iterator Iter = begin(); while (Iter != end()-1) { iterator Next = std::next(Iter); // If MergeAdjacent is true, merge ranges A and B, where A.end == B.start. // This allows merging dead ranges, but is not valid for live ranges. bool Merge = MergeAdjacent && (Iter->end() == Next->start()); if (Merge || Iter->overlaps(*Next)) { Iter->merge(*Next); erase(Next); continue; } ++Iter; } } // Compute a range A-B and add it to the list. void HexagonBlockRanges::RangeList::addsub(const IndexRange &A, const IndexRange &B) { // Exclusion of non-overlapping ranges makes some checks simpler // later in this function. if (!A.overlaps(B)) { // A - B = A. add(A); return; } IndexType AS = A.start(), AE = A.end(); IndexType BS = B.start(), BE = B.end(); // If AE is None, then A is included in B, since A and B overlap. // The result of subtraction if empty, so just return. if (AE == IndexType::None) return; if (AS < BS) { // A starts before B. // AE cannot be None since A and B overlap. assert(AE != IndexType::None); // Add the part of A that extends on the "less" side of B. add(AS, BS, A.Fixed, false); } if (BE < AE) { // BE cannot be Exit here. if (BE == IndexType::None) add(BS, AE, A.Fixed, false); else add(BE, AE, A.Fixed, false); } } // Subtract a given range from each element in the list. void HexagonBlockRanges::RangeList::subtract(const IndexRange &Range) { // Cannot assume that the list is unionized (i.e. contains only non- // overlapping ranges. RangeList T; for (iterator Next, I = begin(); I != end(); I = Next) { IndexRange &Rg = *I; if (Rg.overlaps(Range)) { T.addsub(Rg, Range); Next = this->erase(I); } else { Next = std::next(I); } } include(T); } HexagonBlockRanges::InstrIndexMap::InstrIndexMap(MachineBasicBlock &B) : Block(B) { IndexType Idx = IndexType::First; First = Idx; for (auto &In : B) { if (In.isDebugInstr()) continue; assert(getIndex(&In) == IndexType::None && "Instruction already in map"); Map.insert(std::make_pair(Idx, &In)); ++Idx; } Last = B.empty() ? IndexType::None : unsigned(Idx)-1; } MachineInstr *HexagonBlockRanges::InstrIndexMap::getInstr(IndexType Idx) const { auto F = Map.find(Idx); return (F != Map.end()) ? F->second : nullptr; } HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getIndex( MachineInstr *MI) const { for (auto &I : Map) if (I.second == MI) return I.first; return IndexType::None; } HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getPrevIndex( IndexType Idx) const { assert (Idx != IndexType::None); if (Idx == IndexType::Entry) return IndexType::None; if (Idx == IndexType::Exit) return Last; if (Idx == First) return IndexType::Entry; return unsigned(Idx)-1; } HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getNextIndex( IndexType Idx) const { assert (Idx != IndexType::None); if (Idx == IndexType::Entry) return IndexType::First; if (Idx == IndexType::Exit || Idx == Last) return IndexType::None; return unsigned(Idx)+1; } void HexagonBlockRanges::InstrIndexMap::replaceInstr(MachineInstr *OldMI, MachineInstr *NewMI) { for (auto &I : Map) { if (I.second != OldMI) continue; if (NewMI != nullptr) I.second = NewMI; else Map.erase(I.first); break; } } HexagonBlockRanges::HexagonBlockRanges(MachineFunction &mf) : MF(mf), HST(mf.getSubtarget<HexagonSubtarget>()), TII(*HST.getInstrInfo()), TRI(*HST.getRegisterInfo()), Reserved(TRI.getReservedRegs(mf)) { // Consider all non-allocatable registers as reserved. for (const TargetRegisterClass *RC : TRI.regclasses()) { if (RC->isAllocatable()) continue; for (unsigned R : *RC) Reserved[R] = true; } } HexagonBlockRanges::RegisterSet HexagonBlockRanges::getLiveIns( const MachineBasicBlock &B, const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI) { RegisterSet LiveIns; RegisterSet Tmp; for (auto I : B.liveins()) { MCSubRegIndexIterator S(I.PhysReg, &TRI); if (I.LaneMask.all() || (I.LaneMask.any() && !S.isValid())) { Tmp.insert({I.PhysReg, 0}); continue; } for (; S.isValid(); ++S) { unsigned SI = S.getSubRegIndex(); if ((I.LaneMask & TRI.getSubRegIndexLaneMask(SI)).any()) Tmp.insert({S.getSubReg(), 0}); } } for (auto R : Tmp) { if (!Reserved[R.Reg]) LiveIns.insert(R); for (auto S : expandToSubRegs(R, MRI, TRI)) if (!Reserved[S.Reg]) LiveIns.insert(S); } return LiveIns; } HexagonBlockRanges::RegisterSet HexagonBlockRanges::expandToSubRegs( RegisterRef R, const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI) { RegisterSet SRs; if (R.Sub != 0) { SRs.insert(R); return SRs; } if (TargetRegisterInfo::isPhysicalRegister(R.Reg)) { MCSubRegIterator I(R.Reg, &TRI); if (!I.isValid()) SRs.insert({R.Reg, 0}); for (; I.isValid(); ++I) SRs.insert({*I, 0}); } else { assert(TargetRegisterInfo::isVirtualRegister(R.Reg)); auto &RC = *MRI.getRegClass(R.Reg); unsigned PReg = *RC.begin(); MCSubRegIndexIterator I(PReg, &TRI); if (!I.isValid()) SRs.insert({R.Reg, 0}); for (; I.isValid(); ++I) SRs.insert({R.Reg, I.getSubRegIndex()}); } return SRs; } void HexagonBlockRanges::computeInitialLiveRanges(InstrIndexMap &IndexMap, RegToRangeMap &LiveMap) { std::map<RegisterRef,IndexType> LastDef, LastUse; RegisterSet LiveOnEntry; MachineBasicBlock &B = IndexMap.getBlock(); MachineRegisterInfo &MRI = B.getParent()->getRegInfo(); for (auto R : getLiveIns(B, MRI, TRI)) LiveOnEntry.insert(R); for (auto R : LiveOnEntry) LastDef[R] = IndexType::Entry; auto closeRange = [&LastUse,&LastDef,&LiveMap] (RegisterRef R) -> void { auto LD = LastDef[R], LU = LastUse[R]; if (LD == IndexType::None) LD = IndexType::Entry; if (LU == IndexType::None) LU = IndexType::Exit; LiveMap[R].add(LD, LU, false, false); LastUse[R] = LastDef[R] = IndexType::None; }; RegisterSet Defs, Clobbers; for (auto &In : B) { if (In.isDebugInstr()) continue; IndexType Index = IndexMap.getIndex(&In); // Process uses first. for (auto &Op : In.operands()) { if (!Op.isReg() || !Op.isUse() || Op.isUndef()) continue; RegisterRef R = { Op.getReg(), Op.getSubReg() }; if (TargetRegisterInfo::isPhysicalRegister(R.Reg) && Reserved[R.Reg]) continue; bool IsKill = Op.isKill(); for (auto S : expandToSubRegs(R, MRI, TRI)) { LastUse[S] = Index; if (IsKill) closeRange(S); } } // Process defs and clobbers. Defs.clear(); Clobbers.clear(); for (auto &Op : In.operands()) { if (!Op.isReg() || !Op.isDef() || Op.isUndef()) continue; RegisterRef R = { Op.getReg(), Op.getSubReg() }; for (auto S : expandToSubRegs(R, MRI, TRI)) { if (TargetRegisterInfo::isPhysicalRegister(S.Reg) && Reserved[S.Reg]) continue; if (Op.isDead()) Clobbers.insert(S); else Defs.insert(S); } } for (auto &Op : In.operands()) { if (!Op.isRegMask()) continue; const uint32_t *BM = Op.getRegMask(); for (unsigned PR = 1, N = TRI.getNumRegs(); PR != N; ++PR) { // Skip registers that have subregisters. A register is preserved // iff its bit is set in the regmask, so if R1:0 was preserved, both // R1 and R0 would also be present. if (MCSubRegIterator(PR, &TRI, false).isValid()) continue; if (Reserved[PR]) continue; if (BM[PR/32] & (1u << (PR%32))) continue; RegisterRef R = { PR, 0 }; if (!Defs.count(R)) Clobbers.insert(R); } } // Defs and clobbers can overlap, e.g. // dead %d0 = COPY %5, implicit-def %r0, implicit-def %r1 for (RegisterRef R : Defs) Clobbers.erase(R); // Update maps for defs. for (RegisterRef S : Defs) { // Defs should already be expanded into subregs. assert(!TargetRegisterInfo::isPhysicalRegister(S.Reg) || !MCSubRegIterator(S.Reg, &TRI, false).isValid()); if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None) closeRange(S); LastDef[S] = Index; } // Update maps for clobbers. for (RegisterRef S : Clobbers) { // Clobbers should already be expanded into subregs. assert(!TargetRegisterInfo::isPhysicalRegister(S.Reg) || !MCSubRegIterator(S.Reg, &TRI, false).isValid()); if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None) closeRange(S); // Create a single-instruction range. LastDef[S] = LastUse[S] = Index; closeRange(S); } } // Collect live-on-exit. RegisterSet LiveOnExit; for (auto *SB : B.successors()) for (auto R : getLiveIns(*SB, MRI, TRI)) LiveOnExit.insert(R); for (auto R : LiveOnExit) LastUse[R] = IndexType::Exit; // Process remaining registers. RegisterSet Left; for (auto &I : LastUse) if (I.second != IndexType::None) Left.insert(I.first); for (auto &I : LastDef) if (I.second != IndexType::None) Left.insert(I.first); for (auto R : Left) closeRange(R); // Finalize the live ranges. for (auto &P : LiveMap) P.second.unionize(); } HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeLiveMap( InstrIndexMap &IndexMap) { RegToRangeMap LiveMap; LLVM_DEBUG(dbgs() << __func__ << ": index map\n" << IndexMap << '\n'); computeInitialLiveRanges(IndexMap, LiveMap); LLVM_DEBUG(dbgs() << __func__ << ": live map\n" << PrintRangeMap(LiveMap, TRI) << '\n'); return LiveMap; } HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeDeadMap( InstrIndexMap &IndexMap, RegToRangeMap &LiveMap) { RegToRangeMap DeadMap; auto addDeadRanges = [&IndexMap,&LiveMap,&DeadMap] (RegisterRef R) -> void { auto F = LiveMap.find(R); if (F == LiveMap.end() || F->second.empty()) { DeadMap[R].add(IndexType::Entry, IndexType::Exit, false, false); return; } RangeList &RL = F->second; RangeList::iterator A = RL.begin(), Z = RL.end()-1; // Try to create the initial range. if (A->start() != IndexType::Entry) { IndexType DE = IndexMap.getPrevIndex(A->start()); if (DE != IndexType::Entry) DeadMap[R].add(IndexType::Entry, DE, false, false); } while (A != Z) { // Creating a dead range that follows A. Pay attention to empty // ranges (i.e. those ending with "None"). IndexType AE = (A->end() == IndexType::None) ? A->start() : A->end(); IndexType DS = IndexMap.getNextIndex(AE); ++A; IndexType DE = IndexMap.getPrevIndex(A->start()); if (DS < DE) DeadMap[R].add(DS, DE, false, false); } // Try to create the final range. if (Z->end() != IndexType::Exit) { IndexType ZE = (Z->end() == IndexType::None) ? Z->start() : Z->end(); IndexType DS = IndexMap.getNextIndex(ZE); if (DS < IndexType::Exit) DeadMap[R].add(DS, IndexType::Exit, false, false); } }; MachineFunction &MF = *IndexMap.getBlock().getParent(); auto &MRI = MF.getRegInfo(); unsigned NumRegs = TRI.getNumRegs(); BitVector Visited(NumRegs); for (unsigned R = 1; R < NumRegs; ++R) { for (auto S : expandToSubRegs({R,0}, MRI, TRI)) { if (Reserved[S.Reg] || Visited[S.Reg]) continue; addDeadRanges(S); Visited[S.Reg] = true; } } for (auto &P : LiveMap) if (TargetRegisterInfo::isVirtualRegister(P.first.Reg)) addDeadRanges(P.first); LLVM_DEBUG(dbgs() << __func__ << ": dead map\n" << PrintRangeMap(DeadMap, TRI) << '\n'); return DeadMap; } raw_ostream &llvm::operator<<(raw_ostream &OS, HexagonBlockRanges::IndexType Idx) { if (Idx == HexagonBlockRanges::IndexType::None) return OS << '-'; if (Idx == HexagonBlockRanges::IndexType::Entry) return OS << 'n'; if (Idx == HexagonBlockRanges::IndexType::Exit) return OS << 'x'; return OS << unsigned(Idx)-HexagonBlockRanges::IndexType::First+1; } // A mapping to translate between instructions and their indices. raw_ostream &llvm::operator<<(raw_ostream &OS, const HexagonBlockRanges::IndexRange &IR) { OS << '[' << IR.start() << ':' << IR.end() << (IR.TiedEnd ? '}' : ']'); if (IR.Fixed) OS << '!'; return OS; } raw_ostream &llvm::operator<<(raw_ostream &OS, const HexagonBlockRanges::RangeList &RL) { for (auto &R : RL) OS << R << " "; return OS; } raw_ostream &llvm::operator<<(raw_ostream &OS, const HexagonBlockRanges::InstrIndexMap &M) { for (auto &In : M.Block) { HexagonBlockRanges::IndexType Idx = M.getIndex(&In); OS << Idx << (Idx == M.Last ? ". " : " ") << In; } return OS; } raw_ostream &llvm::operator<<(raw_ostream &OS, const HexagonBlockRanges::PrintRangeMap &P) { for (auto &I : P.Map) { const HexagonBlockRanges::RangeList &RL = I.second; OS << printReg(I.first.Reg, &P.TRI, I.first.Sub) << " -> " << RL << "\n"; } return OS; }